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Foundations, 1 
 

Quantum mechanics is money 
 
 Text message and take a picture with your smart phone; watch a movie on your Blu-ray 
player; get the bar code on your bag of chips scanned; obtain an MRI image of your aching 
shoulder; take a ride on a maglev train.  None of these—and countless other—things would be 
possible without quantum mechanics!  Leon Lederman, Nobel Prize winning physicist, is widely 
quoted as saying that 1/3 of the world’s economy is due to quantum 
mechanics (𝑄𝑀 = $).  Lederman’s estimate is actually probably too low, but 
what surely is the case is that computers, lasers, and superconducting 
magnets (to cite a just few examples), and all of the very familiar products 
that rely on them, could not exist in their present forms without knowledge 
of the quantum mechanics of electrons and photons.  A poignant 
demonstration of this is found in the image to the right.  The large crate 
being “uploaded” to the Pan Am plane is 5 MB of computer memory.  The 
flash drive shown would be only a dot on the side of the crate yet contains 1 
Tb of memory—equivalent to about 200,000 crates (and, in today’s dollars, 
10 million times cheaper).  This huge advance in readily available computer 
technology is directly due to applied quantum mechanics.   
 

So, what is quantum mechanics?  An answer to this question requires grappling with the 
fundamental microscopic schizophrenia of the universe.  A good place to begin is to recall some 
basic ideas from classical mechanics and electromagnetism. 
 
Particles and waves   
 
 A “particle” is a classical, Newtonian concept.  In classical physics, a particle is usually 
thought of as a chunk of matter, a localized entity with ignorable internal structure—effectively a 
“point.”  (For some purposes, a cow might be treated as a particle if its tail, hooves, and innards 
are of no particular interest.)  A particle is characterized by a small number of intrinsic (i.e., 
independent of motion) properties such as its mass and electric charge.  It also carries extrinsic 
(i.e., dependent on motion) properties such as linear momentum, kinetic energy, and angular 
momentum with respect to some reference point.  The unique signature of classical particleness 
is that the entity’s physical properties show up at a “point” in space.  A “wave,” on the other 
hand, is delocalized; the physical properties it carries are spread out in space and only have 
values when their densities are summed over a finite volume.  The unique signature of waviness 
is interference, produced when multiple waves overlap. 
 
Classical waves: the double slit experiment in bright light 
 
 First performed around 1800 by Thomas Young, the interference pattern 
observed in the double slit experiment (e.g., the figure to the right) is usually 
taken as providing convincing evidence that light is a wave 
phenomenon.  The modern version of the double slit experiment 
involves a laser and a charge-coupled device (CCD) collector (see 
sketch).  Light from the laser illuminates two small slits in an 
otherwise opaque plate and is eventually absorbed at the CCD 
collector.  A laser is used because its light is “coherent” (which 
means that light emerging from the holes has a fixed phase 
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difference) and almost a single color (a single wavelength).  The CCD (image to the right) is a 
semiconductor device consisting of a grid of “pixels”—electrically isolated, capacitative 
elements that acquire a charge when illuminated with light.  CCD collectors are used to 
record images in digital cameras, for example.  The charge on a pixel is collected for a 
time Dt and is proportional to the light energy absorbed by the pixel during that time.  
After the collection time, the charges are recorded and the values stored.  These, in 
turn, are used to reconstruct an intensity image with bright (lots of absorbed energy) 
and dark (not much absorbed energy) regions.  This is a single “stationary” interference pattern. 
 
Understanding the double slit experiment: electromagnetic waves 
 
 Interference patterns in bright light are explained in terms of overlapping electromagnetic 
waves emitted from different sources.  Electromagnetic waves are electric and magnetic fields 
that vary in time and space and that “create one another” according to Maxwell’s classical 
theory.  Classical electromagnetism can be summarized succinctly as follows: 
 

• Electric charge makes electric field ( ) 
• Moving electric charge makes magnetic field ( ) 
• Time-changing magnetic field also makes electric field 
• Time-changing electric field also makes magnetic field 

 
These four points imply that an accelerating charge makes a time-changing  that, in turn, 
makes a time-changing , that, in turn, makes a time-changing , that, in turn, makes … .  
This sequence of events corresponds to electric and magnetic fields—together called 
electromagnetic (EM) radiation—that propagate away from the accelerating source charge.  
Electromagnetic fields carry energy.  Associated with electromagnetic fields at a given point in 
space at a given time is another field, , which is the electromagnetic energy per unit volume 
(the energy density): 

.     (1) 

In a sense,  is more physically relevant than  or  because it directly states where, when, 
and how much electromagnetic energy is available for interactions with charges. 
 

