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Schrödinger, 2 
 
The finite square well 
 
 The infinite square well potential energy rigorously 
restricts the associated wavefunction to an exact region of 
space: it is infinitely “hard.”  Potential energies 
encountered in more realistic physical scenarios are 
“softer” in that they permit wavefunctions to spread 
throughout less well-defined regions.  An important toy 
example of the latter is the finite square well.  In this 
problem, the potential energy function is 

.  See the figure to 
the right.  As previously, we try to find energy eigenstates 
by separating the space and time parts of the Schrödinger 

Equation:  with  and .  There are 

two cases of interest, namely, when the particle’s energy is less than or greater than .   
 

Let’s examine the  case first.  The quantity  is the classical kinetic 
energy of the particle.  In region II the kinetic energy is just , while in regions I and III the 
kinetic energy, , should be negative.  That is, if the particle were a classical particle it 
would be forbidden to be in I and III.  But quantum particles are described by wavefunctions that 
slosh about.  For the infinite square well the particle was forbidden in I and III because the 
potential energy was infinite there, but no such exclusion can be invoked for the finite well.  In 

particular, , in I and III, where .  This equation has solutions of 

the form , where these are real exponentials (i.e., they have no wiggles).  In II, 

, where .  As long as , solutions in II are of the form 

 (i.e., they do have wiggles).  (If , the problem has no 
solutions.)   So, the problem becomes how to manufacture a smoothly continuous wavefunction 
that doesn’t wiggle in I and III but does in II, because  and  suddenly switch at the well 
boundaries.  (The wavefunction has to be smoothly continuous because otherwise its 
derivatives will blow up where it isn’t—leading to infinite kinetic energies.) 
 
 Not all of the possibilities listed above are allowed.  The integral of  over all  
values has to be 1, but it would blow up as  in region I if ; thus that 
possibility has to be discarded as unphysical.  Similarly,  has to be discarded in 
region III.  To smoothly match solutions in I and II at  and in II and III at  requires 
finding values of  and  (i.e., particle energies) for which  

, 
where the primes mean “derivative with respect to .”  It is not very instructive to do the algebra 
associated with this string of equations but, in the end,  and  have a (nasty, transcendental) 
relation that can be only solved numerically for the energy  that makes this relation true.  Only 

 U(x) = 0,  if 0 < x < L,  and U0  otherwise

Ψ(x,t) = X(x)T (t)  T (t)∝ exp(− iEt )  

d 2X
dx2

= − 2m
2
[E −U(x)]X

U0

E <U0 E −U(x)
E

E −U0

d 2X
dx2

= K 2X
 
K = 2m(U0 − E)

2

X ∝ exp(±Kx)
d 2X
dx2

= −k2X
 
k = 2mE

2
E > 0

sin(kx), cos(kx), exp(±ikx) E ≤ 0

K k

Ψ 2 x
x→−∞ X ∝ exp(−Kx)

X ∝ exp(Kx)
x = 0 x = L

K k
XI (0) = XII (0), XII (L) = XIII (L), ′XI (0) = ′XII (0), ′XII (L) = ′XIII (L)

x
K k

E

x = 0 x = L 

U = U0 U = 0 

I II III 

U = U0 



Sc2 2 

certain energies are allowed.  The figure to the right shows the example of an electron in a well 
with  = 0.5 nm and  = 17 eV.  For this case, there are only four allowed states with 
energies 1.07 eV, 4.22 eV, 9.26 eV, and 15.47 eV.  (For comparison, the 
first four energy eigenvalues in an infinite square well with the same  are: 
1.50 eV, 6.00 eV, 13.50 eV, and 24.00 eV.)  The spatial wavefunctions 
corresponding to these energies are shown to the right of the well.  Notice 
that as energy increases the tails of the wavefunctions leak out more and 
more into the classically forbidden regions.  Because of this leakage, the 
finite well wavefunctions don’t wiggle as abruptly as the corresponding 
infinite well wavefunctions; the magnitudes of their momenta (proportional 
to their derivatives) are not as large.  The ground state wavefunction is 
most like that for the infinite well and its energy is closest to the ground state infinite well energy; 
the fourth states, in the example, are least like one another and so are their energies.  As the 
finite well is made shorter or as  is made less, fewer bound states are allowed.  Nonetheless, 
it is a fact that a finite square well always contains at least one bound state.   
 

