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Understanding self-organized collective dynamics—especially in sparsely connected, noisy, and imperfect
networks— has important implications for designing and optimizing task-performing technological systems as
well as for deciphering biological structures and functions. We note that stomatal arrays on plant leaves might
provide an ideal example of task-performance in this context. Guided by observations of stomatal networks, we
examined a simple model of task-performing, collective dynamics that included state noise, spatial rule
heterogeneity, dynamic modules, and network rewiring. Our results indicate that task-performance in such
networks can actually be enhanced by various kinds of spatial and temporal irregularity. © 2007 Wiley

Periodicals, Inc. Complexity 12: 14-21, 2007

Key Words: network dynamics; spatiotemporal noise; cellular automata; majority task

1. INTRODUCTION

ynamical processes on networks often exhibit self-

organized collective behavior in which the activities of

large numbers of nodes spontaneously synchronize
without the intervention of a central processing unit (CPU).
It is sometimes possible to interpret these self-organized
collective configurations in terms of performing a task. This
particular kind of task performance has been achieved in
carefully engineered hardware systems [1-3] and has been
conjectured to underlie some aspects of how living organ-
isms function [4-6]. One difference between technological
and biological systems is their response to irregularity. In
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technological systems, specialized equipment or proce-
dures are frequently required to detect and correct errors,
whereas biological systems often manage successfully in
highly variable environments without any obvious error
correction capability. It is of great interest, therefore, to
identify how biology’s apparent innate robustness to imper-
fections might be mimicked in technological systems man-
ufactured— or forced to operate—in complex conditions. In
this article, we propose that stomata—microscopic, variable
aperture pores—on a leaf constitute an ideal reference sys-
tem for developing at least some types of noise-resistant,
task-performing networks. The argument goes as follows.
A central hypothesis in plant biology is that through the
“correct” adjustment of their stomata plants solve a con-
strained optimization problem involving maximizing, over
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(a)

(a) Chlorophyll fluorescence during a patchy stomatal episode. The image corresponds to a 6.25-cm? region on a leaf of the plant Xanthium strumarium
L. and indicates whether, over a period of 3 min, the fluorescence intensity of a pixel is increasing (white), decreasing (black), or remaining constant (gray).
Increased fluorescence implies stomatal aperture closure and vice versa. The density of pixels is roughly the same as the density of stomata and dark or
bright patches include hundreds to thousands of stomata all opening and closing (respectively) synchronously. (b) Chlorophyll fluorescence intensity variation
during a patchy stomatal episode. Shown is a typical pixel intensity change time series over the course of 3 h. The variations shown are about +10% of
the absolute intensity at that pixel. Measurement noise is Gaussian, with +1% variation.
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some period of time, the uptake of CO, while avoiding
desiccation due to evaporative water loss [7]. Plants lack
neural tissue that might serve to coordinate stomatal activ-
ities over widely separated parts of the organism, so it might
seem reasonable to assume that each stoma solves this
problem autonomously. On the other hand, it has recently
been established that stomata interact [8], and that they
therefore cannot be completely independent—i.e., stomata
are effectively “wired” together in a network. A dramatic
demonstration of stomatal network dynamics is stomatal
patchiness, a phenomenon in which patches of hundreds to
thousands of contiguous stomata open and close in syn-
chrony [9], with adjacent patches often having quite differ-
ent average apertures [see Figure 1(a)]. Stomatal patchiness
has been observed in numerous species in the laboratory
and in the wild. Its commonplace nature suggests the pos-
sibility of an important adaptive function, though what that
might be is as yet unsettled.

In laboratory experiments, patchiness is induced by an
applied perturbation—for example, a sudden, uniform re-
duction in ambient humidity. Despite all efforts to perform
such experiments under identical conditions it is never pos-
sible to predict when patches will appear, if they will be
dynamic or static, or what their duration will be. Typically,
patchiness—when it occurs—does not become observable
until tens of minutes after the perturbation is applied. In the
interim, stomata undergo aperture adjustment, but with no
evidence of collective organization. Sometimes when

patches do subsequently form, they persist for hours and
are richly dynamic [see Figure 1(b)]—growing and shrinking
in size, changing shape, and seemingly moving across a
leaf’s surface as coherent entities. As discussed in detail in
Peak et al. [10], patchiness, during such long-lived dynamic
episodes, has the same persistent, power-law correlations in
space and time as are found in model systems that exhibit
self-organized, collective behavior [11]—including some de-
signed to perform a task.

