Intermediate Lab
PHYS 3870

Lecture 4

Comparing Data and Models—
Quantitatively

Linear Regression

References: Taylor Ch. 8and 9
Also refer to “Glossary of Important Terms in Error Analysis”
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Intermediate Lab
PHYS 3870

Errors in Measurements and Models
A Review of What We Know

LINEAR REGRESSION Lecture 5 Slide 2

UNIVERSITY



|
Quantifying Precision and Random (Statistical) Errors

The “best” value for a group of measurements of the same
quantity is the

Average
What is an estimate of the random error?

Deviations
A. If the average is the the best guess, then
DEVIATIONS (or discrepancies) from best guess are an
estimate of error
B. One estimate of error is the range of deviations.
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Single Measurement: Comparison with Other Data
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Single Measurement: Direct Comparison with Standard
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Comparison of precision or accuracy?
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Multiple Measurements of the Same Quantity

Our statement of the best value and uncertainty is:

( <t> = oy) sec at the 68% confidence level for N
measurements

1. Note the precision of our measurement is reflected in the
estimated error which states what values we would expect to
get if we repeated the measurement

2. Precision is defined as a measure of the reproducibility of a
measurement

3. Such errors are called random (statistical) errors

4. Accuracy is defined as a measure of who closely a
measurement matches the true value

5. Such errors are called systematic errors
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Multiple Measurements of the Same Quantity

Standard Deviation

The best guess for the error in a group of N identical randomly distributed measurements is given
by the standard deviation

I 1 L1y —_—
0= oy Tt = B’

this is the rms (root mean squared deviation or (sample) standard deviation

It can be shown that (see Taylor Sec. 5.4) o is a reasonable estimate of the uncertainty. In fact, for
normal (Gaussian or purely random) data, it can be shown that

(1) 68% of measurements of t will fall within <t> + o

(2) 95% of measurements of t will fall within <t> + 2c;

(3) 98% of measurements of t will fall within <t> + 3oy

(4) this is referred to as the confidence limit

Summary: the standard format to report the best guess and the limits within which you
expect 68% of subsequent (single) measurements of t to fall within is <t> * o

Intermediate 3870
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Multiple Sets of Measurements of the Same Quantity

Standard Deviation of the Mean

If we were to measure t again N times (not just once), we would be even
more likely to find that the second average of N points would be close to
<t>,

The standard error or standard deviation of the mean is given by...
|

o= | 1 N 2
Tspom = U AN (V-1 Zi=4(t — )

This is the limits within which you expect the average of N addition
measurements to fall within at the 68% confidence limit
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Errors Propagation—Error in Models or
Derived Quantities

Define error propagation [Taylor, p. 45]

A method for determining the error inherent in a derived quantity
from the errors in the measured quantities used to determine the

derived quantity

Recall previous discussions [Taylor, p. 28-29]
I. Absolute error: ( <t># o) sec
I1. Relative (fractional) Error: <t>sec + (od/<t>)%
[11. Percentage uncertainty: fractional error in % units
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Specific Rules for Error Propagation

(Worst Case)

Refer to [Taylor, sec. 3.2] for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]
FOr Opest=XpesttYhest the error is dg=0x+3dy
Follows from CIbestigq :(Xbesti é‘)X) i(Ybest iSy): (Xbesti Ybest) i( OX 16y)

2. Multiplication and Division [Taylor, p. 51]
For Obest=Xbpest * Ybest the error is (6(]/ qbest) ~ (SX/ Xbest)+(6y/ ybest)

3. Multiplication by a constant (exact number) [Taylor, p. 54]
For Obest— B(Xbest) the error is (5C|/ qbest) ~ |B| (SX/ Xbest)
Follows from 2 by setting 6B/B=0

4. Exponentiation (powers) [Taylor, p. 56]
FOr Ghes= (Xpest )" the error is (8a/ Qpest) = N (5X/Xpest)
Follows from 2 by setting (0X/Xpest)=(0Y/Ypest)

Intermediate 3870
UNIVERSITY Fall 2013
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General Formula for Error Propagation

General formula for uncertainty of a function of one variable
5q=\g.5x [Taylor, Eq. 3.23]

Can you now derive for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]

