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References:  Taylor Ch.  8 and 9 

Also refer to “Glossary of Important Terms in Error Analysis” 
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Quantifying Precision and Random (Statistical) Errors 

The “best” value for a group of measurements of the same 

quantity is the  

 

Average      

 

What is an estimate of the random error? 

 

Deviations 

A. If the average is the the best guess, then 

DEVIATIONS (or discrepancies) from best guess are an 

estimate of error 

B. One estimate of error is the range of deviations.  
 



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  4 

Lecture  5   Slide  4 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

Single Measurement: Comparison with Other Data 

Comparison of precision or accuracy? 

 𝑃𝑟𝑒𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
 𝑥1−𝑥2 

1
2
 𝑥1+ 𝑥2 
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Single Measurement:  Direct Comparison with Standard 

Comparison of precision or accuracy? 

 𝑃𝑟𝑒𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =  
𝑥𝑚𝑒𝑎𝑛𝑠𝑢𝑟𝑒𝑑 −𝑥𝐾𝑛𝑜𝑤𝑛

𝑥𝐾𝑛𝑜𝑤𝑛
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Our statement of the best value and uncertainty is:  

 

( <t>  t) sec  at the 68% confidence level for N 

measurements 

 

1.  Note the precision of our measurement is reflected in the 

estimated error which states what values we would expect to 

get if we repeated the measurement 

2.  Precision is defined as a measure of the reproducibility of a 

measurement 

3.  Such errors are called random (statistical) errors 

4.  Accuracy is defined as a measure of who closely a 

measurement matches the true value 

5.  Such errors are called systematic errors 
 

Multiple Measurements of the Same Quantity 
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Standard Deviation 

The best guess for the error in a group of N identical randomly distributed measurements is given 

by the  standard deviation 

 

…  

 

this is the rms (root mean squared deviation or (sample) standard deviation 

 

It can be shown that (see Taylor Sec. 5.4) t is a reasonable estimate of the uncertainty.  In fact, for 

normal (Gaussian or purely random) data, it can be shown that  

(1) 68% of measurements of t will fall within <t>  t 

(2) 95% of measurements of t will fall within <t>  2t 

(3) 98% of measurements of t will fall within <t>  3t 

(4) this is referred to as the confidence limit  

 

Summary: the standard format to report the best guess and the limits within which you 

expect 68% of subsequent (single) measurements of t to fall within is <t>  t 

 

Multiple Measurements of the Same Quantity 
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Standard Deviation of the Mean 

If we were to measure t again N times (not just once), we would be even 

more likely to find that the second average of N points would be close to 

<t>.   

 

The standard error or standard deviation of the mean is given by… 

 

 

This is the limits within which you expect the average of N addition 

measurements to fall within at the 68% confidence limit 
 

Multiple Sets of Measurements of the Same Quantity 
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Errors Propagation—Error in Models or 

Derived Quantities  

Define error propagation [Taylor, p. 45] 

 

A method for determining the error inherent in a derived quantity 

from the errors in the measured quantities used to determine the 

derived quantity 

 

Recall previous discussions [Taylor, p. 28-29] 

I.  Absolute error:  ( <t>  t) sec 

II. Relative (fractional) Error:    <t> sec   (t/<t>)% 

III. Percentage uncertainty:  fractional error in % units 
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Specific Rules for Error Propagation  

(Worst Case) 

Refer to [Taylor, sec. 3.2] for specific rules of error propagation:   

 

1. Addition and Subtraction   [Taylor, p. 49] 

     For  qbest=xbest±ybest   the error is  δq≈δx+δy 

     Follows from qbest±δq =(xbest± δx) ±(ybest ±δy)= (xbest± ybest) ±( δx ±δy) 

 

2. Multiplication and Division  [Taylor, p. 51]  

    For qbest=xbest * ybest   the error is  (δq/ qbest) ≈ (δx/xbest)+(δy/ybest) 

 

3. Multiplication by a constant (exact number)   [Taylor, p. 54] 

     For qbest= B(xbest )  the error is  (δq/ qbest) ≈ |B| (δx/xbest) 

     Follows from 2 by setting δB/B=0 

 

4. Exponentiation  (powers)  [Taylor, p. 56] 

     For qbest= (xbest )
n  the error is  (δq/ qbest) ≈ n (δx/xbest) 

