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General relativity, 4 
 
Orbital motion of small test masses   
 
 The starting point for analyzing free fall trajectories in the (2-space, 1-time) 
Schwarzschild spacetime is Equation (3) from GR 3 

 

,   (1) 

 
in  = 1 units (in which all terms have dimensions of length2).  Worldlines for freely falling test 
masses (i.e., masses that don't contribute to the gravity described in (1)) in general relativity 
correspond, in some sense, to the “straightest” paths through spacetime.  In special relativity, 
without gravity, a straight worldline corresponds to the maximum proper time path connecting 
two events.  (Recall, for example, the discussion of the twin paradox.  The time between 
departure and return for the twin staying on Earth [i.e., events connected by a single straight 
worldline] is longer than for the twin travelling out and back [which requires two different 
worldlines glued together to connect the same events].)  By extension, the desired free-fall 
worldline connecting two events is the continuous sequence of events, , such that 

 along the path is greater than along any other path connecting the same events.  

(More precisely, the path should be broken up into a sequence of infinitesimal straight line 

segments each labeled by a real number, , starting at 0 and ending at 1, and .) 

 
Conserved quantities 
 
 Finding these worldlines is greatly facilitated by borrowing a result from the “calculus of 
variations”: if a coordinate (not its differential) does not appear explicitly in the integrand 
of an integral to be maximized there will be a quantity associated with that coordinate 
that will remain constant at any point on the desired path.  In (1) above,  explicitly 

appears in  and in , but neither  nor  appear explicitly.  Thus, there are two 

associated “constants of the motion” for a test mass freely falling through the spacetime 
described by equation (1).  Again, borrowing from the calculus of variations, the constant 

corresponding to the absence of  is  and to the absence of  is . 

 

So, what are these constants?  Let’s start with .  As noted in GR3, angular 

momentum, , is constant for masses freely falling in spherically symmetric gravity.  
The relativistic definition of momentum is ;  can have two components, one 
in the radial direction, which contributes nothing to the cross product for , and one 
perpendicular to , which in spherical coordinates has a magnitude .  Thus, the 
magnitude of  is .  (In  = 1 units,  has the dimensions of mass times length.  
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In conventional units , where  is measured in units of time.)  Thus, the -

related constant is . 

 
This result can be used to eliminate  in the Schwarzschild proper time: 

.   (2) 

If we multiply both sides of (2) by  and divide by  (and rearrange), we obtain 
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where .  If we multiplied both sides of (3) by 𝑚 2⁄  the first term on the right would 

look like the test mass's "radial kinetic energy," the second would look like its " angular kinetic 
energy," and (because 𝑟5 = 2𝐺𝑀) the third would look like a generalization of the potential 
energy of interaction between 𝑀 and 𝑚.  Thus, the constant 𝑒 describes conservation of energy 
for the freely falling mass. 
 

Equation (3) can be integrated to find  in terms of the input constants  and .  
This can be combined with  to find , and hence the test mass’ position in the 

-plane at any instant.  It is often more useful to determine the shape of the test mass’ 
trajectory, that is , rather than its instantaneous position.  This can be achieved by noting 

that .  Inserting into (3) yields 

. 

Though it’s probably not obvious, the substitution  greatly simplifies the latter equation.  
In particular, 

.   (4) 

 
 
Orbits in the Newtonian limit   
 
In Newtonian gravity, test masses travel slowly compared with , their rest energies are much 
greater than their mechanical energies, and their distances from  are much greater than ’s 
Schwarzschild radius.  In the Newtonian limit, the left hand side of (4) can be replaced by 𝑒" −
1 = 2𝐸-9:;<=>:<? 𝑚𝑐"⁄ , where 𝐸-9:;<=>:<? is the sum of kinetic and potential energies. 
Multiplying both sides of (4) by 𝑚𝑐" 2⁄ , noting that noting that , and remembering 

that  leads to 
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.   (5) 

 
The first term on the right hand side of (5) is the total kinetic energy of the test mass (radial part 
plus angular part), while  is just the Newtonian gravitational potential energy 
(remember ).  As  is constant, (5) can be differentiated with respect to  to 
obtain 

,     (6) 

 
an equation that is formally identical to that of a simple harmonic oscillator (where  takes the 
place of time), with an “angular frequency” equal to 1, and an “applied constant force” that shifts 
the oscillator’s equilibrium position from 0 to .  Solutions to the simple harmonic 
oscillator equation are sines or cosines so, for example, , where 

 and  is a constant of integration.  This constant can be expressed in terms of 

 and  by plugging  back into the energy equation: .  Thus, 
we find that  

. 
 