2. Multiplication and Division [Taylor, p. 51]

3. Multiplication by a constant (exact number) [Taylor, p. 54]
4. Exponentiation (powers) [Taylor, p. se
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General Formula for Multiple Variables

Uncertainty of a function of multiple variables [Taylor, Sec. 3.11]

1. It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a

function of several variables
Worst case
|29 oq oq
(X, y,z,...)—‘& - OX + 5‘53/ t5 0L+ [Taylor, Eq. 3.47]

2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a
function of several variables

oqg oq oq
(X, y,z,...)s‘&‘-& + 5‘53/ + ‘E‘-é‘z + ... [Taylor, Eq. 3.47]

where the equals sign represents an upper bound, as discussed above.

3. For a function of several independent and random variables

- 2 (o 2 o > Best case

Again, the proof is left for Ch. 5.
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Error Propagation: General Case

Thus, if xand y are:

a) Independent (determining x does not affect measured y)
b)Random (equally likely for +dx as —0x )
Then method the methods above overestimate the error

Consider the arbitrary derived quantity
g(x,y) of two independent random variables x and .

Expand g(x,y) in a Taylor series about the expected values of x and y
(i.e., at points near X and Y).

leed shifts peak of distribution

L0+ ()] o1

q(x,y) = q(X,

Fixed Distribution centered at X with width o
Error for a function of Two Variables: Addition in Quadrature

2

dq dq ?
s == [[28), o] + [,

Intermediate 3870
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Independent (Random) Uncertaities and

Gaussian Distributions

For Gaussian distribution of measured values which describe
quantities with random uncertainties, it can be shown that (the
dreaded ICBST), errors add in quadrature [see Taylor, Ch. 5]

0q # O0X + 0y
But, 5q = V[(5x)2 + (3y)7]

1. This is proved in [Taylor, Ch. 5]
2.1CBST [Taylor, Ch. 9] Method A provides an upper bound on
the possible errors
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Gaussian Distribution Function

Independent T 1
Variable Center of Distribution

Distribution (mean)
Function
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Figure 5.10. Two normal, or Gauss, distributions.
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Standard Deviation of Gaussian Distribution

X+e
Prob(within o) = L_E G, o) dx (5.32)
See Sec. 10.6: Testing of
— _1__ J‘ITFE-{#-M . {533} Hypotheses
ﬁ - | 5 ppm or ~50 “Valid for HEP=

1% or.~30 “High_ly Significant”

G""(I} 7] 33
4’. : 5% or ~20 “Significan
1lo “Within errors”;
T 1009 |-——===—=-No—mommeem oo 997% 2%
I3 i Tosam | .'
i ] 1 I
f 1 | : ! !
[ [ 68% | ! i
5 ool ! | : :
3 £ | | |
K - | E !
1 1 1 ¥
Area under curve .' I! ! | :
ana |- ] { 1 i
(probability that 0 1 2 3 ras
—0<x<+0)is 68% 0.674

t ’0 025 05 075 L0 135 15 175 20 25 30 35 40
Prob (%) l 0O 20 38 55 68 79 8 092 954 088 997 99.95 99.99

Figure s_.l 3. The probability Prob(within te) that a measurement of x will fall within ¢ stan-
dard deviztions of the true value x = X Two common names for this function are the normal er-
ror integral and the error function, erf(t).

More complete Table in App. Aand B
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Mean of Gaussian Distribution as “Best Estimate”

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of x),
find X that yields the highest probability for the data set.

Consider a data set {X1, X5, X3 ... Xy }
Each randomly distributed with
1
Proby ;(x;) = Gy 5 (x;) = e~ (imX)?/20 o — o=(xi=X)/20

oV2n o
The combined probability for the full data set is the product

Proby (x1,X5 ... x5) = Proby (x1) X Proby (x2) % ... % Proby  (xy)

« 1 e~ (x1=X)?/20 o 1 e~ (x2=X)?/20 o 1 e—(n—X)?/20 — LN e2—(xi=X)?/20

o) o) o) o

Best Estimate of X is from maximum probability or minimum summation

N
inimi Solve for ol
Minimize 2 Best _ ¥x;
sum Z (x; —X)</o  derivative Z(x -X)= estimate  Absst = fN
i=1 setto 0 i=1 of X

Intermediate 3870
UNIVERSITY Fall 2013
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Uncertaity of “Best Estimates’” of Gaussian Distribution

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of x),
find X that yields the highest probability for the data set.