The last point leads us to propose the following inter-
pretation. In experiments in which a uniform step-pertur-
bation is introduced, both the initial and final aperture
states are solutions to an optimal gas-exchange problem for
the respective environmental conditions. The final uniform
aperture state is achieved in two stages. First, during the
transient period immediately after the perturbation, fast
physical and chemical processes lead to each stoma at-
tempting to adopt the new correct aperture value more-or-
less independently. These fast processes also produce “er-
rors,” however. These errors consist of small islands of
stomata with stable, incorrect apertures, presumably arising
from a competition between multiple (possibly suboptimal)
attractors of the stomatal dynamics. In the second, more
leisurely period that follows—the one in which coherently
moving patches are sometimes observed—all apertures ad-
just collectively to be closer to the correct value. The dy-
namics in this latter epoch apparently serves to destabilize
the locally incorrect apertures and facilitate their adjust-
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ment to more optimal values. In other words, we speculate
that the task of the stomatal network is to identify the
correct aperture among those present and to reset errone-
ous apertures to the correct value.

Finally, it is important to note that stomatal systems
exhibit a number of irregularities that are not found in
perfect task-performing networks. These include the follow-
ing: (i) State noise: During episodes of dynamical patchi-
ness, there is irreducible temporal variability in stomatal
aperture [Figure 1(b)]. (ii) Heterogeneous interactions: Sto-
mata of most leaves vary in size, orientation, and spacing.
Preliminary evidence (Sharples, Peak, and Mott, unpub-
lished data) suggests that this variation affects local inter-
actions among individual stomata. (iii) Modularity: During
stomatal patchiness, synchronization of stomata spreads
across regions of the leaf that are separated by small veins.
Thus, these regions appear to function like dynamical mod-
ules, with neighboring modules capable of influencing one
another.

Irrespective of whether our conjecture about the task
performed by stomatal networks is literally true, the more
general task of identifying and correcting the nodal states in
networks lacking central control is likely to have broad
technological applicability. We therefore explore here the
question, to what extent can networks perform the “identify
and correct” task in the face of spatiotemporal variability
without an error management capability? In the next sec-
tion we define a set of simulations, designed to mimic
characteristics of stomatal networks, that probe these is-
sues. We summarize our empirical findings in the succeed-
ing section and conclude with a discussion of their impli-
cations.

2. TASK-PERFORMING NETWORKS INSPIRED BY
STOMATA

Network Definitions

We invoke two reasonable simplifications in the remainder
of this article. First, we assume that stomatal apertures can
be parsed into more-open or less-open than a mid-range
value (that might vary from stoma-to-stoma) and that one
of these conditions is better for achieving optimal gas-ex-
change. Such a dichotomous situation is likely to hold in
other applications as well, so for simplicity we consider in
the following networks whose nodes have only two states,
+1 (“open”) and —1 (“closed”), either of which can be the
effectively “correct” state. Second, though stomatal aper-
tures adjust continuously in time, we have found—using
standard time series analyses [12]—that sampling the sto-
matal variations at a time scale of about 10 min provides
maximal dynamical information. When this interval is used,
the continuous stomatal dynamics, in principle, can be
recast as a discrete map, and here we adopt that perspec-
tive. In short, we take the networks of interest to be equiv-

alent to binary cellular automata (CAs). The “identify and
correct” task of interest is therefore equivalent to the much-
studied CA majority (or “density classification”) task [13,
14]—the goal of which is to identify the (presumably cor-
rect) state initially in the majority by having the nodes with
the (presumably incorrect) minority state change collec-
tively.