 Let’s assume that .  When that is true the closest approach of the test mass to  
(the position where  is smallest) occurs at  (where the cosine has its largest value).  
Because the gravitational potential energy is defined to be negative,  can be >, =, < 0.   
 
Case (i): Open trajectories   Suppose , i.e., where ’s kinetic energy ≥ –potential 
energy.  When , .  For both positive and negative values of  the cosine is less than 
1 and, in fact, can be negative.  Thus, there are two values of  for which 

, namely, where : i.e., .  For 

, , and , whereas for , .  In the former 
case, the trajectory is an open parabola, and for the latter case, it’s an 
open hyperbola, as shown in the figure to the right.  Thus, in these cases 

 comes in from infinity, swings by  with a closest approach of 
, then returns to infinity.   

 
Case (ii): Closed orbits   On the other hand, when , we get a different story.  The 
smallest  can be and still have a real value for  is .  For this energy , 
and  has a single value, , for all values of ; that’s a circular orbit.  For , 

, and thus  is a minimum at  and a maximum at .  Furthermore, every 
time  is incremented by ,  returns to its prior value: such an orbit is a closed, periodic 
ellipse.  See the figure.  Another way of thinking about these cases is that for , the speed 
of the test mass exceeds the “escape speed,” while for , ’s speed is less than the 
escape speed.  For the incredibly difficult to achieve special case where , ’s speed 
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exactly equals the escape speed.  We’ll come back to this “miraculous” case later when we 
discuss the expanding universe. 
 
Orbits in the full Schwarzschild spacetime   
 
1. Precession of the perihelion    
 
Now, making no assumption about the smallness of  in Equation (4), differentiation by  
leads to 
 

.    (7) 

 
This equation does not correspond to a simple harmonic oscillator; test mass trajectories for 

 do not form closed ellipses.  Instead, every orbital pass finds the angular position of the 
minimum approach to  to be shifted somewhat.  For orbits of objects in the solar system 
about the Sun this orbital shift is called “precession of the perihelion.” (Perihelion means 
“closest approach to the Sun.”)  The various pulls of all of the planets on one another cause a 
much larger perihelion shift than the general relativistic effect.  If one accounts for all of these, 
though, there’s still some shift left over.  The residual shift is not a lot—tens, or less, of seconds 
of arc per century!  Only four solar system objects get close enough to the Sun for a reasonable 
estimate of the GR shift to be made from solar system observations.  They are: Mercury (in 
¢¢(century)-1: 43.1±0.5 measured versus 43.0 predicted), Venus (8.4±4.8 versus 8.6), Earth 
(5.0±1.2 versus 3.8), and the asteroid Icarus (9.8±0.8 versus 10.3).  All measured residual shifts 
are compatible with the predictions of GR.  Note that in an elliptical orbit the speed of  varies 
as  varies.  If we set the kinetic energy of  equal to its special relativistic form, , 
Newtonian gravity will also predict a perihelion shift—but only about 1/6th as large as the GR 
prediction. 
 
 An even more compelling corroboration of the general relativistic orbital precession 
phenomenon can be found in a remarkable binary star system discovered by Joseph Taylor and 
Richard Hulse (then Taylor’s graduate student) in 1974, using the Arecibo radio telescope.  
They observed a pulsar whose radiation Doppler shift alternates back and forth between “red” 
and “blue” in a way that can only be due to orbital motion.  This pulsar orbits a second 
condensed stellar remnant once every 7.75 h, suggesting they are very close to one another; 
each of the partners has a mass of about 1.4 solar masses.  Using the observed orbital 
characteristics of this system, general relativity (it’s not exactly Schwarzschild, because both 
stars are moving) predicts that the periastron (closest mutual approach of the stars) of the 
Hulse-Taylor binary should shift by about 4.2˚ per year (it would take Mercury 40,000 years to 
achieve that much precession!), which is exactly what is seen. 
 