     Follows from 2 by setting (δx/xbest)=(δy/ybest) 



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  11 

Lecture  5   Slide  11 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

General Formula for Error Propagation 

General formula for uncertainty of a function of one variable   

 x
x

q
q  




   [Taylor, Eq. 3.23] 

Can you now derive for specific rules of error propagation:   

 

1. Addition and Subtraction   [Taylor, p. 49] 

2. Multiplication and Division  [Taylor, p. 51] 

3. Multiplication by a constant (exact number)   [Taylor, p. 54] 

4. Exponentiation  (powers)  [Taylor, p. 56] 
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General Formula for Multiple Variables 

Uncertainty of a function of multiple variables  [Taylor, Sec. 3.11] 

 

1.  It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a 

function of several variables 

 

...,...),,( 













 z

z

q
y

y

q
x

x

q
zyxq 

 [Taylor, Eq. 3.47] 

2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a 

function of several variables 

 

...,...),,( 



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
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
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 [Taylor, Eq. 3.47] 

 

where the equals sign represents an upper bound, as discussed above.  

 

3. For a function of several independent and random variables 

 

...,...),,(
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[Taylor, Eq. 3.48] 

  

  Again, the proof is left for Ch. 5.  

Worst case 

Best case 
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Error for a function of Two Variables: Addition in Quadrature 

Consider the arbitrary derived quantity 

q(x,y) of two independent random variables x and y. 
 

Expand q(x,y) in a Taylor series about the expected values of x and y 

(i.e., at points near X and Y). 

Error Propagation:  General Case 

𝑞 𝑥, 𝑦 = 𝑞 𝑋, 𝑌 +   
𝜕𝑞

𝜕𝑥
  

𝑋
 𝑥 − 𝑋 +   

𝜕𝑞

𝜕𝑦
  

𝑌

(𝑦 − 𝑌) 

 

Fixed, shifts peak of distribution 

Fixed Distribution centered at X with width σX 

𝛿𝑞 𝑥, 𝑦 = 𝜎𝑞 =     
𝜕𝑞

𝜕𝑥
  

𝑋
𝜎𝑥 

2

+    
𝜕𝑞

𝜕𝑦
  

𝑌

𝜎𝑦 

2

 

 

Thus, if x and y  are: 

a) Independent (determining x does not affect measured y) 

b) Random (equally likely for  +δx as –δx ) 

Then method the methods above overestimate the error  

Best case 
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Independent (Random) Uncertaities and 

Gaussian Distributions 

For Gaussian distribution of measured values which describe 

quantities with random uncertainties, it can be shown that (the 

dreaded ICBST), errors add in quadrature  [see Taylor, Ch. 5] 

 

δq ≠ δx + δy 

But, δq = √[(δx)2 + (δy)2] 

  

1. This is proved in [Taylor, Ch. 5] 

2. ICBST [Taylor, Ch. 9] Method A provides an upper bound on 

the possible errors 
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Gaussian Distribution Function 

Width of Distribution 

(standard deviation) 

Center of Distribution 

(mean) Distribution  

Function 

Independent  

Variable 

Gaussian Distribution Function 

Normalization 

Constant 
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Standard Deviation of Gaussian Distribution 

Area under curve 

(probability that  

–σ<x<+σ) is 68% 

5% or ~2σ “Significant” 

1% or ~3σ “Highly Significant” 

1σ “Within errors” 

5 ppm or ~5σ “Valid for HEP” 

See Sec. 10.6: Testing of 

Hypotheses 

More complete Table in App. A and B 
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Mean of Gaussian Distribution as “Best Estimate” 

Principle of Maximum Likelihood 

Best Estimate of X is from maximum probability or minimum summation 

Consider a data set   

Each randomly distributed with 

{x1, x2, x3 …xN } 

  

To find the most likely value of the mean (the best estimate of ẋ),  

find X that yields the highest probability for the data set. 

