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Many-particle Systems, 1 
 
Wavefunctions for more than one particle: distinguishable particles 

 
Our previous examples of quantum mechanical wavefunction calculations involve a single 

particle moving about in a “magic” potential energy—e.g., a particle trapped inside a square well 
or an electron in a hydrogen atom.  But, potential energy arises from interaction, so these 
situations must inevitably include more than one particle.  Even the simplest atom—hydrogen—
consists of two particles: the electron and the proton.  So, how should the Schrödinger Equation 
be generalized to account for multiple particles?   
 

The idea is to introduce a “system” wave equation, the solution of which is a “system” 
wavefunction.  For concreteness, let’s consider a system consisting of an electron and a proton in 
a 1D infinite square well.  Let’s assume the particles do not interact with one another (!) and the 
external potential energies arise only from the well’s “walls.”  The system wave equation is then 

. 

The solution of this equation separates into a product of a time part and two space parts, i.e., 
, where  is the total energy of the system.  (If the electron and proton were 

allowed to interact electromagnetically, the potential energy of the electron-proton interaction 
would depend on both coordinates and the system wavefunction would not separate.)  Neither the 
electron nor proton can be found outside the infinite well, so  has to vanish when either 
coordinate is 0 or .  These boundary conditions produce two spatial quantum numbers–  and 

–both of which are integers.  The system wavefunction is labeled by these two quantum 
numbers: 

. 

 is the probability of detecting an electron in state  in a small length  centered 

on the position  (i.e., a small electron detector at ) and simultaneously at time , detecting a 
proton in state  in a small length  centered on the position  (a small proton detector).  
Assuming the system actually does consist of an electron and proton, then the integral of 

 over all values of both coordinates is 1.  The system energy (which in this model is 

independent of spin) is 

. 

More generally, if the system consists of  noninteracting distinguishable particles all moving in 
3D, the system wavefunction will have an exponential time part involving the system total energy, 
and  spatial wavefunctions each depending on a spatial quantum number (  in all).  
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Indistinguishable, noninteracting particles 
 
 The example above deals with two different kinds of noninteracting particles (that is, 
distinguishable particles).  When the proton detector clicks, it’s certainly the proton that causes it, 
and the same for the electron.  But now, suppose we replace the proton with a second electron.  
All electrons are identical.  Electrons can’t be painted or given little tags to carry around.  If their 
wavefunctions overlap, as in the infinite well example above, they are indistinguishable.  (If the 
particles are confined to be far from each other, such as in distant wells, they are distinguishable, 
i.e., particle 1 is definitely in well A, particle 2 is definitely in well B, etc.  Their individual wave 
functions don’t overlap.)  Replace the proton detector with a second (identical) electron detector.  
If the electron wavefunctions fill up a single infinite well (i.e., they overlap), when one of the 
detectors clicks there’s no way to tell which electron was detected.  Now, the system 
wavefunction might be expected to look something like 

, 

where the 𝜙′𝑠 represent spin directions measured in detectors 1 and 2.  The labels “1” and “2” don’t 
distinguish the electrons from one another, they simply convey the idea that there are two s, two 
spins, and two places to put detectors.  The quantity  is the probability that an 

electron is detected at position  and that an electron is detected at position , and that the total 
quantum state of the pair is determined by .  It doesn’t matter if we switch detector 
positions or if we switch the states measured in each detector; the system probability will be 

identical.  In other words, .  This string 

of equalities can be true provided  and 

.  That is, the wavefunction can either be the same when 
states are switched or when detector positions are switched, or it can change sign.  It turns out that 
Nature employs both options and the consequences are astounding. 
 
 A profound, but difficult to prove, theorem—the Spin-Statistics Theorem—stipulates that 
identical noninteracting bosons (particles with integer spin) have the same wavefunction under 
switch of state (i.e., quantum numbers) or position, while the wavefunction for identical 
noninteracting fermions (particles with odd half-integer spin) undergoes a sign change when 
state or position are switched.  In other words, the proper wavefunction for two or more identical 
bosons is symmetric if two state labels or two positions are switched, but for fermions it is 
antisymmetric.   
 
