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Many-particle Systems, 8 
 
 The classical picture of how electrons migrate through a resistor 
driven by an applied potential difference draws an analogy with a kind of 
pinball machine.  In a pinball machine, gravity accelerates the pinball down 
the table, but the ball’s progress is impeded by collisions with bumpers, as 
depicted to the right.  (q is the angle the table makes with the horizontal 
direction.)  When averaged over many collisions the ball’s average equation 
of motion is , where  and  are directed down the table, 
and t is the average time between collisions.  If the table is sufficiently long, the average 
acceleration is approximately zero and the ball achieves a “terminal” or “drift” speed: 

.   
 
 In the pinball model of electrical conduction, the electron is the ball, the bumpers are 
atoms, and the accelerating force is due to an electric field.  The pinball model average equation 
of motion is  and the drift speed is .  It is usual to replace the mean 

time between collisions by , where l is the average distance between collisions–also 

called the mean free path–and  is the average speed between collisions, and typically .  
In other words, 

     .     (1) 
 
 Equation (1) is equivalent to Ohm’s Law for electrical conduction: .  To see this, 
consider a resistor of length  and cross-sectional area .  The potential difference across the 
resistor is due to an electric field inside it: .  The current though the resistor is , 
where  is the current density (amp-m–2).  Thus, Ohm’s Law can also be expressed , 
where  is the electric resistivity (ohm-m).  Furthermore, the current density is the 
electron charge, , times the drift speed, , times the number of conduction (i.e., able to move 
when the field is turned on) electrons per unit volume, : .  Combining these results 
with (1) we find 

     .      (2) 

 
 If the electron were a classical particle, one might expect that  would be related to 
the average thermal kinetic energy at the resistor’s temperature, .  In which case, 

 (Mn6, p4). In addition, in the pinball model, the mean free path is probably close 
to the interatomic spacing  (especially since atoms in a solid are so closely spaced).  The 
classical pinball picture says nothing about what  might be; that has to be guessed.  The net 
result is that the pinball model predicts that  should increase with increasing temperature 

proportional to  and, because  is so similar for all solids, should have about the same 
magnitude for all solids.  In fact, it is observed that for metals  increases with increasing 
temperature roughly proportional to  (except at very low temperatures); for semiconductors 
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 decreases with increasing temperature; and differences in  between materials can be at 
least 20 orders of magnitude!  The classical pinball model is really profoundly wrong. 
 
 Nonetheless, Equation (2) can correctly describe observed resistivities provided 
quantum mechanics is used to evaluate , l, and .  The wavefunctions of electrons in a 
solid are localized, atomic-like functions for the lowest atomic energy states, but for higher 
energy states they are diffusely spread throughout the solid.  As noted in Mn7, these latter 
wavefunctions are approximately harmonic standing waves—sums or differences of traveling 
plane waves: e.g., , in the -direction.  The first term corresponds to momentum 

 in the -direction, the second to momentum  in the -direction.  If an electric field is 
turned on in the -direction, say, the magnitude of the momentum (and hence energy) in the 
first term will tend to decrease while that in the second will tend to increase (because electrons 
are negatively charged, they accelerate opposite to the applied electric field).  This will happen if 
there are unfilled electron states at nearby lower or higher energies, respectively.  If there are 
no available unfilled nearby states the electron cannot lose or gain energy (i.e., the Fermi 
repulsion electrons exert on one another balances the electric force).  Electrons near the Fermi 
energy in an unfilled (conduction) band can gain energy (moving opposite the applied field 
direction) because there are many nearby unfilled higher energy states; they are less likely to 
lose energy, however, because lower energy states are all (or mostly) filled.  The net effect is 
that the applied field produces electron motion opposite the field (i.e., conventional current in the 
field direction).  In other words, in Equation (2) , where ; unlike the classical 

pinball model,  is roughly independent of temperature.  The quantity  in (2) is the number 
density of electrons in the conduction band.  This is large and more-or-less independent of 
temperature for metals, close to zero for insulators (and due mostly to impurities), and small but 
a rapidly increasing function of temperature for semiconductors. 
 
 Finally, the mean free path, l, is determined by imperfections in the periodic 
arrangement of the solid’s underlying atoms.  This can occur dynamically through thermally 
excited vibrations of the atoms (phonons, collective modes of vibration associated with sound-
waves) or statically because impurity atoms alter the perfect periodicity of the solid lattice.  The 
excited conduction electron wavefunctions are not eigenstates of the solid potential energy with 
imperfections and therefore undergo de-excitation transitions.  This process is 
called scattering of the conduction electrons.  The mean free path has the 
geometric interpretation depicted in the figure to the right.  An electron entering 
the cylinder at the left will (almost) certainly scatter before leaving on the right.  The volume of 
the cylinder is , where  is the cross-sectional area of a scatterer, which, depending 
on the nature of interaction, might be much smaller to or much larger than the geometric cross-
section of the scatterer.  There is supposedly one scatterer in this volume so , 
where  is the number density of scatterers. Thus, .   
 

