Instructor: Eric Held
Office: SER 226
Phone: 797-7166
Email: eric.held@usu.edu
Office Hours: M W, 11:20 – 12:20 pm
Prerequisites: Phyx 2710, Math 2210; Math 2250 (may be taken concurrently)
Texts: Lecture Notes (available on course website) (D. Mark Riffe)

 Foundations of Wave Phenomena (C. G. Torre) (available on course website)

Credits: 3 semester credit hours
Lecture: M W F, ENGR 206, 10:30 – 11:20 pm
Course Web Site: You access course content at http://www.physics.usu.edu/held/3750/index.htm.

Goals of the Course

1. Improvement of Mathematical Skills
 The main goal of the course is to bolster everyone’s mathematical skills so that the upper-division physics courses are not mathematically too difficult.

2. Practice with Computer Mathematics Packages
 For some of the homework problems you will be required to utilize a computer mathematics package, such as Mathcad, Maple, or Mathematica in order to help solve the problem or to plot the solution to a problem.

3. Writing and Presentation Skills
The class should help to develop both writing and presentation skills. Your writing skills should be improved through your homework write-ups. You will have many opportunities to improve your presentation skills through classroom presentations of selected homework problems. More detail on these aspects of the course are described below.

4. Knowledge of Physics
The course should increase your physics knowledge, especially in the area of wave phenomena, which, as we shall see, is ubiquitous in physics.

Class Time: Several different activities will take place during the scheduled class periods.

1. Lectures
Most class periods I will lecture on material that is also discussed in the text. You will get MUCH more out of the lecture if you have read the associated material from the text ahead of time.

2. Homework Presentations
We will also spend time going over some of the homework problems during the lecture time. During these class periods students will be (randomly) called upon to present their solutions to selected homework problems. You should do the homework problems ahead of time so that you are prepared to present them during the scheduled class time. As indicated below, the oral presentations count towards your grade in the class.

3. Exams
There will be three midterm exams during the semester.

Learning Assessment: The assessment of your learning will be done through the homework assignments – both written and oral, the midterm exams, and the final exam.

1. Homework – Written and Oral
There will be 8 homework assignments, posted on the web at http://www.physics.usu.edu/held/3750/index.htm. The due dates are indicated on the schedule below.

The written part of each homework assignment is due at the beginning of class on the same day that we do the oral presentations in class.
I WILL NOT ACCEPT LATE HOMEWORK.

That is, you will receive zero credit for an assignment that is not turned in on time.

If you are randomly selected to present a homework problem and you are absent, then you will receive zero credit for that part of your oral homework grade. Part of your oral homework grade will be based on you attendance on Homework days.

Probably the most important thing that you can do to succeed in the course is to carefully do the homework assignments and understand the concepts and mathematics related to the homework questions and problems.

2. Midterm Exams
The exams will test on material in the lectures, reading assignments, and homework assignments.

There will be three 50-minute midterm exams.

THE MIDTERM EXAMS WILL BE INDIVIDUALLY RESCHEDULED ONLY AT THE DISCRETION OF THE INSTRUCTOR. If you know that you will be unable to attend the scheduled time, then you must have an exceptionally good reason and make previous arrangements with the instructor to take the exam at some other time.

3. Final Exam
The final exam will be comprehensive.

THE FINAL EXAM MUST BE TAKEN DURING THE SCHEDULED TIME.
The final exam is scheduled for Friday, May 7, 2009, 9:30 a.m. – 11:20 p.m.

Homework Assignments Details

Format of the written part of the homework assignments: Assignments are to be written using only one side of the paper. Attach a cover sheet with your name, date, and assignment number. Staple all the sheets together with 1 staple in the upper left-hand corner.

Writing: While often overlooked, the need for clear writing by scientists is a daily necessity. E.g., in the real world the scientist is continually faced with the task of communicating to his or her colleagues the results of scientific investigations or the reasons that future scientific endeavors should be carried out. Therefore, I strongly believe that one of the main goals of the university is the encouragement of clear writing (or clear oral communication) in all assignments. To this
end, I require that all homework assignments for this class be written in clear English
sentences, including cases where mathematical equations are involved in the answer.

N.B.: Your homework solutions should be clear and to the point, without all of the chicken-
scratch-like attempts at deriving the solution that take place during the time that you are
working on the problem.

Examples of Acceptable and Unacceptable Homework Solutions (Partial solution to problem
2.3 from Marion and Thornton, an undergraduate Classical Mechanics text.):

Acceptable *(Notice the complete sentences!)*:

The equation of motion is

\[F = ma. \]

The gravitational force is the only applied force; therefore

\[F_x = m \ddot{x} = 0 \text{ and } F_y = m \ddot{y} = -mg. \]

Integrating these equations and using the initial conditions,

\[x(t=0) = v_0 \cos(\alpha) \text{ and } y(t=0) = v_0 \sin(\alpha), \]

yields

\[x(t) = v_0 \cos(\alpha) \text{ and } y(t) = v_0 \sin(\alpha). \]

N.B: All symbols used in a homework solution should be explicitly defined unless they are
standard symbols that have been used frequently in the book or in class. It is also quite
helpful to number any equations that are later referenced in the text of the homework
problem.