We start with perfectly wired networks with each node
located on a square lattice and receiving input from itself
and its four nearest neighbors only (i.e., 2D CAs with five-
node neighborhoods). In the noise-free versions of the net-
works, each nodal unit has perfect input. It unerringly exe-
cutes a simple state-update rule consisting of 32 “if ... then
...” clauses, where each “if” identifies one of the five-node
neighborhood configurations and the “then” corresponds to
an action setting the state of the central node in the next
time step. At first, we assume all nodes update synchro-
nously. We ultimately relax each of these restrictions to
more realistically reflect stomatal characteristics.

For the purposes of accurately mimicking biology, we
should equip each node with an update rule extracted from
the fundamental physics and physiology of stomata. Unfor-
tunately, the necessary ingredients for constructing such a
rule are not yet fully available. Instead, we examine here a
variety of majority task-performing rules, searching for
commonalities. In our simulations, we examined the per-
formance of the majority task by networks in which: (a) each
node executed the “local majority” rule (LM networks); (b)
each node executed a “2DGKL” rule (2DGKL networks); (c)
different nodes executed different rules drawn from sets of
rules found by Sipper ([15] and private communication)
using a genetic algorithm (GA) search [14]; we examined
four such heterogeneous networks and refer to their average
performance as SipHET; and (d) each node executed the
predominant rule from the four sets in (c); the average
performance of these is referred to as SipHOM.

The LM rule is equivalent to setting the node’s state at
time ¢ + 1 to its majority input state at time f. In other
words, an LM network essentially attempts to perform the
majority task by having each of its nodes individually do it.
The 2DGKL rule is a variant of the LM rule. Suppose the five
input ports of each nodal unit are designated C (center or
self), N (north), E (east), S (south), and W (west); then the
2DGKL rule is: if at time ¢ the state of a node (i.e., input C)
is —1 then set its state at £ + 1 to the majority of the C, N,
and E inputs; otherwise, set its state at £ + 1 to the majority
of the C, S, and W inputs. [In examining different inputs
depending on the current node state, this rule is akin to the
Gacs-Kurdyumov-Levin (GKL) rule [16] for the majority task
in 1D. It differs substantially, however, from the so-called
“2DGKL” rule discussed in Jimenez-Morales et al. [17]. Be-
cause of interchangeability of state values, as well as NE/NW
and SW/SE inputs, there are actually four identically per-
forming 2DGKL rules.] Sipper’s four genetically found rule
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sets are defined for networks of 15 X 15 nodes with strictly
nearest-neighbor architecture and periodic boundary con-
ditions; in each case, there are 40—60 different rules distrib-
uted over the 225 nodes, with the predominant (i.e., most
frequent) rule appearing at 30-60 sites. Sipper’s heteroge-
neous sets have strong spatial correlations: rules of adjacent
nodes differ from one another by no more than four clauses.

Simulation Sets

Our simulations consisted of: (1) establishing baseline task-
performance success rates for perfect, locally connected,
noise-free, synchronous networks; (2) examining the effects
of state noise in structurally perfect networks; (3) examining
the effects of spatial irregularity in noise-free and noise-
infected networks; (4) constructing large, mosaic networks
from small functional modules; (5) examining the effects of
3D complex interconnectivity on network performance; and
(6) examining the effects of asynchronous state updating in
perfect and imperfect, noise-free and noise-infected net-
works.

