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Many-particle Systems, 3 
 

Bare essentials of statistical mechanics 
 
 Atoms are examples of many-particle systems, but atoms are extraordinarily simpler 
than macroscopic systems consisting of 1020-1030 atoms.  Despite their great size, many 
properties of macroscopic systems depend intimately on the microscopic behavior of their 
microscopic constituents.  The proper quantum mechanical description of an -particle system 
is a wavefunction that depends on  coordinates (3 ways of moving, in general, for every 
particle) and  quantum numbers (3 motional quantum numbers and 1 spin quantum number 
for every particle).  (If the “particles” are molecules there might be additional quantum numbers 
describing rotations and internal vibrations.)  The latter is referred to as a microstate.  In a 
macroscopic solid or liquid, there are about 1023 atoms per cm3; in a gas, there are about 1020.  
Thus, the amount of information required to specify the wavefunction for such a system is 
scandalously large.  A fundamental theory of macroscopic systems cannot be based on all of 
the microscopic details.  Instead, a new way of thinking is required.  This is known as statistical 
mechanics.  
 
 Important to the success of statistical mechanics is the recognition that the system 
interacts with its surroundings.  These interactions are typically so frequent that it is impossible 
to keep track of them, so a simplifying assumption is invoked: the interactions cause random 
(see the Appendix below) transitions between the microstates.  Thus, if a system is initially 
prepared in a unique microstate, in short order (about 10–13 s or less), the system will be in 
another and we can’t tell which it will be.  This kind of uncertainty is different from quantum 
uncertainty: it’s due to our overwhelming ignorance of all of the possible information. 
 
Example:  Consider a standard deck of 52 playing cards.  A microstate is the actual sequence of 
individual cards from the top (card #1) to the bottom (card #52).  Transitions are random 
rearrangements: “shufflings.”  Card #1 might be any one of the 52 cards; card #2 might be any 
one of the remaining 51; … card #52 can only be the one card left over after all the others have 
found a home.  That means there are 52! = 8x1067 different microstates.  Suppose the deck 
starts out in some highly ordered state (according to a human observer who happens to value 
that arrangement)—such as king of spades, queen of spades, …, ace of spades, king of hearts, 
… ace of diamonds, perhaps the order of a brand-new deck.  Let’s define a “shuffle” as follows: 
a small number of cards in the deck are chosen at random, removed from the deck, then 
replaced at randomly chosen positions.  If a shuffle doesn’t mix too much, one shuffle will 
produce a new microstate with less order, though quite a bit will remain.  A second shuffle 
typically produces less order still.  The more shuffles the less order, on average.  Of course, any 
sequence of random shuffling might result in reproducing the initial microstate, but on average 
that should happen only about 1 out of 8x1067 times.  That’s a lot less likely than winning the 
Powerball Lottery.  The number of possible microstates, 8x1067, is a staggeringly large number.  
If every shuffle produced a different microstate it would take at least 8x1067 shuffles to explore 
all possible microstates.  It would take a billion high-speed computers shuffling at the rate of 
1013 per second (the rate of molecular collisions in a glass of water) 8x1054 seconds to complete 
the task (assuming no two computers make the same shuffling order)—that’s about 2.5x1047 
years!!!  (The age of the universe is estimated to be only 1.4x1010 years; clearly, during the 
whole of human card playing history only a very small fraction of all of the possible deck orders 
has yet been produced.) 
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 The goal of statistical mechanics is to describe how macroscopic variables are related to 
averages over many microscopic states.  Thus, for example, we might like to know how the 
voltage of a thermocouple in a glass of water is related to the quantum states of the water 
molecules.  A temperature reading in the laboratory might take seconds, but in that time 1013 
different microstates might occur.  The thermocouple reading therefore results from an average 
over a huge number of quantum states.  If the thermocouple reading and other macroscopic 
measurements are approximately constant, changing by only small fluctuations from second-to-
second, the system is said to be in thermal equilibrium.  At the micro-level that means that the 
sequence of microstates contributing to the macroscopic measurement is “typical” of all of the 
possible microstate sequences.  That, in turn, occurs when the probability of the system 
achieving each of its microstates does not change in time, a condition called statistical 
equilibrium.  When the system is in statistical equilibrium an average over all possible 
microstates (a calculation) produces roughly the same result as an average over a 
representative sample of microstates (a measurement).   
 
Example:  Suppose you are playing poker and wonder what the chances are of drawing a 
flush—any five cards of the same suit.  Say you are dealt the first five cards from the deck.  If 
the deck is in the initially ordered state described in the previous example, you’re in great 
shape: you get a king-high straight flush!  After one shuffle, you might still see quite a few 
common suit cards; after another shuffle, possibly fewer, and so on.  It’s reasonable to expect 
your chances of a flush to drop from certainty to a steady value after a number of shuffles (as 
statistical equilibrium is established).  So, what is that steady value?  A flush poker hand is a 
kind of macrostate: it doesn’t require specification of the complete microstate of the deck.  If the 
deck has been shuffled into a condition of statistical equilibrium, then the probability of each of 
its 8x1067 microstates is equal.  We can employ statistical equilibrium to calculate the probability 
of a flush.  The first card you draw determines what suit the flush has to be in and depletes the 
pool of suit cards by 1 and the total pool by 1 also.  Thus, the probability the second card is of 
the same suit is 12/51.  Similarly, the probabilities for the third, fourth, and fifth cards being in 
the same suit as the first card are 11/50, 10/49, and 9/48, respectively.  Note that these 
probabilities decrease.  Future events (cards) are correlated with past events (cards).  The total 
probability is the product of the individual values, about 0.002.  Thus, if you play billions of times 
you should expect to get a flush hand about once every 500 hands.   
 
