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Many-particle Systems, 11 
 
Quantum information 
 
 In Mn10 we discussed the rudiments of “classical computation.”  Classical, 
conventional computation involves combinations of transistors that convert low- and 
high-voltage inputs into different low- and high-voltage outputs.  These voltages are 
interpreted as the binary digits 0 and 1, i.e., as bits.  How bits are changed into other 
bits leads to such things as text preparation and storage, numerical calculations and 
symbolic manipulations, image and sound generation, game playing, intercontinental 
communication—in short, the modern world of information.   
 

Transistors work as a result of the quantum mechanics of electronic 
wavefunctions and their associated energy bands.  On the other hand, the voltages that 
define bits are determined by just the number of electrons on what are effectively 
microscopic capacitor plates, not by the electrons’ wavefunctions.  In this sense, bits are 
classical; they are not infected with quantum uncertainty (though they might be altered 
by thermal fluctuations or energy jolts from cosmic ray collisions; in fact, such bit “errors” 
occur all the time in conventional computers and a substantial fraction of a computer’s 
processing activity is devoted to detecting and correcting such errors). 

 
The processes that transform bits in conventional computers are similarly 

classical.  A typical logic gate in a conventional computer has multiple inputs and fewer 
outputs.  For example, an AND gate has two inputs and one output.  It converts two bits 
into one.  One bit of information is “lost” in the AND process.  A consequence of this is 
that AND is not reversible: if the one out-bit is 0, the two in-bits could equally likely be 
01, 10, or 00; it is impossible to tell which.  In classical irreversible dynamical systems 
mechanical energy is “dissipated,” that is, converted into thermal energy.  That occurs in 
conventional, classical computers, too.  The energy of the bits that are lost in irreversible 
processing shows up as heat.  That’s why conventional computers are hot. 

 
A much discussed and actively researched alternative to classical computing 

deals with “quantum information.”  Instead of classical bits whose states are surely either 
0 or 1 before they are measured, a quantum computer uses states that are 
superpositions of both 0 and 1 and only take exact values after a measurement is made.  
These states are quantum bits—qubits (pronounced “kew bits”).  The prototypical qubit 
object is a particle with spin-1/2, the direction of which can be “up” (1, say) or “down” (0).  
Until a measurement of the spin direction is made, the associated wavefunction is a 
superposition of the up and down possibilities:  (  are complex 

numbers such that ). 
 
In quantum mechanics, a “legal” wavefunction can be transformed into another 

“legal” wavefunction by a “unitary transformation.”  A unitary transformation changes the 
 values, for example, but preserves .  Importantly, unitary transformations 

are reversible.  In a quantum computer, the gates that transform qubits into new qubits 
have to be designed to be reversible: they have to attach extra qubits to the output so 
that the number in equals the number out.  When that is so, no qubits are lost and no 
heat is generated in the processing.  Cool (literally).  The extra qubits required by the 
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quantum gate uniquely identify each output with a corresponding input.  In quantum 
language, the output is “entangled” with the input.   

 
To help clarify the difference between classical and quantum computing let’s 

consider a specific example: the “AND problem.”  We know that classically AND 
converts two bits of input (00, 01, 10, and 11) into one bit of output, but suppose we 
don’t know which.  To solve the problem classically, we pass each possible input 
through an AND gate and record the resulting output.  This entails four separate actions.  
In the quantum version, we prepare an initial wavefunction in a superposition of the four 
possible input states: .  We pass this state through a 
quantum AND gate (a qAND gate) that transforms the input wavefunction into an output 
wavefunction that similarly has four superposition coefficients, each of which (because of 
the added bits) is uniquely connected to the input coefficients.  Thus, in one pass, the 
qAND gate takes in all possible inputs and produces all possible (correct) outputs.  
Sounds great, right? 

 
Well, not so fast.  In order to record the results, the output wavefunction has to 

be collapsed into its various pieces by measurements—a minimum of four, in this 
example.  So, there isn’t any improvement over classical computation in terms of the 
number of processing trials.  And the apparent savings in heat generation isn’t right 
either: the act of collapsing the wavefunction destroys bits and produces a subsequent 
little burst of heat!  So, what’s the big deal then? 