2. Bending of “starlight”   
 
The Schwarzschild spacetime predicts that light also gravitates.  
Multiply both sides of Equation (4) by  and take the test body 
to be a photon with :  
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In these limits, the photon energy, , and momentum, , are used and the photon’s orbital 
angular momentum is , where  is defined as in the figure above.  The resulting photon 
equation of motion is 

    (8) 

It is possible to integrate the photon orbit equation directly (though you need Maple or 
Mathematica or something to help). 
 

We are interested in the angle  in the figure above.  That’s the angle of deflection of a 
photon falling in from infinity, swinging around the Sun, and heading back out to infinity.  
Plugging in values of  and  (= the solar radius, for grazing incidence) for the Sun we find 

.  In this weak gravity limit, the integration of the orbit equation yields 
 radians, or 1.75¢¢ of arc.  Despite its small value, this result is now well 

confirmed.  The first observational confirmation of this prediction of general relativity in 1919 by 
Eddington during a total eclipse of Sun is one of the most celebrated results of 20th century 
science.  Announcement of Eddington’s observation appeared on the front page of the NY 
Times and certainly helped establish Einstein’s fame as a legendary intellect.  Unfortunately, 
these observations had large measurement uncertainty.  On the other hand, recent (1996) 
observations of the bending of emissions from radio sources (3C273B and 3C279) using very-
long-baseline-interferometry confirm GR’s prediction with an uncertainty no worse than 1 part in 
103.  Incidentally, if light were treated as a mass falling in Newtonian gravity the prediction of 
deflection would be half the observed values, well outside of the actual observational 
uncertainty.  Thus, Newtonian gravity supplemented by special relativity makes qualitatively 
correct predictions for both perihelion precession and for light bending, but the quantitative 
values are demonstrably incorrect.  
 
3.  Gravitational lensing    

 
Of course, any large mass will cause light passing it to deflect.  A large  can act as a not-so-
great, gravitational converging lens.  Images collected from the Hubble telescope, for 
example, show both multiple copies of the light from one galaxy passing on its way to earth past 
another galaxy and also many greatly distorted galactic images presumably due to some 
intervening large mass.  The leftmost image above shows the “Einstein cross.”  The outer four 
blobs are images of the same distant quasar; the center blob is a relatively nearby galaxy 
(http://hubblesite.org/newscenter/archive/releases/1990/20/image/a/). 
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The center image above shows marked elongation of several very distant galaxies (small 
circular arcs) as their light passes through the “Abell galactic cluster.”  
(http://hubblesite.org/newscenter/archive/releases/2003/01/image/a.)  Since the light deflection 
is proportional to the intervening mass, it is determined that the visible matter in the Abell cluster 
is a factor of five times too small to cause the observed elongation pattern.  This invisible stuff is 
called dark matter (not because it’s dark, but rather because it isn’t bright like the glowing 
galaxies). An even more dramatic “image” of dark matter constructed using gravitational lensing 
is shown on the right above.  In the image, two galactic clusters are colliding.  The hydrogen gas 
clouds each cluster carries with it are crashing into each other and emitting short wavelength 
electromagnetic radiation that is color-coded as pink.  This radiation is produced when 
“colliding” atoms interact electromagnetically.  The clusters also carry dark matter, which only 
interacts gravitationally.  Thus, in the collision the ordinary matter is decelerating while the dark 
matter keeps on going (and hence separates from the cluster it used to travel along with).  The 
blue color-coded blobs of dark matter are inferred by gravitational distortion of light from 
galaxies behind the collision 
(http://hubblesite.org/newscenter/archive/releases/2008/32/image/a/).  