Consider a data set {X1, X5, X3 ... Xy }

The combined probability for the full data set is the product
Proby (x1,X5 ... x5) = Proby (x1) X Proby (x2) % ... % Proby  (xy)

« 1 e~ (x1=X)?/20 o 1 e~ (x2=X)?/20 o 1 e—(n=X)?/20 — L e2—(xi=X)?/20

o) o) o) o

Best Estimate of X is from maximum probability or minimum summation

N v

o Solve for :
Minimize . e Best X
sum E (x;—X)*/e¢ derivative E (t;—=X) =0 ogtimate Abesr = :er
i=1 wrst Xsetto 0 =1 of X

Best Estimate of o is from maximum probability or minimum summation

Ry il Solve for s Best [7
inimize .— X2 derivative ee Z B
Sum Zl (II X:} fﬂ- Wrst (o) Set tO O PrOb. 526 (e)?t(;mate a-bﬂ-‘?t - ||N (I X} .-’Iﬂ-
= e .

Intermediate 3870
UNIVERSITY Fall 2013

LINEAR REGRESSION Lecture 5 Slide 18




Weighted Averages

Question: How can we properly combine two or more separate
independent measurements of the same randomly distributed
guantity to determine a best combined value with uncertainty?
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Weighted Averages

The probability of measuring two such measurements is

Prob, (x1,x,) = Prob,(x1) Prob,(x,)

1 x1 — X X, — X
= ——e /2 where y* = IQI 2 3 [(2—)] 2
0'10'2 o o
To find the best value for X, find the maximum Prob or minimum X2
Best Estimate of x is from maximum probibility or minimum summation

Minimize Sum Solve for derivative wrst x setto O  Solve for best estimate of ¥
(x =1k (x -3 11
e[l oS o[l g (e 2 /(e )
o o7 o Oz
This leads to
x _ W1Xq + Wy X _ Z W; X where w. = 1/
W-avg wy + W, W l (0:)7

Note: If w,=w,, we recover the standard result X,,,,4= (1/2) (X;+X5)

1

Finally, the width of a weighted average distribution is = 6y,eig hted avg = T

Intermediate 3870
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Intermediate Lab
PHYS 3870

Comparing Measurements to Models
Linear Regression
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Motivating Regression Analysis

Question: Consider now what happens to the output of a nearly
Ideal experiment, if we vary how hard we poke the system (vary
the input).

Uncertainties in Observations

Input N Output

[ E— [—)>

The Universe

The simplest model of response (short of the trivial constant
response) is alinear response model
y(X) =A+B X
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Questions for Regression Analysis

The simplest model of response (short of the trivial constant response) is
a linear response model

y(x) =A +B X
Three principle questions:

What are the best values of A and B, for: (see Taylor Ch. 8)
* A perfect data set, where A and B are exact?
« A data set with uncertainties?
Yoo ¥

™ intercept, y=A

(a) (b)

What are the errors in the fitting parameters A and B?
What confidence can we place in how well a linear model fits the data?
(see Taylor Ch. 9)

UtahState Intermediate 3870
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Intermediate Lab
PHYS 3870

Review of

Graphical Analysis
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Graphical Analysis

An “old School” approach to linear fits.

* Rough plot of data

 Estimate of uncertainties with error bars
* A “best” linear fit with a straight edge
 Estimates of uncertainties in slope and
intercept from the error bars

This is a great practice to get into as
you are developing an experiment!

Intermediate 3870
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Is it Linear?
sk ¥ | « Asimple model is a
linear model
l l - * You know it when you
% % i T see it (qualitatively)
i . .
- 3 + Tested with a straight
Ty edge
0 500 1,000
m (grams) — « Error bar are a first
© step in gauging the
“‘goodness of fit”
H
i Adding 2D error bars
I = ~is sometimes helpful.
-+
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Making It Linear or Linearization

-
L

(a) (b} (e}

« A simple trick for many models is to linearize the model in the independent variable.

« Refer to Baird Ch.5 and the associated homework problems.
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Special Graph Paper

_ Log-log paper tests for
Semi-log paper tests for power law models.
exponential models.