Maxwell’s equations (MEs) constitute a precise, mathematical statement of how 
(“bright”) EM radiation originates and sustains itself.  MEs predict that the rate of propagation of 
EM radiation depends on the electric permittivity and the magnetic permeability of the medium 
through which it propagates.  Vacuum permits electric fields ( ) and can 
be permeated by magnetic fields (𝜇' = 4𝜋 × 10-. N/A2), and the speed of propagation in 
vacuum ( ) equals  = 3.0x108 m/s, the speed of light.   

 
 Though hardly the only solution to MEs, the 
electromagnetic plane wave in a vacuum is a particularly 
useful wave model.  The plane wave geometry is depicted to 
the right.  Two parallel, planar sheets of electric and magnetic 
fields are shown traveling in the positive direction.  In these 
sheets,  points in the direction and  points in the 

direction.  In a given sheet,  is the same at every point, 
and  is the same at every point.  At one instant, the 
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difference in the respective fields is only along the direction.  For an EM plane wave in 
vacuum, the magnitudes of  and  are related by .  For a traveling plane wave, 

 can be eliminated from (1) leaving ; for this case, the energy densities 
associated with the electric and magnetic fields are equal.  Often, the space and time 
dependences of the fields are “harmonic”—i.e., can be represented by sines, cosines, or 
complex exponentials.   
 

Example:   is a sinusoidal electric field wave traveling in the -

direction.  [Why?  The quantity  is the phase of the cosine function.  To travel with 
the wave is to keep the phase constant.  As  increases,  has to increase also so that the 
phase is constant: the phase is travelling in the -direction.  If, instead, the phase were 

, then  would have to decrease to keep the phase constant; such a wave would 

be traveling in the  direction.]   is the amplitude of the wave;  is the wavenumber, 

, where l is the wavelength;  is the angular frequency, , where  is the 

(ordinary) frequency; and  is the phase of the wave at .  For example, the electric 
field amplitude of visible sunlight at the top of Earth’s atmosphere is about 860 V/m, and an 
average wavelength is about 550 nm—yielding a wavenumber of about 1.1x107 rad/m.  (The 
wavelength range for visible light is from about 400 nm to 700 nm.)  Note that for EM 
waves ; as a result, .  The frequency of a 550 nm wavelength EM wave is 
about 5.5x1014 Hz and the angular frequency is 3.4x1015 rad/s.  Thus, for sunlight, for example,

, where  is the wave’s 
(arbitrarily chosen) initial phase. 
 
Example: !! For the sunlight example above, 

.  In other words, 
energy propagates at the same speed as the field and has maximum values where the 
field has its maximum positive and negative values and is zero where the field is zero (its 
“nodes”). 
 
 EM radiation from the laser used in the double slit experiment causes charges in the 
plate to accelerate and radiate also.  The observed double slit interference pattern results from 
a superposition of the incident laser radiation with induced radiation from the plate.  It is possible 
to compute the double slit intensity distribution on the collector by just assuming that the holes 
in the plate each radiate electromagnetic waves of the same wavelength.  Though it at first 
seems unlikely that “holes radiate,” this assumption is justified 
in Appendix I below.   
 
 The geometry of the double slit set-up is depicted to the 
right.  The distance from the plate to the collector is typically 
very large compared with the slit separation, , so lines 
emerging from the slits that join at the collector are almost 
parallel.  The distance from slit 2 to the collector is therefore 
greater than that from slit 1 by an amount as shown in 
the inset.  In order for the light along paths 1 and 2 to get to the 
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collector at the same time, the light from 2 must leave before the light from 1.  That means the 
waves along the two paths will have varying phase differences depending on the angle q.  The 
total field from the holes is , where 
the traveling waveform defined in the preceding examples is used.  The first cosine is the wave 
from plug 1 and  is the distance from plug 1 to the collector; the second cosine is from plug 2; 
the quantities  are initial phases at the two slits.  The CCD collects light energy for a time  
that is many cycles long.  Consequently, the total accumulated essentially energy equals the 
number of cycles times the average accumulated energy per cycle.  Thus, the distribution of 

accumulated energy over the CCD is proportional to  averaged over one cycle of the 
light wave.  Appendix II below shows that for laser light the double slit intensity (brightness) 
interference pattern on the collector is 

,    (2) 
where I is the time-averaged absorbed energy and  is the intensity of light from one slit if it 
were by itself.  If the laser beam is normal to the plate surface, , and in that case I is a 

maximum ( ) for  and is zero for , where in either 

case  is 0 or a positive or negative integer.  Since , these two conditions are 
equivalent to 

      (3) 
and 

.     (4) 

Note that irrespective of what  and  are there is always a “central maximum” at  
corresponding to .  On the other hand, there are no other maxima if , because 

. 
 