Unacceptable *(just a bunch of equations!)*:

\[F = ma. \]

\[F_x = m \ddot{x} = 0 \]

\[F_y = m \ddot{y} = -mg \]

\[x(t=0) = v_0 \cos(\alpha) \]

\[y(t=0) = v_0 \sin(\alpha) \]

\[x(t) = v_0 \cos(\alpha) \]
\[y(t) = v_0 \sin(a) \]

Grading Scale

Homework 25%
Oral Presentations (including attendance on Homework days) 15%
Tests 40%
Final Exam 20%

Mathematical Packages: There are available several computer math packages such as Mathcad, Mathematica, Derive, Maple, Macsyma, MATLAB, etc. I encourage you to use one (or more) of these programs in doing your homework, even when not required. For those with no experience with any of these packages, Mathcad is the easiest to learn. It also includes text, equation, and graphics regions so that within a Mathcad sheet you can write up your homework according to the guidelines discussed above. Mathcad is available in the university’s computer labs.

Disability: If you have a disability which requires accommodation in order for you to take this class, please contact me. The disability must be documented by the Disability Resources Center.
Phyx 3750 Spring 2010 Schedule

--Lecture Material, Reading Assignments, Homework, and Exams--

<table>
<thead>
<tr>
<th>Week of</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 11</td>
<td>Course / Syllabus</td>
<td></td>
<td>Harmonic Oscillations / Complex Numbers (pp. 1-10)</td>
<td>Two Coupled Oscillators / Normal Modes (pp. 15-27)</td>
<td></td>
</tr>
<tr>
<td>Jan 18</td>
<td>Martin Luther King Day</td>
<td>Normal Coordinates / the Initial Value Problem (pp. 15-27)</td>
<td></td>
<td>Linear Chain / Normal Modes (pp. 27-34)</td>
<td></td>
</tr>
<tr>
<td>Jan 25</td>
<td>Homework #1</td>
<td></td>
<td>Traveling Waves, Standing Waves and the Dispersion Relation (pp. 27-34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 1</td>
<td>1D Wave Eqn. - General Solution / Gaussian Function (pp. 46-55)</td>
<td></td>
<td>General Solution w/ Boundary Conditions (pp. 46-55)</td>
<td></td>
<td>Homework #2</td>
</tr>
<tr>
<td>Feb 8</td>
<td>General Solution using Normal Modes (not in text)</td>
<td></td>
<td>Introduction to Fourier Series (pp 59-64)</td>
<td></td>
<td>Midterm Exam I (HW 1 & 2)</td>
</tr>
<tr>
<td>Feb 15</td>
<td>Presidents Day</td>
<td></td>
<td>Complex Fourier Series (not in text)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 22</td>
<td>Homework #3</td>
<td></td>
<td>Dirac Delta Function (pp. 68-69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 1</td>
<td>Fourier Transforms and the Wave Equation (pp. 70-75)</td>
<td>17</td>
<td>18</td>
<td>Homework #4</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>March 8</td>
<td>Separation of Variables in Cartesian Coordinates (pp. 90-92)</td>
<td>19</td>
<td>20</td>
<td>Midterm Exam II (HW 3 & 4)</td>
<td></td>
</tr>
<tr>
<td>March 15</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>March 22</td>
<td>Separation of Variables in Cylindrical Coordinates (pp 92-102)</td>
<td>21</td>
<td>22</td>
<td>Homework #5</td>
<td></td>
</tr>
<tr>
<td>March 29</td>
<td>Spherical Coordinates II / A Boundary Value Problem / Separation of Variables Summary (pp. 103-111)</td>
<td>23</td>
<td>24</td>
<td>Energy Density / Energy Flux / Total Energy in 1D (pp. 114-120)</td>
<td></td>
</tr>
<tr>
<td>April 5</td>
<td>1D Schrödinger Equation for a Free Particle (pp. 128-133)</td>
<td>26</td>
<td>27</td>
<td>Homework #6</td>
<td></td>
</tr>
<tr>
<td>April 12</td>
<td>A Propagating Wave Packet - Group Velocity Dispersion (not in text)</td>
<td>28</td>
<td>29</td>
<td>Midterm Exam III (HW 5 & 6)</td>
<td></td>
</tr>
<tr>
<td>April 19</td>
<td>Divergence and Curl (pp. 139-143)</td>
<td>30</td>
<td>31</td>
<td>Homework #7</td>
<td></td>
</tr>
<tr>
<td>April 26</td>
<td>Energy Density and the Poynting Vector (pp. 151-153)</td>
<td>32</td>
<td>33</td>
<td>Homework #8</td>
<td></td>
</tr>
</tbody>
</table>

FINAL EXAM
(comprehensive)
Friday, May 7, 2009, 9:30 a.m. – 11:20 p.m.
3750 Syllabus Spring 2010
Possible Errors: The instructor reserves the right to correct any possible errors to this syllabus.