Both Semi-log and log -log
paper are handy for
displaying details of data
spread over many orders
of magnitude.

Linear

“Old School” graph paper
is still a useful tool,
especially for reality
checking during the
experimental design
process.

Semilog Lol
0g-L0Og
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Intermediate Lab
PHYS 3870

Linear Regression

References: Taylor Ch. 8
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Basic Assumptions for Regression Analysis

We will (initially) assume:

 The errors in how hard you poke something (in the input) are
negligible compared with errors in the response (see discussion in
Taylor Sec. 9.3)

« The errors in y are constant (see Problem 8.9 for weighted errors
analysis)

 The measurements of y, are governed by a Gaussian distribution
with constant width o,
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Question 1: What is the Best Linear Fit (A and B)?

¥ ¥

*

(a) (b)

Figure B.1. (a) If the two variables y and x are linearly related as in Equation (8.1}, and if
there were no experimental uncertainties, then the measured points (x;, y,) would all lie exactly
on the line y = A + Bx. (b) In practice, there always are uncertainties, which can be shown by
error bars, and the points (x;, ¥;) can be expected only to lie reasonably close to the line. Here,
only y is shown as subject to appreciable uncertainties.

Best Estimate of For the linear model y = A + B x
intercept, A, and
P Intercept: A= IXEy-YIxExy o, = 0y —25
slope, B, pt. NYx2-(Xx)? A Y NY x2-(X x)?
for NS ayoyx s N
i ) _ NYxy-Yx ¥xy _
Linear Regression Slope B =S 08 = 0y s G
or Least Squares-
Fit for Line where oy = \/ﬁZ[YL — (4 + Bx;)]?
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“Best Estimates” of Linear Fit

Consider a linear model for y;, yi=A+BX;

The probability of obtaining an observed value of y; is

Probyp(y1 ...yn) = Proby g(y1) X ... X Proby g (yy)

-—(A+Bx)]

_ 2
= —e™ 2 where y

)
y =

Mz

To find the best simultaneous values for A and B, find the maximum Prob or minimum X2

Best Estimates of A and B are from maximum probibility or minimum summation

Minimize Sum Solve for derivative wrst Aand B setto O Best estimate of A and B

_ i Ly: - (‘; Bx)l  ox®_ —Z[y, (A+Bx)]=0 AN + BZIE = Z;v,-
i=1
%—5 ) x;[vi—(A+Bx)]=0 HZIE+HZIEE=ZIE}’

Intermediate 3870
UNIVERSITY Fall 2013
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“Best Estimates” of Linear Fit

Best Estimates of A and B are from maximum probibility or minimum summation

Minimize Sum Solve for derivative wrstAand Bsetto0 Best estimate of Aand B
Jllur
[y: — (A + Bx)?
IEEZ i = i ___Z[y! (A+E‘:u::}]—ﬂ AN+EZIEZZTE
i=1 ¥
d —2 _
o x:ly;,— (4 +Bx)] =0 4) x+B) xi=) xy
BE r:r},
i=1
In a linear algebraic form This is a standard eigenvalue problem With solutions

My Myo] [?] _[E1 A= _1Mzz — EabMiy
le MEE a Ez MIIMEE _MIEMEI
EIMEI_EEMII

2 g

B =
For the linear model y = A + B X My Mps — Myp Mz,
: _ Ix*¥y-¥x Yxy »x?
Intercept: A= VT -G 04 = 0y v ey (Prob (8.16)
_ NYxy—Yx ¥xy _ N
Slope T NYx2—(Tx)? % = 9 N Y x2—(%x)?

where g. = \/L [y, — (A + Bx;)]? IS the gncertainty in the measurement of y, or the rms
deviation of the measured to predicted value of y
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Least Squares Fits to Other Curves

a) Approaches
(1) Mathematical manipulation of equations to “linearize”
(2) Resort to probabilistic treatment on “least squares’ approach used
to find A and B

b) Straight line through origin, y=Bx
(1) Useful when you know definitely that y(x=0) =0
(2) Probabilistic approach
(3) Taylor p. 198 and Problems 8.5 and 8.18

o =2
Slope Zx®  with %.x°

uncertainty of measurements in y

P

1

o, = |N—1Z{F[_BIJE
[ =

where
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Least Squares Fits to Other Curves

1. Variations on linear regression
a) Weighted fit for straight line
(1) Useful when data point have different relative uncertainties
(2) Probabilistic approach
(3) Taylor pp. 196, 198 and Problems 8.9 and 8.19

) _ Zwx'Ewy-Lwx Lwxy . T wx®
Intercept: e NEwx®—(Fwsx)? %4 = % NZwx® —(E wx)?
_ NXZwxy-—-Xwx Lwxy . Lwx
SIOpe 5= 9% = NZwx-(3 wx)?