Example:  Suppose two identical noninteracting spin-0 bosons are in a 1D infinite well.  Suppose 
also that the spatial quantum numbers are 2 and 3.  The proper wavefunction for the system is: 

.  The zeroes on the end are spin 

states, not numerical zeroes.  Suppose now the particles are fermions with spin-1/2.  Spin-1/2 can 
either be “up” (along a direction in space) or “down” (opposite that direction).  For spin-1/2 
fermions the spin functions  can be represented by up or down pointing arrows.  Two identical 
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fermions in spatial states 2 and 3 but with both spins up will have a system wavefunction 

.   

 
The symmetry or antisymmetry of the wavefunction seems like a formal and unimportant 

detail, but it is anything but.  Suppose in the previous example the two fermions are both in the 
spatial quantum number = 2 state, that is, they are in the same total spatial and spin state.  Then 
the factor  

 

vanishes.  In other words, because of the antisymmetry of their system wavefunction, no two 
identical noninteracting fermions (whose individual wavefunctions overlap) can be in 
exactly the same single particle state.  This rule is often referred to as the Pauli Exclusion 
Principle; the atomic periodic table (as we see in a bit) is one direct consequence.  The two 
fermions could be in the same  state if their spins were different, however.  For example, 
suppose the fermions both have .  Then, an antisymmetric system wavefunction could be 

. 

 
Often it is useful to construct wavefunctions for identical, noninteracting fermion systems 

by either antisymmetric combinations of products of spatial functions times symmetric spin 
combinations, or symmetric space combinations times antisymmetric spin combinations.  (This 
isn’t the only way to make such constructions.)   
 
Example: Two indistinguishable fermions in an infinite square well in motion states  and  and 
spin states  and  might have wavefunctions  

𝐴[sin	(+,-.,
/
)sin	(+1-.1

/
)–sin 2+1-.,

/
3 sin2+,-.1

/
3 [ 4 5 + 4 5

] 
or   

𝐴[sin2+,-.,
/
3 sin2+1-.1

/
3 + sin 2+1-.,

/
3 sin 2+,-.1

/
3 [ 4 5 − 4 5

]. 

 
In either of the cases in this example, if two of the fermion detector positions are the same, 

so that two positions and two spins have the same indices (detectors measure spatial and spin 
quantum numbers), the wavefunction also vanishes: in other words, two identical fermions 
cannot occupy the same position in space at the same time.  The antisymmetry of the 
fermion wavefunction implies that “fermions don’t like one another.”  The antisymmetry of the 
wavefunction for identical fermions produces a kind of effective repulsive force, one that 
manifests itself, for example, in the fact that solids are hard to compress.  When you push on a 
solid it pushes back because in pushing you are trying to cause the solid’s electrons to get “closer 
than they like to be.” 

 
 Bosons are different.  The symmetry of the wavefunction for identical bosons permits more 
than one boson to be in the same state and to occupy the same position in space.  In fact, the 
probability that this happens is actually often greater than when they are in different states.  This 
implies that “bosons like one another” and that there is a kind of effective attractive force 
between them.  Bosonic attraction leads to the strange and practically important phenomena of 
superfluidity, superconductivity, and to the coherence of laser light.  Identical photons in a laser 
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beam are bosons that tend to travel together in the same state (see Fn2 p7).  Bosonic attraction 
allows you to make a laser so you can scan your bag of chips!  (𝑄𝑀 = $) 
 
Example:  Suppose the two particles in the previous example are identical, noninteracting bosons.  
The system wavefunction has to be completely symmetric under state or position switches.  In this 
case, start with the product , where  is a position and  is a state.  Then, leaving 
the state labels in place, permute the positions and add: .  For 
larger systems do the same thing and permute the positions cyclically until all position 
arrangements have been constructed (e.g., 

). 
 
 Note that in either the fermion or boson case, the system wavefunction is not a simple 
product of single particle wavefunctions as it is when the particles are distinguishable.  The 
antisymmetry or symmetry requirement causes the single particle states to be strongly 
correlated, and these correlations have powerful physical consequences, as we will see.   
 
