
Sc4 1 

Schrödinger, 4 
 
The sanitized hydrogen atom: separating the variables 
 
 Separation of variables in the Schrödinger Equation for the hydrogen problem requires 
expressing Y as a product, , substituting into the partial 
differential equation [(5) in Sc3], and then dividing by Y.  As in the square well problems, the 
separation constant for the  part of the separation is the particle’s eigen-energy, .  The rest 
of the resulting equation is 

. (1) 

While this looks unpromising in terms of separation (because all the coordinates are still 

scrambled together), pieces can be attacked sequentially starting with the term .  This 

term contains the only  dependence and therefore must be constant.  Let’s call the constant of 

separation of from the other variables .  Setting  (to make the equation look 

like a harmonic oscillator) and solving, leads to , where  is a constant.  If we 
imagine starting at some value of  and going around the -axis by  we should get exactly 
the same wavefunction back, so  must be an integer (including zero)—conventionally 
denoted .  (Keep in mind that  is a dimensionless integer, not a mass.)  It is customary to 
use just the positive sign in and take care of the minus by letting  be either positive or 
negative.   
 
 The stuff in the square brackets on the right-hand side of the separation equation is now 

, which only depends on .  Since this is the only place  

appears, this term must equal another constant.  Call it .  This leads to the decidedly un-
harmonic oscillator looking equation  

. 

For reasons similar to the argument above for , however (and exploiting a bit of arcane 19th 
century mathematics), it turns out that  is also an integer, but now with the form , 
where  can be 0, 1, 2, … .  The smoothness requirement for the angular wavefunctions 
introduces an additional constraint, namely, that .  That is, for every value of  there 
are  possible  values: . 
 
 Finally, we have 

.     (2) 

In (2), the variables  have all been separated out leaving only .  Note that the second 
term on the right hand side of (2) arises from the angular derivatives in (1) which in Sc3 were 
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identified with the square of the orbital angular momentum.  Because it involves the integer , it 
is apparent that the magnitude of the orbital angular momentum is quantized–i.e., it can’t take 
on just any values.  (Remember: this is due to the requirement that the wavefunction has to be 
smoothly continuous.)  Indeed, , where  is the magnitude of the 

angular momentum eigenvalues: , with allowed values , and 
so on. 
 
 The operator  is part of ; it refers to motion around the -axis 
and is therefore called .  The eigenvalues of , namely , deal with the 
allowed “orientations” of an orbit.  To the right is a picture of a classical circular orbit 
tipped so that its angular momentum vector is not along .  The magnitude of the 
angular momentum, , is greater than the magnitude of its projection along  

(i.e., ).  The angle between  and the angular momentum vector is given by .  
For the quantized angular momenta described above this angle is given by one of the  
possible values, .  The requirement that the wavefunction be smoothly 

continuous forces the orbital angular momentum vector to have only certain allowed 
magnitudes and to point in only certain allowed directions! 
 
Example: If  (or ) the  possible angles are 45˚ (for ), 
90˚ (for ), and 135˚ (for ).  This is shown to the right.  The angular 
momentum vector has magnitude , but it can’t point in any direction.  Its tip can 
only be on one of the three circles shown, so that the projections along  are .   
 
Note that there is no absolute -axis in space.  In order to make a measurement of angular 
momentum orientation, you have to do something such as turn on a magnetic field.  Once you 
do that then  is established by the field direction.  Note also, that because the Coulomb 
potential energy is spherically symmetric the electron’s total energy is independent of 
orbital orientation.  Thus, for any value of  there are   states with the same 
energy; this is a case of real degeneracy. 
 
Sanitized hydrogen energy eigenvalues 
 

The electron wavefunction in the H-atom does not go abruptly to zero at some finite 
radius.  In fact, there are two qualitatively different possibilities corresponding to the total energy 
being positive or negative.  When the electron’s total energy is positive, the wavefunction 
extends to  = infinity and describes an unbound electron capable of escaping the pull of the 
proton.  When the electron’s total energy is negative, however, the attraction of the proton wins 
out over the electron’s desire to escape and the electron is trapped near the proton, with a 
wavefunction that rapidly goes to zero as  increases.  The allowed energy eigenstates in this 
case are called “bound” states.  Here, we focus on these. 
 