NEwx?—(Fwx)?
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Least Squares Fits to Other Curves

a) Polynomial
(1)Useful when
(a)formula involves more than one power of
Independent variable
(e.g., X(t) = (1/2)a t* + vyt + Xq
(b)as a power law expansion to unkown models
(2)References
(a) Taylor pp. 193-194
(b)[Baird 6-11]
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FITTING A POLYNOMIAL

Often, one variable, 1, is expected to be expressible a5 a polynomial in a second FI tt I n q a
variable, x, 5
¥y = A+Br+C2+--+ He" (8.23) POlynOm|a|

For example, the height v of a falling body is expected i be quadratic in the time ¢,

¥ o= vy + Ut — def,

where y, and v, are the initial height and welocity, and g is the acceleration of
gravity. Given a set of observations of the two variables, we can find best estimates
for the constants A, B, ..., H in (8.23) by an argument that exactly parallels that of
Section 8.2, as I now outline.

To simplify matters, we suppose that the polynomial (8.23) is actually a qua- Extend the linear solution to
dratic, include on more tem, for a
o : n 2 0
y=A+Ex+0F () second order polynomial

(You can easily extend the amalysis to the general case if you wish.) We suppose,
as before, that we have a series of measurements (x, v, i = 1,..., N, with the y,
all equally uncertain and the x; all exact. For each x, the corresponding true value
of v, is given by (B.24), with A, B, and C as yet unknown. We assume that the
measurements of the v, are governed by normal distributions, each centered on the
appropriste troc value and all with the same width o, This assumption lets us
compule the probability of obtaining our observed values v, . . . v, in the familiar

form . This looks just like our linear
Provpns - o duh = €75, L’ problem, with the deviation in
whers mow .
W o o e (o the summation replace by
=23 -4 ”3-2’5. o) (8.26) P
i=1 ¥

[y — (A +Bx)l = [y; — (4 + Bx; + Cx; D] = [y — fie ()]
[This equation corresponds to Equation (8.5) for the linear case.] The best estimates
for A, B, and C are those values for which Prob{y,, ..., v.) is largest, or y* is

smallest. Differentiating y* with respect to A, B, and ¢ and setting these derivatives .
cqual to zero, we obtain the three equations (as vou should check: see Problem Thls Ieads to a Standard 3x3

8.21): eigenvalue problem,
AN+ BYx + CZx° = Zy,
AXx + BEZ + CX® = Ty, (827) ':> Which can easily be generalized
AL 4 BEX + CZx* = Il to any order polynomial
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Least Squares Fits to Other Curves

a) Exponential function
(1)Useful for exponential models
(2)“linearized” approach
(a)recall semilog paper — a great way to quickly test

model
(b)recall linearizaion
y=Ae™
(iz=In(y)=InA+B-x=A"+B-x
(3)References

(a) Taylor pp 194-196
(b) Baird p. 137
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Least Squares Fits to Other Curves

C. Power law
1. Useful for variable power law models
2. “linearized” approach
a) recall log paper — a great way to quickly test

model
b) recall linearizaion
(1) y=Ax"
(2) z=InA+BInx)=A"+Bw
(a)z = In(y)
(b) w=In(x)

3. References
a) Baird p. 136-137

(a) (b} (e}
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Least Squares Fits to Other Curves

D. Sum of Trig functions

1. Useful when
a) More than one trig function involved
b) Used with trig identities to find other models

(1) A sin(w-t+b) = A sin(wt)+B cos(wt)

2. References
a) Taylor p.194 and Problems 8.23 and 8.24
b) See detailed solution below

E. Multiple regression
1. Useful when there are two or more independent
variables
2. References
a) Brief introduction: Taylor pp. 196-197
3. More advanced texts: e.g., Bevington

UtahState ISECEESE LINEAR REGRESSION Lecture 5 Slide 40

UNIVERSITY Fall 2013




Problem 8.24

8.24. ¥% A weight oscillating on a vertical spring should have height given by
y = Acos wt + B sin wt.