 
It turns out that there are some very hard problems that can take advantage of 

another aspect of quantum wavefunctions: interference.  In these problems, quantum 
destructive interference allows many otherwise fruitless attempts to get an answer to the 
problem of interest to be automatically excluded.  The result is that quantum computing 
leads to a very significant speed up over classical computing in generating possible 
answers to the problem of interest.  Identifying which problems for which this is true, and 
how important they are, is a major area of contemporary research.  And then there are 
the, to date, unresolved issues of how to actually make and program such a computer. 
 
The decryption problem 
 
 Electronic data security—involving, for example, private personal information, 
financial resources, election results, or military secrets—is one of the most important 
challenges facing contemporary society.  In general, data security revolves around 
encryption and decryption.  A wants to send B a message, M, that no evil interceptor, I, 
can understand.  To do this A encrypts the message as C = E(M), where E is an 
encryption rule.  Provided B knows how to decrypt C, B is able to read M = D(E(M)), 
where D is the appropriate decryption rule.  Typically, the encryption and decryption 
rules change on a regular basis.  In order for A and B to communicate properly and keep 
I from figuring out what is going on, A not only transmits C but also a key, k, that tells B 
what that day’s D should be.  But, this has to be done in a sufficiently sneaky way that I 
doesn’t have enough time to catch on before B can act on the decrypted message.  
Numerous algorithms have been produced to do all of this.  The most robust of these 
involve some arcane arithmetic that starts with two long integers (maybe a few hundred 
digits long), p and q, that are prime numbers (i.e., divisible only by 1 and by themselves) 
that are multiplied together.  This huge product is one of the pieces of information sent 
along with the encrypted message.  The encryption and decryption depend on the 
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values of the two prime factors.  If I can find the factors p and q quickly enough, I can 
decode the message and do something nasty (like emptying B’s bank account).  This 
whole procedure works because classical algorithms for finding the prime factors of a 
whopping big integer take a bloody long time to implement with contemporary 
computers. 
 
Enter quantum computers.  There is a slick quantum algorithm (Shor’s Algorithm) that, in 
principle, can find prime factors much faster than any classical method.  It does so by 
taking advantage of quantum destructive interference.  To crack the decryption problem 
for current encryption procedures using Shor’s Algorithm, however, requires a largish 
quantum computer—none of which yet exist.  So your bank account is still secure, for 
now, at least. 
 
The status of quantum computers 
 
Work in numerous laboratories around the world endeavors to produce functional 
quantum computers that can solve problems no conventional, classical computer can.  
The hurdles these scientists and engineers are trying to overcome are how do you 
create superpositions of large numbers of qubits in the input state and how do you 
preserve entanglement of the qubits through the processing phase so that the output 
can be uniquely identified with the corresponding input.  Practically every day new 
progress is reported, often in public media releases before careful technical review has 
been completed.  At this moment (summer 2019), the largest primitive quantum 
computers have about 70 qubits of input and entanglement persists for microseconds.  
(These prototypes solve problems, like factoring integers, that ordinary computers can 
also easily do.  So again, no big deal—yet.)  The holy grail of quantum computing 
research is to achieve 100 input qubits and retain entanglement for at least minutes.  
Should this situation be achieved it will signal “quantum supremacy,” the ability of 
quantum computers to outperform the largest and fastest classical computers–at least 
for certain classes of problems.  It is often sequentially predicted this will occur in 
another 5 years or so. 
 
A central player in the quantum computer game is the Canadian company, D-Wave.  D-
Wave first announced a “quantum computer” in 2007 and showed off in several venues 
things it could do (including solving Sudoku puzzles).  Critics agreed that this first device 
couldn’t actually do anything more than an ordinary computer could.  Undeterred, D-
Wave has been systematically producing bigger and better devices (none of which have 
yet unambiguously passed critical scrutiny), claiming at present to have a 5000 qubit 
machine!  Because of D-Wave’s erratic history there are many skeptics of their claims.  
(See, e.g., Scott Aaronson’s cartoon strip https://www.scottaaronson.com/blog/?p=3058 
and continuing blog posts at http://www.scottaaronson.com/blog/.  Also, it helps to keep 
up with quantum computing developments by reading the MIT Technology Review at 
https://www.technologyreview.com.)  Nonetheless, Google and NASA have purchased a 
D-Wave computer (for $10,000,000!) to use in their collaborative Artificial Intelligence 
Laboratory, so maybe the hype is real.  Who knows? 
 
We live in a brave new, quantum mechanical, world. 
 
 
 
 