The combined probability for the full data set is the product 

  

Minimize 

Sum 

Solve for 

derivative 

set to 0 

Best 

estimate 

of X 

𝑃𝑟𝑜𝑏𝑋,𝜎 𝑥𝑖 = 𝐺𝑋,𝜎 𝑥𝑖 ≡
1

𝜎 2𝜋
𝑒−(𝑥𝑖−𝑋)2 2𝜎  ∝

1

𝜎
𝑒−(𝑥𝑖−𝑋)2 2𝜎  

∝
1

𝜎
𝑒−(𝑥1−𝑋)2 2𝜎 ×

1

𝜎
𝑒−(𝑥2−𝑋)2 2𝜎 × … ×

1

𝜎
𝑒−(𝑥𝑁−𝑋)2 2𝜎 =

1

𝜎𝑁
𝑒 −(𝑥𝑖−𝑋)2 2𝜎  
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Uncertaity of “Best Estimates” of Gaussian Distribution 

Principle of Maximum Likelihood 

Best Estimate of X is from maximum probability or minimum summation 

Consider a data set   {x1, x2, x3 …xN } 

  

To find the most likely value of the mean (the best estimate of ẋ),  

find X that yields the highest probability for the data set. 

The combined probability for the full data set is the product 

  

Minimize 

Sum 

Solve for 

derivative  

wrst X set to 0 

Best 

estimate 

of X 

Best Estimate of σ is from maximum probability or minimum summation 

Minimize 

Sum 

Best 

estimate 

of σ 

Solve for 

derivative  

wrst σ set to 0 

See  

Prob. 5.26 

∝
1

𝜎
𝑒−(𝑥1−𝑋)2 2𝜎 ×

1

𝜎
𝑒−(𝑥2−𝑋)2 2𝜎 × … ×

1

𝜎
𝑒−(𝑥𝑁−𝑋)2 2𝜎 =

1

𝜎𝑁
𝑒 −(𝑥𝑖−𝑋)2 2𝜎  
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Weighted Averages 

Question:  How can we properly combine two or more separate 

independent measurements of the same randomly distributed 

quantity to determine a best combined value with uncertainty? 
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The probability of measuring two such measurements is 

 

𝑃𝑟𝑜𝑏𝑥 𝑥1, 𝑥2 = 𝑃𝑟𝑜𝑏𝑥 𝑥1  𝑃𝑟𝑜𝑏𝑥 𝑥2  
 

=  
1

𝜎1𝜎2
𝑒−𝜒2/2   𝑤ℎ𝑒𝑟𝑒  𝜒2 ≡  

 𝑥1 − 𝑋 

𝜎1 
  2 +  

 𝑥2 − 𝑋 

𝜎2 
  2 

 

To find the best value for X, find the maximum Prob or minimum X
2
 

Weighted Averages 

This leads to 

𝑥𝑊_𝑎𝑣𝑔 =  
𝑤1𝑥1 + 𝑤2𝑥2

𝑤1 + 𝑤2
=

 𝑤𝑖  𝑥𝑖

 𝑤𝑖
   𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 =  1

 𝜎𝑖 2   

Best Estimate of χ is from maximum probibility or minimum summation 

Minimize Sum Solve for best estimate of χ Solve for derivative wrst χ set to 0 

Note:  If w1=w2, we recover the standard result Xwavg= (1/2) (x1+x2) 

Finally, the width of a weighted average distribution is    𝜎𝑤𝑒𝑖𝑔 ℎ𝑡𝑒𝑑  𝑎𝑣𝑔 =  
1

 𝑤𝑖𝑖
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Comparing Measurements to Models 

Linear Regression 
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Motivating Regression Analysis 

Question:  Consider now what happens to the output of a nearly 

ideal experiment, if we vary how hard we poke the system (vary 

the input). 

SYSTEM 
Input Output 

Uncertainties in Observations 

The Universe 

The simplest model of response (short of the trivial constant 

response) is a linear response model 

                                           y(x) = A + B x 
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Questions for Regression Analysis 

Three principle questions: 
 

What are the best values of A and B, for:              (see Taylor Ch. 8) 

•  A perfect data set, where A and B are exact? 

•  A data set with uncertainties? 

 

 

 

 

 

 

 

 

What are the errors in the fitting parameters A and B? 

What confidence can we place in how well a linear model fits the data? 

(see Taylor Ch. 9) 

The simplest model of response (short of the trivial constant response) is 

a linear response model 

                                           y(x) = A + B x 
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Review of 

Graphical Analysis 
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Graphical Analysis 

An “old School” approach to linear fits. 

 

• Rough plot of data 

• Estimate of uncertainties with error bars 

• A “best” linear fit with a straight edge 

• Estimates of uncertainties in slope and 

intercept from the error bars 

 

This is a great practice to get into as 

you are developing an experiment! 
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Is it Linear? 