A student measures o to be 10 rad/s with negligible uncertainty. Using a multiflash
photograph, she then finds y for five equally spaced times, as shown in Table 8.10.

Table 8.10. Positions (in cm) and times (in tenths of a
second) for an oscillating mass; for Problem 8.24.

“*”: Time. —4 =2 0 2 4
“y”: Position y 3 —16 6 9 . =3

Use Equations (8.41) to find best estimates for A and B. Plot the data and your best
fit. (If you plot the data first, you will have the opportunity to consider how hard it
would be to choose a best fit without the least-squares method.) If the student judges
that her measured values of y were uncertain by “a couple of centimeters,” would
you say the data are an acceptable fit to the expected curve?

RIE w4+ T
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Problem 8.24

Problem 8.24 Enter the data: Mumber of data points: N=73 n=0.(N-1)
tﬂ = o =
(1 cec 3-cm w = 1-rad-sec
—2-5ec —16-cm
0-sec 6-cm
2-sec Q-cm
4-sec —8-cm

To solve equations (8.41) for the coefficients A and B, where v = A-f(x) + B-g(x), we
rewrite them in matrix format.

Slwtle))] | el Slel)el)
Slwelt) | [T(ef)e))  T(e) [B)

| o . fn 1

In shorthand notation, this is simply an eigen function equation of the form:

El Mil-A + MI2-B
E2)  |M2-A + M2B
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Problem 8.24

In shorthand notation, this is simply an eigen function equation of the form:
El Mil-A + MI12-B
E2)  \M21-A+ M2EB

This can be solved symbollically to find A and B:

(Hven

MI1-A + MI2-E=El

M21-A + M22-B=E2
E1-M22 - E2-MI12
MI11-M22 — MI12-M21
E1-M21 - E2-Mi11
MI11-M22 — MI12-M21

Find(A.B) —

That 15, for A

_ (M22E1 - E2M1)
(MI11-M22 — M21-M12)
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Problem 8.24

_ (M22E1 - E2-M12)
T (MI11-M22 - M21-MI12)

Mow, substituting the expressions for the shorthand notation, we arrive at the general

form:
'g{g{tﬂ}}f-‘z{y - [Seastl el

-5 e T {ﬂ}-g{tﬂn}-[ﬂ;{ ()]

Finally, inserting the expressions f{x) = cos(wet) and gix) = sin(et) , we get:

[g[m[w-ﬂﬂ-[z@ﬂ-m[w-ﬂnﬂ}—[z[fﬂ-sm{{u-tﬂm}-[z[m[w-ﬂﬂj-m[w-ﬂﬂﬂ}
[ﬂmﬁwﬂﬂﬁ {2{ il } Slewfengsfien | Elfeog o]

which yields a value for A of

A=353335cm
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Problem 8.24

Likewise, for B we have

_ (MI1E2 - E1-M21)
(MI11-M22 — M21-M12)

Mow, substituting the expressions for the shorthand notation, we arrive at the genera

form:
) bt [ ]
T e [Tt
Finally, inserting the expressinn; ;{x} = cos(at) and g(x) = sin(at) , we get:

{;{m{mﬂﬂ-g{fﬂ-m{mﬂ}q—E{fﬂ-ms{mﬂn}-g{m{u-tﬂ}-s-n{u-tﬂ}q
. E {m{u-tﬂnj-{;{m{u—tﬂ}}j [Tl T o o]

which yields a value for B of

B=110%cm
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Intermediate Lab
PHYS 3870

Correlations
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|
Uncertaities in a Function of Variables

Consider an arbitrary function g with variables x,y,z and others.
Expanding the uncertainty in y in terms of partial derivatives, we have

a—q-5z+...
0z

a—q‘-5x+
OX

A(x,Y,z,.)=

If X,y,z and others are independent and random variables, we have

(5 (205 (25 )
§q(x,y,z,...)_\/(ax 5x) +(8y 5xj +(az 5xj + ...

