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Schrödinger, 3 
 
The 3D infinite square well: quantum dots, wells, and wires 
 

In the preceding discussion of the Schrödinger Equation the particle of interest was 
assumed to be “moving in the -direction.”  Of course, it is not possible for a particle to be 
moving in one spatial direction only.  If that were true, according to the HUP it could be 
anywhere in the - and -directions and therefore be undetectable with finite volume detectors.  
Now, we consider the more realistic case of motion in all three spatial directions.  For this 
purpose, we start with the 3D infinite square well.  This model provides a useful conceptual 
framework for understanding a burgeoning “nano-industry,” namely the production and use of 
“quantum dots.”  The 3D infinite square well is a “rigid rectangular solid box.”  The potential 
energy of a particle trapped inside is given by , if , 
and ∞, otherwise.  The particle’s momentum now has three components and its kinetic energy is 

.  After replacing each momentum component with an appropriate 
differential operator, the wavefunction satisfies the 3D Schrödinger Equation 

      (1) 

inside the well and its eigenstates can be separated into , 
where, as before, , and  are sine functions that vanish on the 
“walls” of the well: 
 

. 
 

In this expression, all the s are positive integers (i.e., 1, 2, 3, …) and the energy eigenvalues 
are  

.    (2) 

The normalization constant  is determined by requiring , where the integrals 

are over all possible values of : .   
 
Example: Suppose the trapped particle is an electron and the dot is cubical with  = 1 nm.  
What is the electron’s ground state energy?  
Solution:  The ground state has the lowest energy, corresponding to all of the s being equal to 
1.  Thus, , about 1 eV.  By choosing dot sizes correctly, one can create 
dots that absorb or emit photons of well-
defined energies.  The image to the right 
(best viewed in color) shows a dozen vials 
contained CdSe quantum dots of different 
sizes in solution.  After absorbing UV 
radiation these dots emit in the colors 
shown.  By coating the CdSe dots with proteins that attach to specific cell membrane molecules 
it is possible to trace out cell structures by illuminating the cells in white light and looking at the 
emission at the appropriate wavelengths.  This technique has been shown to be effective in 
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mapping tumors in test animals (Nature Biotechnology, 22, 93-97 (2004)) and holds great 
promise for clinical application for humans.  Also see, “Dazzling Dots,” Science News, pp 22-25, 
July 11, 2015. 
 
 Note that the states of a particle in a 3D well are associated with three quantum 
numbers—one for each way the particle can move in space.  A short table of lowest energy 
eigenvalues for a cubical well is 
 

        
1 1 1 3 2 2 2 12 
1 1 2 6 1 2 3 14 
1 2 1 6 1 3 2 14 
2 1 1 6 2 1 3 14 
1 2 2 9 2 3 1 14 
2 1 2 9 3 1 2 14 
2 2 1 9 3 2 1 14 
1 1 3 11 2 2 3 17 
1 3 1 11 2 3 2 17 
3 1 1 11 3 2 2 17 

 
In the table  is measured in units of .  In the table,  has a single entry for two 
states, (111) and (222), otherwise all other entries have 3 or 6 different states with the same .  
This situation is called degeneracy.  An energy level that has  possible states is said to be  

-fold degenerate.  Thus, the energy levels in the table with two 1s and a 2 are 3-fold 
degenerate; the levels with all possible combinations of 1, 2, and 3 are 6-fold degenerate.  
Levels that have only one possible state are nondegenerate. 
 
 Degeneracy arises from two causes: symmetry and an arithmetic accident.  In all 
of the cases in the table, the degeneracy arises from the fact that for a cube you can switch the 
labels of the -axes without changing anything.  But that’s not true if the sides of the 
rectangular solid are unequal.  If, instead of  as in the table, we have 

 (so that the nice cubical symmetry is removed) then only the 
states (112) and (221) in the table are degenerate (with  = 15), and that is merely a numerical 
accident having nothing to do with symmetry. 
 
 A 3D well becomes effectively a 2D well if one of the sides is much smaller than the 
other two.  For example, suppose .  The energy levels would then be, 

, where .  Thus there would be lots (a few hundred) of 

combinations of different  and  values with  = 1 that would have lower energies than for 
(112), the lowest energy state with the first level of excitation in the -direction.  At low 
energies, the  motion is effectively frozen, and the well acts as if it were 2D.  That’s a so-called 
“quantum well.”  A similar thing happens if two of the sides are much smaller than the third.  
Then at low energy two of the motions are frozen and only the third has the possibility of 
excitation.  In that case, that’s a 1D “quantum wire” (a physical realization of an infinite square 
well).  
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The sanitized hydrogen atom 
 
 Though they provide useful qualitative understanding, the square well potential energies 
we have studied are simple approximations to the real interactions between particles.  We now 
apply what we have learned about the quantum behavior of particles with square well potential 
energies to understanding the atomic structure of matter.  Atoms are bound systems of 
negatively charged electrons and positively charged nuclei.  The most elementary kind of atom 
is hydrogen consisting of one electron (with electric charge , where  = 1.6x10–19 C) and one 
proton (with electric charge ).  The simplest version of the hydrogen atom assumes the 
electron interacts with a point-like proton sitting motionless at the origin of some coordinate 
system via the attractive Coulomb (electrostatic) potential energy  

     ,      (3) 

where  is the instantaneous distance between the electron and proton and  is the 
electrostatic force-constant.   
 