 Equation (2) has an effective potential energy due partly to the real Coulomb attraction 

and partly from the (fictitious) centrifugal repulsion: .  For a classical 
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particle, the radius where the effective potential energy is minimum (i.e., set the derivative of 
 to zero and solve for ) would correspond to a classical circular orbit with 

.  Though the quantum mechanical version of hydrogen is hardly classical, the 

factor  has the dimensions of length and its value sets the length or size scale of the 

atom.  For historical reasons, it’s called the “Bohr radius” and has the value 0.0529 nm (i.e., 
about 1/20 nm).  Plugging  into  produces 

.  The factor  sets the scale 

of electronic energy in the hydrogen atom.  The length and energy scales of the hydrogen 
problem are fixed by the mass and charge of the electron, the charge of the proton, the strength 
of the Coulomb force, and the fundamental constant , and nothing else.  As noted previously, 
there actually can be no classical circular orbits because that would require fixing the electron’s 
radial momentum to be zero while also fixing its radial position to be , which violates the 

uncertainty principle.  In addition, the Schrödinger Equation permits stable  states (in which 
the electron effectively “passes through” the proton), which are not permitted classically.  Thus, 
a careful analysis of the solutions of (2) is required to understand the allowed states of motion of 
the electron.  Regardless of details, however, the extent of the wavefunctions and the 
corresponding energies will be related to  and , respectively. 
 
 Like the finite square well, the Coulomb potential energy is 
“softer” than an infinite well potential energy, and, as a result, the 
electron wavefunction can leak out into the region where the 
classical kinetic energy would have to be negative.  That’s shown in 
the figure to the right.  Recall that kinetic energy = (total energy – 
potential energy).  When kinetic energy is positive (as to the left of 
the dotted line in the figure) the wavefunction wiggles; when the 
kinetic energy is negative the wavefunction has to die off 
exponentially (to the right of the dotted line).  The allowed energy 
eigenvalues are those for which the wiggles and die-offs match 
smoothly where .  As in the finite square well, the hydrogen 
radial wavefunction only smoothly matches, for a given value of , 
for certain wiggle shapes; these are enumerated by a positive 
integer  (= 1, 2, 3, ...).  Like the quantum number associated with 
energy eigenfunctions in the finite square well, the hydrogen radial 
quantum number  counts the number of maxima in  between 

 and where the die-off starts.  The figure to the right shows a 
few values of .  The pairs of numbers correspond to  and , 

respectively.  Notice that when  there is one maximum, when , there are two.  Also, 

notice that  is large at the origin when , and zero there when .  
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 The energy eigenvalues for the sanitized hydrogen atom are  

    .    (3) 

The energy level diagram to the right shows energies for different 
combinations of .  The rules are that  can be any positive 
integer and that  can be 0 or any positive integer.  Below each  is a 
set of energies, one for each value of  (increasing 
upwards).  In each case the lowest energy (most negative) 
corresponds to , the next to , and so on.  The level 

 is the lowest allowed energy (the ground state).  Levels 
 and  are degenerate (with energy = –3.4 eV).  Levels , , 

and  are also degenerate (with energy = –1.51 eV).  And so on.  These degeneracies are 
accidents of how the energies are calculated algebraically.  The levels also have “real” 
degeneracy, because each  has   states all with the same energy.   
 
 Because  can take on all integer values their sum can also.  The standard 
convention is to set  equal to a “principal quantum number”  with 

, and with the additional rule that for a given , .  This way of 

doing things obscures the fact that energy is built of a radial part and an angular part, and 
makes it seem like angular momentum is somehow restricted by the quantum number .  
Nonetheless, this scheme is widely used and we just have to deal with it.  The diagram above is 
exactly the same when  is used, but we have to remember that  = 2 is the lowest value for 
the  column,  = 3 is the lowest for the  column, and so forth.  Even more obscurely, 
the states using  are usually represented by a number (that is, ) next to a letter supposedly 
representing angular momentum.  The letters follow a historical precedent: 

.  After  the letters just follow the alphabet, that is, 
 etc.  Thus, using this convention in the diagram above, the ground state is labeled 1s; the 

first excited state with  is 2s; the state degenerate with 2s with  is 2p.  The degenerate 
states with the next higher energy are 3s, 3p, and 3d, and so on.  If we add up all the 
degeneracies (including those associated with ) we find the total degeneracy of any level 

labeled by  is . 
 
 Finally, note that if , all wiggles are possible (no matching is required) so that any 
positive energy is allowed.  The wavefunctions for these energies spread out to  = infinity, 
implying that the electron can be found at any distance from the proton.  These are “unbound” 
states.  It takes a minimum of 13.6 eV to promote a 1s electron to an unbound state.  This is the 
so-called “ionization energy” for a hydrogen atom. 
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