If X,y,z and others are independent and random variables governed by normal
distributions, we have

We now consider the case when x,y,z and others are not independent and
random variables governed by normal distributions.

UtahState ISECEESE LINEAR REGRESSION Lecture 5 Slide 47

UNIVERSITY Fall 2013



Covariance of a Function of Variables

We now consider the case when x and y are not independent and random variables governed
by normal distributions.

Assume we measure N pairs of data (x;,y;), with small uncertaities so that all x;and y; are close
to their mean values X and Y.

Expanding in a Taylor series about the means, the value q; for (x;,y;),
q; = q(x, y;)

_ aq _ aq _ Note partial derivatives are all
q; = q(x, y) +— (xl- — X) + — (yl- - y) taken at X or Y and are hence
d0x ay the same for each i
We then find the simple result for the mean of g

1< 1< 9 O 0
__ 1 R L _q /[ - _q [ S yields__ o
q—Nqu —NZ[q(x,yHax( / x)+ay(/‘ y)]—>q = q(x,y)

The standard deviation of the N values of q; is

L
0,° =NZ[% —q)°
i=1

N 2
1 dq dq
2 _ R S T S SN
g _N'El [ax(xl x)+ay(yl y)
=

UtahState Intermediate 3870
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|
Covariance of a Function of Variables

The standard deviation of the N values of q; is

[
0,° = Nz[(h - q)?
i=1
, 1 % oq . 0q NG
9q :N;[a(xi—x)‘F@()’i—Y)]
= -5 (2 305 2B i

oq\° aq\ dq dq
2 _ (%4 2, (94 2
% <6x) % ¥ <6y) e <ax ay) E

% N =00 —¥)

with g, =

If x and y are independent

Intermediate 3870
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I
SC hwartz Define a function .

Inequality 40 =YX+ Gy = TIP 2 0

i=1

A(t) = 0, since the function is a square of real numbers.

Show that Using the substitutions
1 _
|ﬂ-?c-':}’| = OOy Ox =Yy i1 (r — X)? Eq. (4.6)
= ; ’ )
Ory ==X = Xy — V) Eq. (9.8)

A(t) = 0,% + 2toy, + 20,2 =0

See problem 9.7
Now find t for which A(t,,,) is @ minimum:

0A(t
( )/at =0= ZO'xy + Ztmin ' Uyz = tmin = _O-xy/o-y2

Then since forany t, A(t) = 0
Amin (tmin) = sz + 2O-xy (_ny/ayz) + (_O.xy/o.y2)20.y2 =0
2 2
= 0,% — (204 /0,)" + (0, /0y)" =0
= (ax + axy/ay) (O‘x — axy/ay) >0

Multiplying through by ayz >0
= (axay + ny) (O'xO'y — axy) >0
which is true if
(0,20, —0,,2)20 = 0,%0,% = 0y,°
Now, since by definition g, > 0 and g, > 0,
, QED

O0x0y 2 |0xy
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Schwartz Inequality

Combining the Schwartz | | =
ﬂ'_x_.y O .. O

inequality ¥

With the definition of the . (8a\* ., (8q)\’ 2 9909\ _

covariance Tg“ = A P E + 2 axﬂ'}f
dq dq :

' oSN e 8 2

yelds %" = (Eix) =" (ay) oy Tt 2 ‘Exﬂ}?

Then completing the 2 o dg :

squares Oq Ax Oy T+ % Ty

And taking the square root of - dq dq

the equation, we finally have Ug = I Ox T E Ty

At last, the upper bound _|%q dq

of errors is Uq = Jx Oz T E i

And for independent and 5 2 5 2

random variables O, = (_q.o-xj +(—q-0'y]
X oy
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Another Useful Relation

Taylor Problem 4.5

2

show SIL4[(x; — D)% = T %% -+ [2, x]
Given YN [(x; —0)]* = XN [x,% — 2x;% + x?]
= NiLilx%] = 22 2 ] + 22 B[]
= YN [x;2] — 2%(Nx) + X(N)
= Nitq[x?] = Nx?

= 3N [x2] = N[Z,[x]]°, QeD
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UtahState

Question 2: Is it Linear?

