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Foundations, 3 
 
Photon probability waves 
 
 Our goal here is to try to reconcile classical EM with the existence of photons.  The electric 
and magnetic fields associated with EM radiation, propagating in a direction we designate as 𝑥, 
obey the Maxwell wave equation: 

.     (1) 

The “partial derivatives” that appear in (1) are defined, for example, as 

    (2) 

(i.e., “hold  fixed, vary ”) and so on.  One possible harmonic traveling wave solution is of the 
form , where when  the wave is propagating in the -
direction, and when , it’s propagating in the .   
 

Example:  For the  above with  , , 

, , and 

.  Clearly, for this plane wave to be a solution to (1), 

. 
 
Recall that photon energy is  and photon momentum magnitude is .  We can 
write  as  and  as .  Because  appears so often in quantum 
mechanics, it is given its own symbol:  (pronounced “aitch bar”).  Then an electric field plane 
wave can be expressed as , where ; in this form the 
electric field contains photon energy and momentum information.  OK, but where is the 
randomness of photon-arrival hiding? 
 
 To see where, requires the EM energy density, .  The bright light double slit interference 
pattern, for example, is the time-average of the variation of  over the surface of the detector.  
But this pattern is identical to the variation of the probability that a photon will hit the detector 
when the apparatus is illuminated with very dim light.  A way of connecting  and the photon-
arrival probability is to declare that in a single-photon experiment (see the Appendix in Fn2) the 
probability density (probability per unit volume) of detecting the photon at a given point in space at 

a given time is , where the integral is over all space.  The probability that the 

photon will be detected in a small volume  surrounding the point  is .  �Note that 

, which implies that the photon is somewhere at time .   
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 To complete the story of how field and probability are connected we note that for an EM 
traveling wave in vacuum, , so that .  This enables us to define a one-photon 

wavefunction as, .  The “normalization factor”  is tentatively chosen so that  

which allows  to be tentatively interpreted as the probability density  above.  We’ll see why 
this is only tentative below.  
 
 Substituting ℰ = Ψ 𝑁⁄  into Equation (1) shows that the photon wavefunction is also a 
solution of the Maxwell wave equation:  

. 

Since Y depends on  and  through, for example, , the wave equation becomes 

. 

This suggests that time derivatives “measure” energy while spatial derivatives “measure” 
momentum.  In fact, for photons we can re-express the Maxwell wave equation as an energy-
momentum operator equation: 

     (4) 

where  and .  Note that  and .  The quantities 

 and  on the right-hand sides of these equations are not operators; they are just numbers.  
These equations are of the form 
 

operator[function]=number•(same function). 
 
Such equations are called eigenvalue equations.  The number in the equation is the eigenvalue 
and the function is the eigenfunction for the given operator.  (In German, eigen means “proper;” 
the function is a “proper function” and the associated value, a “proper value.”)  The wavefunction 
Y is simultaneously an eigenfunction of both the  (with eigenvalue ) and  (with 

eigenvalue ) operators. 
 
 Finally, we expect that a photon with constant wavelength will have a unique momentum 
and a unique energy.  That is, we expect that  and .  But, now something 

interesting happens.  Traveling harmonic waves, that is,  and 
 are solutions to the Maxwell wave equation with unique values of  and .  

But they are not eigenfunctions of  and .  The operator , so we expect that 

 is proportional to just  (and similarly for ).  But, for example, 

.  That is,  and  convert a sine into 
a cosine and vice versa, so the functions are not the same on both sides of the equations.  The 
day is saved, however, by Euler’s formula: , where  is the unit 

imaginary number, .  If sin and cos are solutions to the Maxwell wave equation so is exp.  
Thus, if we set , we find , a valid eigenvalue 
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equation with .  Similarly, we find .  (Can you see how 

 and ?)  This Y is complex and so is Y2.  In order to obtain a 

positive real number for a probability density we have to use  where  is the complex 

conjugate of   (in it,  is replaced by  wherever it appears in ).  
 