Procedures

(1) Baseline performance: Each of the network types (a)-(d)
was “posed” the same set of majority task “problems.” To be
consistent with Sipper’s work we used 15 X 15 networks. A
problem consisted of assigning to each node a —1 or +1
state at £ = 0 and then determining if all nodes had simul-
taneously attained the correct state in no more than = T =
2 X 15 X 15 = 450 time steps. If so, the task for that problem
was declared to be “performed,” and “not,” otherwise. We
examined 1000 different, randomly assigned, initial network
configurations for each —1/+1 ratio from 1:99 to 99:1, in
increments of 1%, recording for each run the percent cor-
rectly performed. For each initial ratio, we repeated this
procedure 200 times with different random number gener-
ator seeds and determined the SDs of the resulting distri-
butions of percent performed. The data are normally dis-
tributed so the SDs have their usual interpretation as
measures of variance. (2) State noise: We reran the majority
task as in (1), but at each time step, from the second on, we
first checked whether the network had reached a uniform
configuration and, if not, switched each node’s correct out-
put state, with probability n, before the next update. (3)
Spatial irregularity: In one experiment, we randomly scram-
bled Sipper’s rule-heterogeneous networks [type (c), above]
to destroy their genetically established spatial placement. In
a second, we randomly identified a fraction of the nodes in
all of the rule-homogeneous networks [(a), (b), (d)] to be
“frozen” into their initially assigned states. In each case, we
reran the majority task as in (1) and (2). (4) Mosaic net-
works: We used Sipper’s rule-heterogeneous 15 X 15 net-
works as tiles in mosaics consisting of 15N X 15N nodes. In
these mosaics, each module was rewired so that its bound-
ary nodes were connected to nodes in the adjacent module.

Nodes on the edges of the mosaic were connected to nodes
on the opposite edges of the entire network in the appro-
priate directions. (5) 3D complex interconnectivity: One way
of modeling 3D effects while preserving the ability of each
node to receive five inputs [18] is as follows: (i) assume that
the wires connecting nodes are unidirectional and that each
node has an output port from which any number of wires
can emerge—with one always going to the C input port
(nodes always know their own states); (ii) start with a strictly
locally connected 2D architecture, where each node re-
ceives one in-wire and sends one out-wire to each nearest
neighbor; and (iii) then sequentially rewire each node in the
network by replacing, with probability p, each of its in-wires
(except the wire to C) with one coming from some other
randomly chosen node. After doing this for the entire net-
work, all nodes still are wired to themselves and still have
in-wires from four other nodes—though not necessarily
nearest neighbors. We reran procedure (1) for all networks,
stepping through p in increments of 5%, first without, then
with, state noise. (6) Asynchronous state updating: To eval-
uate the effects of asynchrony, we allowed each node to
update to the correct state with probability x, otherwise stay
unchanged. One effect of asynchrony is that the time nec-
essary for task-performance, if it happens at all, is slowed.
Thus, in rerunning (1) and (5) again, we examined y values
ranging from 99% synchrony down to 1%, and took the
cutoff time in each study to be scaled by 1/x.

3. SIMULATION RESULTS

In the following we refer to “easy” and “hard” majority task
problems. An easy problem is one that is solved correctly in
no more than M time steps, where M is the number of nodes
in the network (that is, half the cutoff time). Otherwise (i.e.,
correct solution but only after a long period, incorrect so-
lutions, or unresolved final network configurations), the
problem is hard. The density of hard problems generally
increases as the ratio —1:+1 approaches 50:50.

Baseline Performances
All networks we examined perform well for highly one-sided
initial state ratios, but greatly differ from one another for
initial state ratios close to 50:50. Figure 2 contrasts the
performance of an LM network with that of one of Sipper’s
GA-found rule-heterogeneous networks. Clearly, the LM/
autonomous-node strategy for performing the majority task
only works for extreme initial state ratios. All other networks
we examined out-perform LM over a broad range of initial
state ratios and all perform similarly to the Sipper example
seen in Figure 2. All perform at close to 100% efficiency for
ratios above 70:30, but experience a sharp downturn in
performance for ratios near 50:50.

To probe network performance for “50:50” problems, we
looked at another 1000 problems for each network drawn
from a Gaussian distribution of initial —1:+1 ratios centered
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Comparison of majority task-performance by 15 X 15 locally con-
nected, noise-free networks. Each point is the average performance
for 1000 randomly assigned initial configurations, each with the

on 50:50 with a SD about 6%. We see in Table 1 that, though
their performance rate is fairly high, none of the genetically
found networks examined out-performs the 2DGKL net-
work for perfect, locally connected network conditions.
When a network solves a majority task problem correctly,
it is usually accomplished quickly (i.e., easily) with little
evidence of patchiness. For hard problems, on the other
hand, initially random distributions of states develop into
intermixed patches of all —1, all +1, and —1/+1 checker-
boards. An example is shown in Figure 3(a). As time goes on,
these patches sometimes resolve to the correct state, some-
times to the incorrect state, and sometimes (most often)
they get stuck in unresolved configurations. Invariably,
when hard problems are solved correctly the patches move
coherently across the network. Reminiscent of stomatal ex-
periments, it is never possible (except for trivial situations)
to predict which solution scenario will appear for a given
problem. (In fact, we have observed that switching the signs