Adding 2D error bars 

is sometimes helpful. 

•  A simple model is a 

linear model 

 

•  You know it when you 

see it (qualitatively) 

 

•  Tested with a straight 

edge 

 

•  Error bar are a first 

step in gauging the 

“goodness of fit” 
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Making It Linear or Linearization  

•  A simple trick for many models is to linearize the model in the independent variable.   

 

•  Refer to Baird Ch.5 and the associated homework problems. 
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Special Graph Paper 

Linear 

Semilog 
Log-Log 

“Old School” graph paper 

is still a useful tool, 

especially for reality 

checking during the 

experimental design 

process.  

Semi-log paper tests for 

exponential models. 

Log-log paper tests for 

power law models. 

 

Both Semi-log and log -log 

paper are handy for 

displaying details of data 

spread over many orders 

of magnitude. 
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Linear Regression 

References:  Taylor Ch.  8  
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Basic Assumptions for Regression Analysis 

We will (initially) assume: 
 

•  The errors in how hard you poke something (in the input) are 

negligible compared with errors in the response (see discussion in 

Taylor Sec. 9.3) 

 

•  The errors in y are constant (see Problem 8.9 for weighted errors 

analysis) 

 

•  The measurements of yi are governed by a Gaussian distribution 

with constant width σy 
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Question 1:  What is the Best Linear Fit (A and B)? 

For the linear model y = A + B x 

 

Intercept:       

 

Slope        

 

where   

Best Estimate of 

intercept, A , and 

slope, B,  

for  

Linear Regression 

or Least Squares-

Fit for Line 
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Consider a linear model for yi,   yi=A+Bxi 

 

The probability of obtaining an observed value of yi is 

 

𝑃𝑟𝑜𝑏𝐴,𝐵 𝑦1 …𝑦𝑁 = 𝑃𝑟𝑜𝑏𝐴,𝐵 𝑦1 × … × 𝑃𝑟𝑜𝑏𝐴,𝐵 𝑦𝑁  

 

=  
1

𝜎𝑦
𝑁
𝑒−𝜒2/2   𝑤ℎ𝑒𝑟𝑒  𝜒2 ≡  

 𝑦𝑖 − (𝐴 + 𝐵𝑥𝑖) 
2

𝜎𝑦
2

𝑁

𝑖=1

 

 

To find the best simultaneous values for A and B, find the maximum Prob or minimum X
2
 

Best Estimates of A and B are from maximum probibility or minimum summation 

Minimize Sum Best estimate of A and B Solve for derivative wrst A and B set to 0 

“Best Estimates” of Linear Fit 
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Best Estimates of A and B are from maximum probibility or minimum summation 

Minimize Sum Best estimate of A and B Solve for derivative wrst A and B set to 0 

“Best Estimates” of Linear Fit 

For the linear model y = A + B x 

 

Intercept: 𝐴 =
 𝑥2  𝑦− 𝑥   𝑥𝑦  

𝑁  𝑥2−  𝑥 2       𝜎𝐴 = 𝜎𝑦
 𝑥2  

𝑁  𝑥2−  𝑥 2     (Prob (8.16) 

 

Slope    𝐵 =
𝑁  𝑥𝑦− 𝑥   𝑥𝑦  

𝑁  𝑥2−  𝑥 2       𝜎𝐵 = 𝜎𝑦
𝑁

𝑁  𝑥2−  𝑥 2    

 

where  𝜎𝑦 =  
1

𝑁−2 
  𝑦𝑖 −  𝐴 + 𝐵𝑥𝑖  

2 

In a linear algebraic form This is a standard eigenvalue problem  With solutions  

is the uncertainty in the measurement of y, or the rms 

deviation of the measured to predicted value of y 



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  34 

Lecture  5   Slide  34 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

a) Approaches 

(1) Mathematical manipulation of equations to “linearize”  

(2) Resort to probabilistic treatment on “least squares” approach used 

to find A and B 

 

b) Straight line through origin, y=Bx 

(1) Useful when you know definitely that y(x=0) = 0 

(2) Probabilistic approach 

(3) Taylor p. 198 and Problems 8.5 and 8.18 

 

  Slope     with    

 

  uncertainty of measurements in y 

 

   where   

 