Example:  In the 1-photon double slit experiment you can treat the slits as being “sources of 
probability wavefunctions.”  Assuming that these wavefunctions are complex exponential plane 
waves and using the same geometry as in Fn1, we have  and 

.  Adding and factoring common terms produce 

.  Calculating  

yields .  Euler’s formula can 

be used to show that .  Thus, 

, which has the same form as the bright light interference 
pattern (Equation (2) in Fn1).  Note that this pattern arises from the waviness of the probability, 
but because  appears explicitly it also contains particle (i.e., momentum) information.  That is, 
the wavefunction idea manifests the wave-particle duality of photons. 
 
Example:  Consider an apparatus consisting of a very thin fiber optic 
cable the ends of which are terminated by perfect mirrors at  and 

, as depicted to the right.  Somehow, a single photon is injected 
into the cable.  Because the mirrors are perfectly reflecting the electric 
field is always zero at the cable ends.  A single plane wave of the form 

 cannot satisfy this condition, but two waves 
with equal and opposite momenta can.  For example, the two-plane wave wavefunction 

 automatically vanishes at .  (In it,  is 
the magnitude of the momentum, ; half the time the photon travels to the right, half the time to 
the left) This wavefunction can also be written as  (because 
Euler’s formula tells us ).  This wavefunction will vanish at  
provided , where  .  In other words, the reflecting ends of the cable force the 
magnitude of the momentum of the photon to be limited to only certain discrete values, 

, and its energy to be .  A free photon can have any momentum and 
energy, but a trapped one only has values that are consistent with the cable’s end conditions.  
This “quantization” of momentum and energy occurs whenever a particle (a photon, an 
electron, …) is confined to a finite region of space.  (Note: the wavefunction described here is 
only part of the whole wavefunction, because the electric and magnetic fields inside the wire are 
no longer in phase, so ; the momentum and energy quantization conditions are still the 
same, though.)  
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There are no particles, only fields 
 
 Though we have just been discussing photons, most of the rest of this course will be 
massive particles.  Importantly, the version of quantum mechanics discussed in these notes is 
called the “Schrödinger Picture.”  It works brilliantly (that is, you can make money using it, 𝑄𝑀 = $) 
for describing the behavior of electrons in atoms, molecules, and solids.  It’s all about the waviness 
of “particles.”  It describes wave-particle duality, but doesn’t explain it (i.e., it is simply an observed 
property of matter).  Schrödinger quantum mechanics is a nonrelativistic limit, in which rest energy 
is much larger than kinetic or potential energy, of a more general description of matter called 
“quantum field theory (QFT).”  QFT postulates that the “world” consists only of fundamental fields 
such as photon field, electron field, etc.  Quantum fields carry intrinsic properties such as mass 
and charge, and extrinsic properties such as energy and momentum.  Quantum fields interact 
when their “fundamental excitations,” or “quanta,” change each other’s state.  In QFT interactions 
are local: they occur at a point in space and a moment in time.  When a quantum of a quantum 
field interacts with the quanta of the fields of a “particle detector,” the detector records the 
properties of the field excitation and the excitation changes state.  (In the case of photons, the field 
excitation actually disappears–“the photon state is annihilated”–when this occurs.)  Real detectors, 
however small, are made of lots of atoms.  The smallest pixel in a CCD camera, for example, 
contains over 1012 atoms.  The quantum field, photon or electron, is spread over all the detectors in 
an array, but an excitation of the quantum field only interacts at a point with one detector at a time 
(provided the detectors are “reliable”), making it appear as if the field consists of particles.  In other 
words, in the QFT model of the world, there are no particles, only fields and their interactions.  A 
“particle” is what is measured in a “particle” detector as a result of an interaction between fields; in 
this version of physical reality it doesn’t make any sense to ask whether the particle existed before 
the detection event.  The QFT view removes the head-splitting dichotomy of wave-particle duality 
by asking that belief in little, hard, Newtonian nuggets be suspended–as difficult as that task might 
be for most of us who learned about physics starting with Newton-first.   


