1. A particle of mass m is trapped in a rectangular infinite well with side lengths $L_{1}=L, L_{2}=L / \sqrt{2}, L_{3}=L / \sqrt{3}$. Make a table of n_{x}, n_{y}, n_{z} values with corresponding values of E for the six lowest energy eigenvalues with E measured in units of $\pi^{2} \hbar^{2} / 2 m L^{2}$.

Problems 2-4 refer to: An electron is trapped in a rectangular infinite well with side lengths $L_{1}=L, L_{2}=L_{3}=L / 10$. Let $L=2 \mathrm{~nm}$.
2. What are the electron's ground state and first excited state energies (in eV). Use $\pi^{2}(\hbar c)^{2} / 2 m c^{2} L^{2}$, where all quantities are in eV , eV-nm, or nm.
3. What is the wavelength of the photon that is emitted when the electron in problem 2 makes a transition from the first excited state to the ground state?
4. Suppose the energy of the electron state $\left(n_{x}, 1,1\right)$ is greater than or equal to the energy of the state $(1,2,1)$. What is the smallest value of n_{x} for which this is true?