corresponding density of ones. Shown are LM and GA-found rule-

of a single —1/+1 pair can make an easy problem hard or
heterogeneous (“Sip”) networks. 8 p Y P

vice versa.) Coherent motion is apparently essential to solv-
ing hard problems; an LM network never solves hard prob-
lems because the patches formed in them do not propagate.
As mentioned previously, patchiness in artificial majority
task networks and in real stomatal networks are remarkably

TABLE 1

Successful Performance Rates for the Majority Task by Various 15 X 15 CA Networks

Simulation set Network Performance (% correct)
Baseline (@) LM All: 39 + 1, 50:50: 0
(b) 2DGKL All: 93 + 1, 50:50: 68 =+ 1
(c) SipHET All: 90 + 1, 50:50: 62 =+ 1
(d) SipHOM All: 85 + 1, 50:50: 52 =+ 1
State noise (@) LM Max: 5 = 1
(b) 2DGKL Max: 75 + 2
(c) SipHET Max: 71 = 2
(d) SipHOM Max: 62 = 2
Spatial irregularity SipHET (random) All: 87 = 1, 50:50: 55 * 1
2DGKL, 5% frozen All: 51 = 3, 50:50: 1 = 1
2DGKL, 5% frozen, 2% noise All: 79 = 3, 50:50: 47 = 2
Mosaic Same Sipper, no noise All: 81 = 1, 50:50: 45 + 1
Random Sipper, no noise All: 55 = 5, 50:50: 5 + 3
Same Sipper, 0.5% noise All: 84 = 3, 50:50: 51 = 3
Random Sipper, 0.5% noise All: 65 = 3, 50:50: 20 = 3
Asynchrony 2DGKL, 1% synchrony All: 82 = 3, 50:50: 48 = 3
2DGKL, 1% synchrony, 1% noise All: 95 = 3, 50:50: 73 = 3

LM, network executing the local majority rule; 2DGKL, network executing a 2D extension of the 1D GKL rule; SipHET, average of four heterogeneous networks
executing different rules at different sites; SipHOM, average of four homogeneous networks executing the predominant rule from each of the SipHET
networks; SipHET (random), average of four heterogeneous networks executing the respective SipHET rules but with their placement randomly scrambled.
Mosaic networks consist of five 15 X 15 tiles on a side; Same Sipper, each tile is the same SipHET network; Random Sipper, each tile is one of the four
SipHET networks chosen randomly; Percent frozen, percent of nodes with fixed state; Percent “noise,” percent of states randomly flipped before each
iteration; percent synchrony, percent of nodes updating in each time step; All, percent correct for 200 runs each consisting of 1000 initial configurations,
for state ratios ranging from 1:99 to 99:1 in steps of 1%; 50:50, percent correct restricted to initial configurations with state ratios near 50:50; Max,
maximum performance for 50:50 problems with different levels of added state noise.
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(b)

(a)

Image (a) shows coherent state patchiness in a very weakly rewired
2DGKL network. Above the image is the corresponding state-state pair
correlation function, showing power law correlation. The slope of the
best-fit line is about —1. Image (b) shows similar coherent patchiness
for stomatal apertures on a leaf of the plant Xanthium strumarium L.
The corresponding correlation function is a power law with about the
same exponent as in (a). Image (c) shows very little patchiness in a
massively rewired LM network. The corresponding correlation func-
tion is flat.

similar. Figure 3(b) shows an example of stomatal patchi-
ness to compare with the CA patchiness in Figure 3(a).
Respective pair correlation functions are displayed directly
above images (a) and (b); they, like many other spatiotem-
poral statistics, are essentially indistinguishable [10].