Appendix:  No hidden variables (probably) 
 
 A more colorful expression for “strong correlation” of single particle wavefunctions is 
“entanglement.”  If sufficiently strong, external interactions destroy entanglement (i.e., cause 
decoherence), producing, as a result, system wavefunctions that are simple products of single 
particle wavefunctions, with no symmetry or antisymmetry restrictions.  Preventing this from 
occurring is a major research venture motivated by such hoped-for applications as quantum 
teleportation and quantum computing (both involving the manipulation of information encoded in 
quantum states, such as spin orientations).   
 
 Entanglement in two-particle systems has permitted stringent experimental tests of the 
nature of quantum reality.  Quantum mechanics is a mathematical formalism that enables the 
possible outcomes of experiments to be calculated.  It says nothing about which outcome actually 
emerges from a given measurement.  One possible interpretation of this unpredictability is that 
quantum mechanics is an incomplete theory.  In this view, every quantum system is described by 
more variables than those in the Schrödinger wavefunction, but they are “hidden” from us.  If 
these hidden variables were known, a perfectly predictable (classical) theory could be 
constructed.  An alternative interpretation is that quantum mechanics is complete, it’s just that 
when a measurement is performed all of the possible outcomes somehow “collapse” into a single 
reality.  This suggests (maybe) the astonishing view that there is no physical reality until one 
looks!  (See: http://whatis.techtarget.com/definition/Schrodingers-cat) 
 
 Here’s a cartoon description of an experiment that addresses 
these issues.  Two spin-1/2 particles (A and B) are produced traveling 
in opposite directions with total spin = 0.  The spins of the particles are 
measured by two separate Stern-Gerlach (S-G) devices (see Sc5, p3), 
arranged with their long axes on a common line; the devices measure 
particle deflections perpendicular to their long axes.  See the figure to the right.  Here the arrows 
indicate the classical magnetic field directions, 𝑧> and 𝑧?, not the spin directions.  Provided the 
measurements are made before decoherence can muck things up, the spin of A along a given 
deflection direction (e.g., “up” along ) must be opposite to the spin of B along the same 
direction (i.e., “down” when ).  The spin part of the two-particle wavefunction must be 
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; no up-up or down-down.  The situation becomes much more interesting when 
do not point in the same direction. 

 
 The figure to right depicts looking down the common long axes of the 
two S-G devices.  As shown, device B is rotated by an angle  relative to 
device A.  Suppose the two particles actually have well defined, oppositely 
pointing, spin vectors, and the direction of deflection in each device is 
determined by the sign of the dot product between the spin vectors and the 
respective -axes.  Suppose further that particle A deflects up.  In this 
scenario, its spin vector must have been somewhere within the semi-circle above the -axis.  At 
the same time the spin vector of B must be somewhere within the semi-circle below the -axis.  
If it were in the pie-shaped piece designated  its dot product with  would be positive and it 
would deflect up along .  If it were in the pie-shaped piece designated  its dot product with 

 would be negative and it would deflect down along .  If B’s deflection is recorded over and 
over, but only when A deflects up, the average fraction of B’s ups would be  and downs would 
be .  Note that when , B always deflects down along , as it should.  Note also that 
when , B deflects half the time “up” (in this case, to the right along ) and half the time 
“down.”  This is exactly what is observed when a particle after defecting one way in one device is 
passed through a second with deflection axis rotated by 90˚ relative to the first.  The story spun 
here is an example of a hidden variable theory.  In this story, the particles have well-defined spin 
vectors before any measurement is made, but we never know what they are, we only observe the 
resulting deflection. 
 
 Quantum mechanics predicts different fractions of up and down deflections for particle B.  
Let an up deflection correspond to a +1 output, down to –1.  In the hidden variable scenario 
above, the average output value would be .  Quantum 
mechanics says that measurement of B’s deflections along  is equivalent to measurement 
along  a fraction of  of the time, and along a fraction of  of the time.  The 
average output value for the former is  while for the latter it is .  In other words, 

.  If , for example,  while .  In other words, not the 
same.  Several sophisticated experimental tests of differing predictions of hidden variables versus 
quantum mechanics have been conducted over the last 20-30 years, and, to extremely high 
confidence (i.e., when you account for experimental uncertainties), quantum mechanics is always 
right.  Sorry, dear reader: the bizarre behavior of quantum systems apparently cannot be 
accounted for by classical physics plus ignorance.  There apparently is no hidden reality; 
reality only emerges when measurements are made! 
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