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Many-particle Systems, 5  
 
Photons as K 
 
 Photons are massless bosons.  Because they are massless, any number of them can be 
added or subtracted without changing the photon system energy.  (For example, a 1 eV photon 
can be exchanged for one hundred 0.01 eV photons, without changing system energy.)  As a 
result, the chemical potential for photons doesn’t control the number of particles in the system 
and consequently is taken to be zero.  Thus, the average occupation number for photons is  

.    (1) 

At  the exponential in (1) blows up for all .  (If a photon exists it has positive kinetic 
energy; by definition, the zero-energy state of this system has no photons.)  Here, there’s no 
chemical potential, as was the case for massive particles, to “save the day” from the total loss of 
particles.  As a result, at  all photons vanish.  Photons do not undergo Bose-Einstein 
Condensation at low temperature, they simply disappear. 
 
Photon gas at finite temperature: blackbody radiation 
 
 One of the most important examples of a statistical mechanical system is a “gas” of 
photons in thermal equilibrium with the walls of a box that contains them.  The goal here is to 
relate the average energy in the photon gas to the wall temperature.  It is necessary to evaluate 

.  For simplicity, assume the box is a cube with side length  and that the photon 

wavefunction vanishes at the walls.  The single-particle eigenstates ( ) in the box are standing 
waves described by 3 quantum numbers , each of which can be 1, 2, 3, …, and one 
spin quantum number that can have one of two values, ±1 (see Sc5, pg4).  The wavelengths of 
these standing waves (as in the infinite 3D well) are .  To each wavelength 

there is a corresponding momentum magnitude: , and so forth for the 

other directions.  The magnitude of the total momentum is .  For 

photons, energy , so . 
 
 The wavelengths that contribute most to the system energy are typically much smaller 
than  so the relevant  values are typically >> 1.  To calculate , the required sum is 

, where the 2 is for the two spin states and the s are each equal to 1 

(every time a new  is entered in the sum it increases from the previous value by 1).  The s 
are not usually included in expressions for sums, but here the important -values are large so 
the following approximation is excellent 

 

The integrand in the integral depends only on , which is spherically 
symmetric.  The coordinates in the triple integral should therefore be changed from Cartesian 

 to spherical.  The values of the s are positive, so the integration occurs only over 
one octant of a sphere: 
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. 

As a result,  

. 

Of course, the limits are not really 0 and ¥, but close enough.  If we let  we obtain 

. 

The integral is tabulated and has the value .  Consequently, the energy density 
(energy/volume) in the photon gas is 

     .     (2) 

Remarkably, this result is independent of what the walls of the box are made of; it depends on 
the single variable –raised to the power 4. 
 
Example: The quantity 8p5kB

4/15(hc)3 = 4.7x10–24 eV/nm3-K4.  For  = 300 K,  = 3.8x10–14 
eV/nm3; that’s about 5x10–12 eV in the volume of an atom.  At room temperature a gas of 
photons produces no atomic electronic excitations.  In macroscopic units  = 6x10–6 J/m3, still 
not much. 
  

 If we write ,  is the photon energy density spectrum;  

     .    (3) 

Equation (3) is also called the blackbody 
spectrum.  The figure to the right shows spectra for 

 = 1500 K and 2000 K.  Clearly, the maximum of 
the spectrum shifts to higher energies as  
increases and also the magnitude of the maximum 
increases with increasing .  By differentiating (3) 
with respect to e and setting the result equal to zero 
we find that the spectrum maximum occurs at 

.  (For the spectra in the figure 
.)  Plugging this into (3) 

shows that .  If (3) is divided by the 
photon energy e we obtain the photon number 
density spectrum  

. 
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The maximum in the photon number density occurs at .  Despite having a 
pronounced peak at , the blackbody energy spectrum still has 5% of the 
maximum value at an energy , so the “tail” of the distribution is fairly long and photons 
(albeit few) exist with energies well in excess of . 
 
Example: The universe is filled uniformly (as far as we know) 
with a cosmic blackbody spectrum, shown to the right.  The 
shape implies the temperature of the spectrum is  = 2.725 K.  
At such a low temperature, these photons cannot interact with 
atomic matter.  It is generally agreed that over 10 billion years 
ago the cosmic blackbody was 1000 times hotter.  That was the 
last time these photons interacted with atomic matter.  
 
Example:  What is the wavelength of a photon with 

 at room temperature? 
Solution:  At room temperature  = 1/40 eV, so the photon energy is 0.07 eV.  This is also  

 so the wavelength is about 18 µm, about the size of a biological cell (about 100 x smaller 
than for the CMB). 
 
Example:  What is the wavelength of a photon with  at the temperature of the 
Cosmic Microwave Background (CMB)?   
Solution:  Set 𝜆 = ℎ𝑐/2.82𝑘*𝑇 to find that at = 2.725 K (about 1/100 room temperature) the 
wavelength is about 2 mm (a microwave photon).  (Incidentally, there are about 1.6x109 CMB 
photons for every proton in the universe, but because these photons carry so little energy, the 
total  for protons is about 2000 times greater than the energy of the CMB.) 
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