(Historical comment: When a hydrogen atom was first understood as an electron bound 
to a proton, it was assumed to be a kind of planetary system with the electron in a classical orbit 
about the proton.  In its orbit, the electron is continuously pulled toward the proton; it 
continuously accelerates.  This model is incompatible with Maxwell’s Equations.  Maxwell 
requires that accelerating charges radiate electromagnetic waves.  As they radiate, the 
electrons lose energy and fall inward toward the proton.  A typical infall time is about a 
microsecond or so.  Thus, no H atom should last long enough to be around very long.  
Moreover, the radiation emitted by the infalling electron should continuously shift to shorter and 
shorter wavelengths.  But a tube of excited H atoms steadily glows a nice pink color; when this 
light is passed through a diffraction grating it breaks up into red, green, blue, and violet colors of 
constant wavelength.  There are also constant wavelength UV and IR “colors” as well.  
Obviously, the classical picture of hydrogen is badly incorrect.  Perhaps you have studied a 
cartoon model of the hydrogen atom known as the “Bohr atom.”  In it, the electron orbits the 
proton in certain allowed classical circular orbits that are kludged in just the right way to 
“explain” hydrogen’s emission spectra.  Unfortunately, this cartoon model gets hydrogen’s 
observed angular momenta completely wrong.  The Bohr atom was invented before 
Schrödinger quantum mechanics and, though it predicts quantized energy values, is actually 
incompatible with it.  For example, a classical circular orbit has a precisely defined radius.  But 
the Heisenberg Uncertainty Principle dictates that zero uncertainty in radius requires total 
uncertainty in radial momentum and, therefore, orbital kinetic energy.  In quantum mechanics it 
is not possible to know both simultaneously.  If you’ve previously studied the Bohr atom, please 
try to forget it.) 
 

The simple picture described by (3) ignores the facts that the electron’s motion has 
relativistic corrections, the proton has a finite size (indeed, consists of smaller particles called 
quarks and gluons) and actually moves as the electron moves (in fact, it can’t be at rest at an 
exact position because that violates the uncertainty principle), and that the proton and electron 
interact magnetically, through the weak force, and through gravity (which, compared with the 
Coulomb interaction, are small, really small, and really, really small, respectively).  All of these 
ignored aspects produce only minor modifications to the great triumphs of the Schrödinger 
description of hydrogen, namely, its stability and evaluation of the electron’s energy and angular 
momentum eigenvalues.   
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 As (a) total mechanical energy equals kinetic plus potential energies and (b) the electron 
in the hydrogen atom moves in three dimensions, it seems plausible that the Schrödinger 
Equation for the hydrogen problem is just equation (1) above with the potential energy in 
equation (3) added to the right-hand side.  But there’s a mathematical complication.  In 
Cartesian coordinates, .  Thus, there are infinitely many different  
values that can be combined to give the same .  The Coulomb potential energy depends only 
on the length of the electron’s position vector, not on its direction; it is spherically symmetric.  
This potential energy mixes  in a complicated way.  As a result, the Schrödinger 
Equation for the Coulomb potential energy cannot be solved by separation of variables if 
Cartesian coordinates are used.  In general, whenever the potential energy is spherically 
symmetric one has to use spherical coordinates: . 
 
 Spherical and Cartesian coordinates are related as shown in the figure 
to the right.  The coordinates of the tip of the position vector are either  
or , where the two are related by 

. 

A classical particle moving in 3D has a momentum  that, in spherical coordinate 
language, is partly radial (along a line passing through the origin of coordinates, “on-
center”) and partly tangential (“off-center”): , where  and  are 
perpendicular to each other (see right).  The classical kinetic energy of the particle is 

given by , that is, a part due to radial motion 

and a part due to off-center motion (i.e., around the origin).  The latter is naturally 
associated with angular momentum.   
 
 Angular momentum is defined as . It is a measure of motion about 
the point that  emerges from.  Because the cross product of two vectors that lie 
along the same line is zero,  and, hence, .  The magnitude of  
is the product of the magnitudes of  and  (because the angle between them is 
90˚): .  For a circular orbit , calculated about the center of the circle, is 
perpendicular to the plane of the orbit and points along your right thumb if you curl your right-hand 
fingers in the direction of the motion [see right].   
 

In general, .  The first term on the rightmost side is zero 

because .  The second term is the torque: .  In the hydrogen problem, the 

Coulomb force of the proton on the electron points directly down the radial direction, so .  

As the electron orbits the proton its orbital angular momentum is a constant (both in direction and 
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magnitude).  We can replace  by  in the particle kinetic energy to obtain: .  

When that’s done, the Schrödinger Equation for the sanitized hydrogen problem is formally 
.  (4) 

After replacing (that is, after doing a lot of uninformative algebra) the derivatives with respect to 
 in the Schrödinger Equation by derivatives with respect to  (e.g., using 

, and so on) we obtain 

.  (5) 

Identifying the operators in (4) with the derivatives in (5) yields: 

  

Separating the variables in (5) via the product  reveals the 
secrets of the (sanitized) hydrogen atom. 
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