The mean free path for phonon scattering is , where  is 
the “electron-phonon interaction cross-sectional area.”  The latter is probably independent of 
temperature and proportional to the cross-sectional area of an atom.  On the other hand,  
is temperature-dependent.  Phonons and photons share many characteristics.  A “box” full of 
phonons is similar to blackbody radiation.  The wavefunction for phonons spreads over the 
entire solid and can therefore have long wavelengths.  As a result, the allowed energies for 
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phonons are very closely spaced.  Near room temperature, the density of phonons is 
proportional to .  Thus, scattering by phonons produces a mean free path that is proportional 
to  (the higher  the shorter the mean free path, while the lower  the longer the mean free 
path) and a corresponding resistivity that is proportional to .  For impurity scattering, 

, which is independent of temperature (as is the corresponding resistivity). 
 
Example:  Consider solid copper.  Cu has a mass density of 8.96 gm/cm3 and an atomic mass 
of 63.5; 8.96 gm of copper is 8.96/63.5 x 6.02x1023 atoms = 8.5x1022 atoms.  A copper atom has 
one 4s electron so the 4s band in solid copper has one conduction electron per atom.  Thus  
= 8.5x1028 m–3 = .  The Fermi energy for the conduction electrons is 6.9 eV (taking the 
energy at the bottom of the conduction band to be zero).  Consequently,  = 1.58x106 m/s 
(about 0.5% c, pretty fast and about 10x greater than the thermal speed of a classical electron 
at 300 K).  At 300 K, the electrical resistivity of reasonably pure copper is 1.68x10–8

 W-m.  
Inserting these values into (2) allows us to calculate  for copper at 300 K: 39.3 nm or 173 
atomic spacings!  Note this mean free path includes contributions from both phonon scattering 
and whatever impurities are present. 
 
Example:  Suppose a solid copper sample is 99.9% pure (1 impurity atom per 103 copper 
atoms).  The number density of impurity atoms is 8.5x1025 m-3.  Assuming that  is just the 
geometric cross-section of a typical atom, about 5x10–20 m2, the mean free path for impurity 
scattering would be 235 nm.  Thus, at room temperature scattering by phonons is much more 
important than by impurity atoms (in reasonably pure copper). 
 

Example:  Because  is proportional to  we can write . 

The mean free paths due to phonon and impurity scattering are equal (for the values above) at 
a temperature of about = 50 K.  At temperatures lower than this, impurity resistance is larger 
than phonon resistance, and roughly constant.  In other words, for metals, as temperature 
decreases resistivity decreases linearly because of phonon scattering, then flattens out when 
the mean free path for phonon scattering becomes larger than the mean free path for impurity 
scattering. 
 
 The discussion above is for metals; what about semiconductors?  For a pure 
semiconductor,  at = 0 K, and therefore its resistivity is infinite (it’s an insulator at = 0 
K) as long as the applied fields aren’t large.  As the temperature is raised electrons are 
promoted into the conduction band.  The temperature dependence of this “ionization” process is 
exponential.  The phonon scattering process only 
increases linearly with increasing temperature, so the 
resistivity decreases as  increases—a completely 
different trend from a metal, and certainly not predicted 
by a classical picture of electrical resistance.  The 
resistivity for a pure semiconductor is always much 
higher than for a metal, also not predicted by a classical 
picture.  The figure to the right depicts qualitatively how 
resistivity varies with temperature for Cu (bottom curve, 
a good conductor), Sn (middle, a not so good 
conductor), and Si (top, a semiconductor).  Note that at 
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very low temperatures the resistivity of Sn suddenly plummets.  That is called 
“superconductivity.”  We’ll get to that presently. 
 
 To summarize: The resistivity of a solid can only be understood in terms of the wave 
nature of electrons and the Pauli Exclusion Principle. 
 

Table of comparison of classical and quantum versions of electrical conduction: 
 
Quantity Classical pinball Quantum theory 
Average speed  Proportional to  Fermi speed, -independent 

Conduction electron density No clue (?) Density of electrons in 
conduction band; constant for 
metals and insulators, rapidly 
increasing with  for 
semiconductors 

Mean free path Constant, average atomic 
spacing (?), about the same 
for all solids 

For phonon scattering, varies 
like ; for impurity 
scattering, independent of , 
varying inversely with impurity 
concentration 

Resistivity Proportional to , about the 
same for all materials 

Proportional to  for metals 
at highish temperatures; 
decreasing with increasing  
for semiconductors; wide 
range of values for different 
materials 

 
 Electrical resistivity is a macroscopic variable that is easy to measure as a function of 
temperature in the laboratory.  Nonetheless, none of its characteristics can be understood 
without reference to microscopic quantum mechanics.   
 
 Very cool. 
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