Problems 1-3 refer to: N identical, noninteracting, and distinguishable quantum harmonic oscillators (i.e., their separation is much greater than their de Broglie wavelength) are in thermal equilibrium at temperature T. The energy of each oscillator can be expressed as $\varepsilon_{n}=n \varepsilon$, where ε is the level spacing and $n=0,1,2, \ldots$. Note: For distinguishable particles, the chemical potential cancels out of calculation of probabilities, so $P_{\sigma}=\exp \left(-\varepsilon_{\sigma} / k_{B} T\right) / \sum_{\sigma^{\prime}} \exp \left(-\varepsilon_{\sigma^{\prime}} / k_{B} T\right)$. Here each quantum state σ corresponds to the integer n only.

1. Show that the probability of finding an oscillator in state n is $P_{n}=\left[1-\exp \left(-\varepsilon / k_{B} T\right)\right] \exp \left(-n \varepsilon / k_{B} T\right)$. (Hint: To do this, you have to evaluate the denominator in the probability expression above. You will also need to recall that the sum of a geometric series is $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, provided $x<1$.)
2. Using the result in problem 1 above, show that the probability an oscillator is in an excited state goes to zero as $T \rightarrow 0$.
3. Suppose $\varepsilon / k_{B}=100 \mathrm{~K}$. What is the probability of finding an oscillator in the ground state at room temperature ($T=300 \mathrm{~K}$)?