State Noise

Adding large amounts of state noise (n = 10%, say) destroys
the ability of all networks to perform the majority task for
50:50 problems. On the other hand, adding small amounts
of noise (n < 5%) improves the performance of the majority
task by all networks—though the LM network still performs
exceedingly poorly for such problems. This is shown in
Table 1. The entry “Max” indicates the maximum perfor-
mance level attained for 50:50 problems with added state
noise (the amount of which differed for different networks).

Spatial Irregularity

The distributions of local rules in Sipper’s genetically found
heterogeneous networks have strong spatial correlations. If
these correlations are eradicated by rearranging the rule
placement, network performance degrades—but not by
much. As shown in Table 1, networks with the same numer-
ical distribution of rules but with randomly scrambled spa-
tial placement (“SipHET-random”) perform only slightly
less well than their corresponding original networks. The
decline in performance is totally accounted for by the 50:50

problems, indicating that the precise placement of the rules
in the unscrambled networks is a result of genetic fine
tuning for that purpose alone. Note that networks with
randomly scrambled rule placement still (slightly) out-per-
form homogeneous networks (SipHOM) using a single, rea-
sonably successful, genetically found rule.

Inclusion of frozen nodes has a profoundly detrimental
effect on task performance via collective dynamics. In these
simulations, successful performance of the majority task
was taken to be the following: all nodes other than the
frozen ones reach the correct state before the cutoff time. As
shown in Table 1, if 5% of the nodes in a 2DGKL network are
fixed in unchanging states, overall performance is almost
halved and virtually no 50:50 problems are solved. On the
other hand, adding 2% state noise to such damaged net-
works increases the overall performance back to 85% of
what it would be in a perfect, noise-free situation (and to
>70% for 50:50 problems). Similar results were found for
the other networks in this study.

Mosaic Networks

Despite the fact that Sipper’s 15 X 15 node networks are
wired in wraparound fashion, when they are “pulled apart”
and wired sequentially in a large array, the resulting net-
work is still able to perform the majority task fairly well. As
the number of tiles (modules) in such a mosaic increases,
the performance decreases, but not precipitously. The de-
crease is due to 50:50 problems only. Table 1 shows the
performance for mosaic networks, five modules on a side
(75 X 75 nodes), both where each module is the same Sipper
rule-heterogeneous network and where all four Sipper net-
works are used in random arrangement. The same-module
structures perform only slightly less well than do their com-
ponent individual modules. When state noise is added the
performance in the 75 X 75 networks rises to almost the
same level as in the 15 X 15 modules. Remarkably, even the
random-module structure performs the majority task more
often than not, doing so more frequently when noise is
present.

Complex Gonnectivity

Figure 4 shows the effect on the performance of the majority
task for 50:50 problems of introducing random rewiring in
the four network types we studied. Though the LM network
essentially never works well for 50:50 problems in strictly
locally connected networks, it begins to perform better and
better as the concentration of long-range wires increases
beyond a threshold value of ~30% (plot a; a conclusion
corroborated by studies on 1D networks [18]). On the other
hand, the high performing, locally connected 2DGKL net-
work suffers a monotonic degradation of performance as
the fraction of long-range wires increases (plot b). Curi-
ously, Sipper’s genetically found, rule-heterogeneous net-
works have an intermediate response to rewiring (plot c).
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Fraction task-performance

Rewiring fraction

Task-performance by the (a) LM, (b) 2DGKL, (c) SipHET, and (d)
SipHOM networks for 50:50 problems only on noise-free 15 X 15
networks as functions of network rewiring. Small amounts of rewiring
cause degradation in performance by the 2DGKL, SipHET, and Si-
pHOM networks; the LM network performs extremely poorly for small
rewiring. For large amounts of rewiring SipHET, SipHOM, and LM
perform well, whereas 2DGKL performs extremely poorly.

For low rewiring probability, their performance also de-
grades relative to the locally connected performance, reach-
ing a minimum at about 10% rewiring. Beyond that, how-
ever, their performance begins to increase again, rising back
to about the perfect network level at ~30% rewiring. The
robustness of Sipper’s heterogeneous networks is not due to
the diversity of local rules employed in them. Homogeneous
networks created from each heterogeneous network’s pre-
dominant rule respond identically to rewiring (plot d).