 Statistical mechanics often invokes another approximation, namely that the system’s 
particles do not interact with one another except for boson attraction or fermion 
repulsion.  That is, they don’t interact via electromagnetic or other “classical” forces.  Such a 
system is referred to as an ideal gas.  The most profound consequences of quantum 
mechanics in the macroscopic world arise from the indistinguishability of identical particles.  We 
focus hereafter on that situation; all of the systems we examine consist of particles of one kind 
that interact only through the symmetry or antisymmetry of their wavefunctions.  The system 
wavefunction can then be separated into a symmetric (for bosons) or antisymmetric (for 
fermions) combination of products of  single-particle wavefunctions, each depending on 3 
coordinates and 4 quantum numbers (such as,  for a particle with spin component 

 in a 3D infinite well–a single-particle state), for structureless particles—which we also restrict 
to in the following.  A system of  identical, noninteracting particles has total energy 

, 

where the  represents a system microstate (that is,  quantum numbers) and the “little s” 
means a single-particle state consisting of 4 quantum numbers;  is the energy of the single-
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particle state and  is the number of particles in that state.  The total number of particles in 
the system is 

. 

 
 Generally, both  and  might change due to interactions of the many-particle system 
with its surroundings (even though there are no internal interactions).  Statistical mechanics is 
interested in the average values  and , which are calculated by 

invoking statistical equilibrium.  In fact, all of the interesting statistical mechanical properties of 
systems of indistinguishable, noninteracting particles are calculated by knowing the appropriate 

. 
 Note that a small change in  is expressed as 

; 

moreover,  
. 

The latter can be divided into two parts: , where, by definition, .  

The cartoon to the right distinguishes between the “ ” and “ ” processes.  The lines represent 
energy levels for states of single-particles and the dots indicate which level is occupied.  In the 
top row the sum of the numbers of particles in all states is 
three before and after the change.  The energy difference 
between the two microstates is due only to energy exchange 
between the system and its surroundings, and is associated 
with eXcitations (or de-excitations) ( ).  In the bottom row a 
new particle is added (without the excitation levels of the 
original particles changing) and the sum of the total number 
increases from three to four.  That’s due only to a Transfer ( ) of particles between the system 
and its surroundings.  Thus, the system energy change can be written 

. 

While  is zero,  need not be zero, as in the cartoon above, for example.  

Assuming that the system has neither net center-of-mass motion nor coherent motion about the 
center-of-mass (such as a collective rotation or vibration),  is the system’s internal energy.  
The right hand side indicates that internal energy can be changed in three ways: (1) the term 

 represents energy change by “exchange of excitations” only; such a process is 

called heat and is usually written  (heat is energy exchanged due to temperature 
differences only); (2) the term  represents energy change by “exchange of particle 

number” only; such a process is called chemical work and is usually written , where µ  is 
the system’s chemical potential (note: particles diffuse at constant temperature—if they’re 
not blocked from doing so—from higher chemical potential to lower; chemical potential is 
a measure of how reluctant a system is to accepting particles from its surroundings [the 
previous example suggests that, in general, bosons have lower chemical potentials than 
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fermions]); (3) the term  represents energy change by “changing level spacing” 

only; this process involves changing the system’s volume or manipulating external (electric and 
magnetic) fields and is called (physical) work and is written (where the minus sign is 
because work done by the system is defined as > 0 and it reduces the internal energy).  In 
summary, 

, 
which is the classical First Law of Classical Thermodynamics.  In other words, classical 
thermodynamics is really just quantum mechanics plus random scrambling of states.   
 
Appendix:  Chaos and randomness 
 
A dynamical system consists of a state and a rule for changing the state in time.  In a 
deterministic dynamical system the future is completely determined by the past.  The 
dimension of the dynamical system is related to how many states in the past are necessary to 
fix the next state in the future: a one-dimensional dynamical system only requires one past state 
to fix the future, a six-dimensional system requires six past states.  In the 1960s, Edward 
Lorenz, a meteorology professor at MIT discovered by accident that dynamical systems with 
nonlinear update rules could produce sequences of states that looked unpredictable; this 
behavior is called (deterministic) chaos.  Lorenz probably ensured that many others would 
study chaos in subsequent years because of his phrase, “The Butterfly Effect.”  The Butterfly 
Effect occurs when a chaotic system is started in two different, but very close, states; at first, the 
updated states stay close, but after awhile they depart from each other.  Lesson: if you want to 
predict the output of a chaotic system and have uncertain initial data you might be able to 
predict a short time into the future, but after awhile your ability to predict will be almost totally 
lost.  In fact, the higher the dimension of the chaotic dynamical system the faster prediction will 
fail, if the initial data are a little uncertain.  If the initial data are perfectly clean and precise, then 
it takes at least as many initial states as the dimension of the system to predict what happens in 
the future.  A random process, in principle, produces a sequence of states the next value of 
which is unpredictable no matter how much initial data one has.  In this sense, a random 
process is an infinite dimensional chaotic system.  Of course, if the system of interest is just 
high dimensional enough, its output is probably as good as random.  The “random number 
generator” in your computer, for example, is not random at all; it’s a high dimensional chaotic 
system.  In fact, because testing if a process is random requires an infinite number of states 
we’re not sure whether anything is precisely random (though we speculate that quantum 
behavior might be). 
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