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General relativity, 2 
 
 Newton’s law of gravitostatics is incompatible with special relativity.  To see this, suppose 
at time  in frame O  is at  and  is at .  Newton’s gravitational force law says 

 and relativistic dynamics says .  Transforming to 
another frame O¢ moving relative to O leads to .  But what is ?  If  and 

 are the simultaneous positions of  and  in O, the transformed positions  and  are 
not simultaneous in O¢.  Obviously, Newtonian gravity has to be modified to make it relativistically 
correct.  The same is true for the electrostatic Coulomb force.  But, for electric charges there’s 
also magnetism, and that helps save the day.  Clearly, what’s needed for gravity is an analog of 
magnetism.  To create such an analog, Einstein appealed to geometry.   
 
Gravity as geometry: part I 
 
 Though Earth’s gravity is approximately constant everywhere near the surface of Earth, 
variations in other bodies’ gravity at Earth turn out to have important, noticeable effects.  In 
particular, the daily oceanic high and low tides are caused by the gravitational variations of our 
moon and Sun.   
 
 In the figure to the right we see a large source of gravity, .  A small 
reference mass is at  and a small test mass is at .  The position of the test 
mass relative to the reference mass is  and the acceleration of the 

test mass is .  Suppose the reference and test masses do 

not interact and both freely fall in ’s gravitational field: that is, 

 and .  The position  can differ 

from  both in length and direction.  Let , where  is a unit vector 
perpendicular (“normal”) to .  Relative to the center of the laboratory,  is positive if the box is 
“above” it and negative “below;”  is positive if the box is to the “right” of center and negative to 

the “left.”  Assuming that , it is straightforward to show that , so that 

 or  

    (1) 

 
Example:  Suppose  is the center of the International Space Station, where  and a 
pencil is 1 m from the center of the ISS.  The pencil will accelerate toward or away from the center 
with an acceleration whose magnitude is about  x 1 m/6.8x106 m—a few x 10–7 .  That’s why 
NASA speaks about “microgravity” aboard the Space Station. 
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The accelerations in (1) result from “tidal” effects—differences in  due to the source ; 
they are not due to forces between the reference and test masses.  That is, tidal forces tend to 
pull things apart along the radial direction and squeeze them together in the tangential 
direction.  This happens on Earth due to Sun and Moon.  Relative to Earth’s center (the 
reference) “particles” of ocean water are pulled in the radial directions toward Sun and Moon and 
squeezed together in the respective tangential directions.  As Earth rotates under these bulges 
and dips large bodies of water seem to rise and fall.   You’ve probably heard that the ocean tides 
on Earth are mostly caused by Moon.  If Moon’s pull at Earth is so much less than Sun’s how can 
that be?  The answer has to do with how rapidly  falls off with .   
 
Example:  Sun has a mass = 2x1030 kg and a radius = 0.7x106 km = 0.7x109 m.  Sun’s 
gravitational field at its surface is therefore  = 272 m/s2 (calculate it), about 28 times greater 
than .  Earth is about 1.5x1011 m from Sun so  due to Sun at Earth is a factor of about 
(0.7x109/1.5x1011)2 = 2x10–5 less than at Sun’s surface, or about 6x10–4 .  Earth’s moon has a 
mass = 7.4x1022 kg and is 3.85x108 m away.  So,  of Moon at Earth is about 3.4x10–6  
(calculate it)—much less than  of Sun.  But, , so Moon is more 
important. 
 
 A space-time diagram for an observer fixed to the reference point 
recording the worldlines of two test bodies each 1 m above and below and two 
test bodies each 1 m to the right and left looks like the figure to the right.  The 
world lines shown are for bodies that, starting from rest, are in free fall—that is, 
feel no external force. In the absence of tidal effects, all of these world lines 
would be straight and parallel to the -axis.  Because of the tidal effects, 
world lines that start out parallel to one another either converge or diverge. 
 
 It is quite reasonable to interpret this converging and diverging of freely 
falling world lines as a result of geometry, as Einstein did in his 1915 paper on 
general relativity.  To see how this might be, consider the figure to the right.  At 
the top, we see a large source of gravity, , and five test masses arrayed 
initially along a single radial line.  The position of the first test mass is labeled by 

 relative to the center of ,  for the second and so on.  If each test mass in 
the array is simultaneously released from rest and free falls toward , each 
retains its position label (not its position), but the physical distance between 
each pair of masses grows with time.  That is, the tidal force of  causes the masses to spread 
out in the radial direction.  This continues until the falling masses crash into .  In terms of 
position labels (also called “free fall” coordinates), , the  spacetime diagram looks like the 
square grid beneath the starting configuration.  This seems like an ordinary spacetime coordinate 
system for special relativity, but there’s something new.  As stated, the physical distance between 
successive free fall coordinates depends on time.  That is not at all like the space and time 
coordinates in special relativity with no gravity.  It is, however, analogous to what happens if two 
airplanes fly at the same constant speed from the South Pole heading north along two different 
longitude routes.  Though the longitude coordinates of the two airplanes remain constant, the 
physical distance between them will constantly increase until they get to the Equator, then will 
decrease thereafter.  This is obviously because the surface of Earth that the planes are flying over 
is curved. 
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A Mercator Projection is a planar representation of the latitude and 
longitude coordinates on Earth that identifies any point on the 
surface.  It is an “embedding” of the Earth’s 2D surface in a 2-
dimensional plane, as in the (approximate) figure to the right.  In 
the projection, the Earth’s latitude and longitude coordinate 
system certainly looks like a nice, flat, rectangular grid.  On the 
other hand, when viewed from “outside”—that is, when embedded in 3D— the 
Earth’s surface is clearly curved.  So if we were 2D bugs confined to crawl around on the surface 
of the Earth would we say our world was intrinsically curved or flat?  It seems like intrinsic 
curvature shouldn’t depend on what coordinate systems are used. 

 
There are several ways of measuring intrinsic curvature.  All involve taking second 

derivatives of some function in its many independent variable “directions.”  The definition of 
space-time curvature used in general relativity (“Riemannian curvature”) focuses on how proper 
time intervals are measured in some system of time and space coordinates.  In special relativity, 

the proper time between two nearby events is , when 
Cartesian spatial coordinates  are used.  The same proper time is 

, when spherical spatial coordinates  are 

used.  In general, , where  is a general s-t coordinate with the 

superscript taking on one of four possible values, 0 (for time) through 3 (1, 2, 3 for space).  The 16 
quantities  together constitute the so-called “metric.” (A geeky bit: the metric is a tensor of rank 
two—that is, it has two subscripts, as opposed to a vector, which has one, or a scalar, which has 
none.)  The Riemannian curvature is a linear combination of the various first and second 
derivatives of .   

Example:  For the proper time , the s-t coordinates can be 

taken to be , and the metric components are then 
, with all others being = 0.  For the proper time 

, the s-t coordinates can be taken to be 

 and , with all others being = 0.  
It’s clear that the first of these metrics has all zeroes for its first and second derivatives and 
therefore corresponds to zero curvature.  The second metric has some first and second 
derivatives that don’t vanish.  On the other hand, though it’s a bit of a mess to do, combining 
these derivatives in the definition of the Riemannian curvature also produces zero.  Thus, even 
though the proper time for a special relativistic inertial observer in spherical coordinates 
looks like there should be curvature, there isn’t any.  Contrast this conclusion with the so-
called “Schwarzschild proper time”:   

 

The factors multiplying  and  cause the Riemann curvature to not be zero everywhere.  
We’ll have a lot more to say about this space-time presently. 
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