Example:  Red laser light ( ) illuminates a double slit (head on) with slit separation = 
1500 nm.  How many maxima can be observed in the interference pattern? 
Solution:  .  The magnitude of the sine must be no greater than 1, so the 
magnitude of  has to be 2 or less.  Therefore, 5 maxima can be observed, namely, 
corresponding to  = 0, ±1, ±2. 
 
Example:  Suppose the slit separation is now 15000 nm.  The collector is 1 m from the plate.  
How far from the central maximum is the first adjacent maximum (on either side) on the 
collector? 
Solution:  , a number much less than 1.  For small angles, 

, so the distance from the central maximum is about 0.043 m = 4.3 cm.   
 
Appendix I:  Holes “can radiate” 
 

Calculating where the bright and dark spots in the interference pattern will be sounds 
impossible because we don’t know much about the plate.  The one thing we do know—namely, 
that the plate without holes is opaque—saves the day.  Here’s how.  We want to determine the 
distribution of  over the collector.  The electric field in this expression is the electric field 

    
Eholes = Emax cos kx −ωt +φ1( ) + cos kx + kd sinθ −ωt +φ2( )⎡⎣ ⎤⎦
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anywhere on the collector due to all radiating sources.  Thus (ignoring that electric field is a 
vector), 

. 
But, the plate without holes is opaque so it must be that 

. 
Moreover, we can think of the plate without holes as the plate with small holes plus small plugs 
that fit in the holes (this assumes that the radiation from the plugs doesn’t alter the radiation 
from the plate; that’s not true if the plugs are large); thus,   

, 
or what is the same thing 

 . 
The left hand side of this equation is what we want.  We can calculate it from the right hand side 
by treating the holes as little radiating plugs.  We don’t need to know anything about the plate 
beyond that it is opaque when its holes are filled.  Cool. 
 
Appendix II:  More about double slit intensities 
 

For notational simplicity, let  and .  Then the 
desired energy distribution is proportional to  

,  

where the brackets mean “average over 1 cycle.”  Both a and b depend linearly on time so the 
average of the respective cosines is zero and the average of the respective cosine2s is ½.  
Thus, the sum of the first two terms on the right hand side is 1.  The value of the third term isn’t 
immediately obvious because a and b are shifted in phase by .  A trig identity comes to 
the rescue: ; note that  

 
while  

. 
Because  depends linearly on time  

. 

There is no explicit time dependence in ; if  does not change in time then  

. 

Extended light sources other than lasers are incoherent, which means that  fluctuates 

randomly in time.  In that case, ; consequently, the interference term in (2) is 

zero.  This is what a laser does for you: laser light is coherent and keeps  fixed in time.  

Note that the maximum value of I in (2) ( ) is two times greater than the sum of the maxima 
of the two slits individually.  Of course, the minimum value is zero, so the average over the 
collector comes out to be just the sum of the intensities from the two slits separately. For 
incoherent light the intensity on the collector is uniform (we’ve ignored the fact that the electric 
field decreases with distance from the source) and is just the sum of the intensities of the two 
slits. 

  
Ecollector = Elaser + Eplate w holes

  
0 = Elaser + Eplate w/o holes

  
0 = Elaser + Eplate w holes + Eplugs

  
Ecollector = −Eplugs

  α = kx −ωt +φ1   β = kx + kd sinθ −ωt +φ2

 
cosα + cosβ( )2

= cos2α + cos2 β + 2cosα cosβ

  kd sinθ

 2cosα cosβ = cos(α + β )+ cos(α − β )

  α + β = 2kx − 2ωt + kd sinθ +φ1 −φ2

  α − β = −(kd sinθ +φ1 −φ2 )
α + β

 cos(α + β ) = 0

α − β  φ1 −φ2

  cos(α − β ) = cos(kd sinθ +φ1 −φ2 )

 φ1 −φ2

 cos(α − β ) = 0

 φ1 −φ2

  = 4I0