54 5L 3
t ol |
g §
= L = L T
y(X) =A+B X (]
_ T [}
0 - 5613' — mm 0 500 1,000
(b) . (e
Coefficient of Linear Regression: r = 2GDGy] %

= EGDIZ03)2 o0y

Consider the limiting cases for:
* r=0 (no correlation) [for any x, the sum over y-Y yields zero]
» r=x1 (perfect correlation). [Substitute yi-Y=B(xi-X) to get r=B/|B|=%1]

Intermediate 3870
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...
Table (i 'I;Ihe perg.]entage probabﬂllty ProbN(LrA ro) that N measurements of two
ted v, = .
£§°f°(%mi’iimiitfﬁfoiﬁ&fﬁé“f?éﬁfm°o‘°3’§=}2"‘h 17 o s & ncion ot N Tabulated Correlation
‘ <:| r value - .
— Coefficient

0 01 02 0.3 0.4 0.5 0.7 0.9

[

3 100 94 87 81 74 67 59 51 41 29 0 . . e
No?ritsa 4 100 9% 3 70 6 |50 | 4 30 20 10 o0 Consider the limiting cases for:
5 100 8 75 62 50 |39 | 28 19 10 : .
P 0 » =0 (no correlation)
6 100 85 70 56 43 31 21 12 5.6 1.4 1] .
7 100 8 6 51 37 [25 | 15 80 31 06 0 » r=x1 (perfect correlation).
8 100 8 6 47 3 |2 | 12 55 17 02 0
9 100 80 61 43 29 17 8.8 3.6 1.0 0.1 0
00078 s 405 14| 67 24 05 0 To gauge the confidence imparted
11 100 77 56 37 . . . 8 i
o S G R I S . by intermediate r values consult the
13100 75 51 32 18 82| 30 08 01 0 ' '
14 100 73 49 30 16 | 69| 23 05 01 0 table in Appendix C.
15 100 72 47 28 - 14 58| 18 04 0
6 2 : 4 03 -
}7 133 ;3 :Z 22 if :i ij 33 The values in Table C were calculated from the mtegral
18 100 69 43 23 10 35/ 08 01
19 100 , 68 41 21 90 | 29| 07 01 ' 2F[(N 1)/2] 1 rz (N 92 gy
20 100 67 40 20 81 | 25| 05 01 - - P Obﬁ(lf' | = Ir oD '\/_I' W = 2)2] Il )
. N B . - Q
25 100 . 63 34 15 4.8 11 0.2 s T [ .
30 100 60 29 1 29 | 05 ' ' : -
35 100 57 25 80 17 | 02 See, for exampl‘e, E. M. _Pugh and G. H. Winslow, The Analysis of Physical Mea-
40 100 54 2 6.0 11 | o1 _ surements (AddlSO]l-_WES].ﬂY,-.1966), Section 12-8. .
45 100 51 19 45 06 | 0

0 005 01 015 02 lo2s| 03 o3 o4 om Probab|_l|ty that a_m_aly5|s of N:7_0 data points with a
: correlation coefficient of r=0.5 is not modeled well by a

500 100 73 49 30 16 | 80| 34 1-3% linear relationship is 3.7%.
60 100 0 43 23 13 5.4 20 0.5

— : 7 | Therefore, it is very probably that y is linearly related to x.
70 100 6 41 2 97 (3712 03 o1 b
80 100 - 66 38 18 75 | 25| 07 01

Proby(|r|>r,)<32% =» it is probably that y is linearly related to x
Proby(|r|>r,)<5% => it is very probably that y is linearly related to x
Proby(|r|>r,)<1% =» it is highly probably that y is linearly related to x

9 100 64 35 16 59 1.7 0.4 0.1
100 100 62 32 14 4.6 1.2 0.2
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Uncertainties in Slope and Intercept

Taylor:
For the linear model y = A + B X
. _ Zx?%y-Yx Txy _ 3 x2
Intercept: A= V-G r)? 04 = Oy y5 v a)? (Prob (8.16)
_ NYxy—-Xx Xxy _ N
Slope B= N Y x2—(Zx)? %B = Iy Nza2-@ o2

where o, = \/ﬁZ[yi — (A + Bx)]’

Relation to R2 value:

T4 =
op =B m[(lfﬁ'z}—i] TZJZ{x—E]EEfy—}ﬂE_ Ox Ty

UtahState Intermediate 3870
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