Although small amounts of long-range wiring never en-
hance performance of the majority task in the 2D networks
we examined, the deleterious effects of rewiring can be
offset, to some degree, by the beneficial effects of state
noise. For example, introducing 5% rewiring without state
noise causes the 2DGKL performance on 50:50 problems to
drop from 68 to 25%, but adding 0.5% state noise produces
a recovery to 65%.

Asynchrony

Irrespective of whether their nodes’ states are updated syn-
chronously, configurations of all —1 and all +1 are fixed
points for all networks examined here. Asynchronous up-
dating inevitably produces a higher proportion of “stuck”
attractor configurations that do not resolve to a correct
solution prior to the cutoff time. On the other hand, exactly
like the negative effects of rewiring, this condition can be
overcome by adding small amounts of state noise (see Table
1). Though Table 1 only includes data for the locally con-
nected 2DGKL network, we observed the same outcome for
all perfect and rewired networks. In all cases, the perfor-
mance levels of the corresponding networks in both syn-

chronous and asynchronous mode are statistically identical
for state noise levels m ~ 1%, regardless of connection
topology.

4. DISCUSSION

The observations presented above suggest a number of
implications for understanding and designing CPU-less
technological networks that perform the “identify and cor-
rect” (majority) task and also for better understanding sto-
mata. Let’s address stomata first. Coherently propagating
patches—whatever their function—can only occur, we find,
in networks with relatively low density of long-range wires
[a so-called “small world” topology [19]; see Figure 3(c)].
Thus, long-range coordination of stomata—through signals
carried by veins, for example—cannot be very important for
optimal gas exchange. In addition, in order to (finally) de-
velop a (to date elusive) quantitatively predictive model of
stomatal behavior, it is essential to account for stomatal
interactions. In this regard, it is equally essential to experi-
mentally elucidate these interactions, in particular, their
ability to produce coherent collective activity.

Now, let’s turn to implications for the design of “identify
and correct” networks. (1) Attempting to perform the “iden-
tify and correct” task at the individual node level (like the
LM rule) does not produce task performance at the level of
the network over a wide range of conditions. (2) Interactions
between nodes that are optimized for task performance in
perfect, locally connected networks (like the 2DGKL rule)
can fail in imperfect networks containing frozen nodes and
wiring irregularity; on the other hand, interactions that are
suboptimal in perfect networks (like Sipper’s GA-found
rules) can sometimes exhibit high quality performance in
damaged networks. (3) Networks in which the nodes oper-
ate slightly differently from site-to-site (again, like Sipper’s
rules) can out-perform those that are perfectly homoge-
neous. (4) Large, functional networks can sometimes be
constructed from small, functional modules, even though
the modules are not designed to be wired as in the large
array. And, (5) small amounts of wiring irregularity typically
degrade performance in networks that perform well with
perfect, local connectivity; on the other hand, some such
networks exhibit high quality performance when the wiring
irregularity is massive. Though the discussion here is based
on our CA simulations, we note that our conclusions are
more general: we have repeated all of the experiments re-
ported in this work with analogous continuous time, con-
tinuous state networks (i.e., cellular nonlinear networks)
and find qualitatively identical results (unpublished results).

Finally, the overarching lesson of our studies is that small
amounts of temporal noise often facilitate task performance
and can sometimes help to overcome structural defects. As
noted previously, the primary failure mode for “identify and
correct” networks is the formation of unresolving, minority
patches. A fundamental characteristic of the networks that
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perform this task competently is that such stuck patches are
fragile. That is, small perturbations on the boundaries be-
tween stuck patches can spawn massive changes that even-
tually sweep through the whole network, similar to how
“avalanches” of dynamical activity are triggered in self-
organized critical (SOC) systems [11]. This is why state noise
can sometimes improve task performance in these systems.
It can be expected, we believe, that for at least some artifi-

cial and biological networks, not only is suppression of
noise not necessary, its presence may actually be essential
to optimizing network function.
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