 Now let’s examine the  case.  In this case, in regions I and III , 

where , and in region II (as before) , where .  In this 

case, there are wiggling wavefunctions in all three regions that have to be smoothly matched at 
the well boundaries.  Suppose that in region I there is a plane wave traveling to the right 
(“incident” on the well) of the form .  Plane waves can’t be normalized 
because their square amplitudes are ³ 0 everywhere, but all other wavefunctions in this problem 
can have amplitudes relative to an arbitrarily assigned amplitude of the “incident” plane wave, 
which might as well be chosen to be 1.  At and  the wavelength abruptly changes.  
Whenever a traveling wave (irrespective of whether it is electromagnetic, elastic, or 
probabilistic) undergoes a wavelength change the requirement of smooth matching can 
only be met if there is a reflected wave.  This presents a quantum mechanical surprise: a 
particle traveling left to right speeds up on entering the well at , yet, in general, has some 
probability of being reflected back to the left, i.e., some probability of being “back scattered.” If 
you fire an electron directly at a proton, there’s a probability it will come back at you!  That would 
never happen to a classical particle, which would just keep going through the well region and 
appear in region III with 100% probability.   
 

When the particle speeds up at  (remember kinetic energy = ), its de Broglie 
wavelength decreases.  In terms of wavelength, this is like light entering a piece of glass with 
index of refraction > 1; the wavelength decreases (though for light, the effective speed 
decreases).  At such a face the reflected light undergoes a 180˚ phase change relative to the 
incident light.  At  the wavelength abruptly increases (as the particle slows down).  This is 
like light leaving the glass (except the effective speed increases for light); the reflected light at 
this face does not change phase.  The reflected wave in region I is the sum of a wave 
immediately reflecting from , plus waves propagating to the left after traveling integral 
multiples of  (the total path length for a wave entering the well, reflecting from , then 
leaving the well at ).  If  is an integral number of wavelengths of the particle in the well, 
then this sum adds up to zero.  This is the condition for perfect transmission—no reflected wave 
in region I.  The figure below shows how the transmission (upper, blue curve) and reflection 
(lower, red curve) probabilities vary with incident kinetic energy for an electron incident on a well 
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with  = 10 eV and  = 0.5 nm.  (The figure is generated by 
numerically solving the smooth matching problem for waves at 

.)  When  equals an integral number of the 
electron’s wavelength in the well, there is 100% transmission and 
no reflection.  Note that as the electron’s incident kinetic energy 
becomes larger and larger, the electron tends to pass through the 
well region more and more, just like a classical particle.  
 
Example:  What is the lowest incident kinetic energy for the well in the figure for 100% 
transmission of the electron?   
Solution:  For 100% transmission, .  This is just the wavelength criterion for 
eigenstates in an infinite square well of length .  Thus, the energies associated with the 
electron motion that meet the wavelength criterion are  (for 
this well length).  In order for the particle’s energy to be greater than 10 eV (the well depth) it 
must be that .  The first integer for which this condition is satisfied is 3.  
Thus, the lowest total energy the particle can have is 13.50 eV and its incident and final kinetic 
energy must be 13.50 eV – 10 eV = 3.50 eV. 
 

The importance of scattering and transmission experiments is that by varying the energy 
of one particle incident on a second the details of a model potential energy associated with the 
interaction of the two can be fully extracted. 
 
Tunneling  
 
 A closely related problem to scattering from a well 
is scattering from and tunneling through a repulsive 
potential energy barrier (as to the right).  When the 
situation is similar to scattering from an attractive well (i.e., 
reflection as well as transmission).  When the 
particle’s kinetic energy within the barrier region is 
negative; this is a classically forbidden region.  A classical 
particle incident from the left in region I would reflect back 
into I with 100% probability.  A quantum wavefunction, 
however, can leak into the forbidden region, II, and also 
show up in region III.  That means there is some 
probability that the particle can get through the repulsive 
barrier.  This is called “tunneling.”  The particle in region III has the same energy as in 
region I, but the amplitude of the wavefunction is reduced.  Solutions to the Schrödinger 
equation are wiggling functions in I and III, but real (growing and dying) exponentials in II.  Of 
course, as before, wavefunction solutions require smooth matching at the barrier boundaries, 
but an order of magnitude estimate for the tunneling probability ( ) is given by the square of the 
dying exponential in the barrier region: , where .  
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Example:  Suppose .  If the incident particle 
is an electron, then  = 5.13 nm–1.  A plot of tunneling 
probability versus barrier length for this case is shown to 
the right.  Note that tunneling probability drops very rapidly 
as  increases.  This behavior is the basis for the 
scanning tunneling microscope (STM), in which electrons 
tunnel between a sharp wire tip and a solid surface.  By 
carefully adjusting the tip-to-surface distance to keep the 
tunneling current constant as the tip is rastered over the 
surface it is possible to map out the height of atoms on the 
surface.  A typical STM image (here, of silicon atoms on a 
solid surface) is shown to the below.  From http://www.exo.net/~pauld/workshops/Atoms.html.   
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