Least Squares Fits to Other Curves 



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  35 

Lecture  5   Slide  35 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

1. Variations on linear regression 

a) Weighted fit for straight line 

(1) Useful when data point have different relative uncertainties 

(2) Probabilistic approach  

(3) Taylor pp. 196, 198 and Problems 8.9 and 8.19 

 

 

Intercept:     

 

Slope        

 

Least Squares Fits to Other Curves 
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a) Polynomial  
(1) Useful when  

(a) formula involves more than one power of 
independent variable  
(e.g., x(t) = (1/2)a t2 + vo·t + xo) 
(b) as a power law expansion to unkown models 

(2) References 
(a) Taylor pp. 193-194 
(b) [Baird 6-11] 

 

Least Squares Fits to Other Curves 



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  37 

Lecture  5   Slide  37 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

Fitting a 

Polynomial 

This leads to a standard 3x3 

eigenvalue problem,  

 

Which can easily be generalized 

to any order polynomial  

Extend the linear solution to 

include on more tem, for a 

second order polynomial 

This looks just like our linear 

problem, with the deviation in 

the summation replace by 
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a) Exponential function 
(1) Useful for exponential models 
(2) “linearized” approach 

(a) recall semilog paper – a great way to quickly test 
model 
(b) recall linearizaion 

(i) y = A e Bx 
(ii) z = ln(y) = ln A + B·x = A’ + B·x 

(3) References 
(a) Taylor pp 194-196 
(b) Baird p. 137  

 

Least Squares Fits to Other Curves 
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C. Power law  

1. Useful for variable power law models 

2. “linearized” approach 

a) recall log paper – a great way to quickly test 

model 

b) recall linearizaion 

(1) y = A x 
B
 

(2) z = ln A + B·ln(x) = A’ + B·w 

(a) z = ln(y) 

(b) w = ln(x) 

3. References 

a) Baird p. 136-137  
 

Least Squares Fits to Other Curves 
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D. Sum of Trig functions  
1. Useful when  

a) More than one trig function involved  
b) Used with trig identities to find other models  

(1) A sin(w·t+b) = A sin(wt)+B cos(wt) 
2. References 

a) Taylor p.194 and Problems 8.23 and 8.24 
b) See detailed solution below 

 
E. Multiple regression  

1. Useful when there are two or more independent 
variables 
2. References 

a) Brief introduction: Taylor pp. 196-197 
3. More advanced texts: e.g., Bevington 

Least Squares Fits to Other Curves 
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Problem 8.24 
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Problem 8.24 



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  43 

Lecture  5   Slide  43 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

Problem 8.24 
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Problem 8.24 
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Problem 8.24 
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Intermediate Lab  
PHYS 3870 

Correlations  



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  47 

Lecture  5   Slide  47 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

 
...,...),,( 














 z

z

q
y

y

q
x

x

q
zyxq 

Uncertaities in a Function of Variables 

Consider an arbitrary function q with variables x,y,z and others.   

Expanding the uncertainty in y in terms of partial derivatives, we have 

If x,y,z and others are independent and random variables, we have 
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If x,y,z and others are independent and random variables governed by normal 

distributions, we have 
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We now consider the case when x,y,z and others are not independent and 

random variables governed by normal distributions. 
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Covariance of a Function of Variables 

The standard deviation of the N values of qi is 

We then find the simple result for the mean of q 

Note partial derivatives are all 

taken at X or Y and are hence 

the same for each i 

We now consider the case when x and y are not independent and random variables governed 

by normal distributions. 
 

Assume we measure N pairs of data (xi,yi), with small uncertaities so that all xi and yi are close 

to their mean values X and Y.   
 

Expanding in a Taylor series about the means, the value qi for (xi,yi),  

𝑞𝑖 = 𝑞 𝑥𝑖 , 𝑦𝑖  

𝑞𝑖 ≈ 𝑞 𝑥 , 𝑦  +
𝜕𝑞

𝜕𝑥
 𝑥𝑖 − 𝑥  +

𝜕𝑞

𝜕𝑦
 𝑦𝑖 − 𝑦   

𝑞 =
1

𝑁
 𝑞𝑖

𝑁

𝑖=1

=
1

𝑁
  𝑞 𝑥 , 𝑦  +

𝜕𝑞

𝜕𝑥
 𝑥𝑖 − 𝑥  +

𝜕𝑞

𝜕𝑦
 𝑦𝑖 − 𝑦   

𝑁

𝑖=1

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑞 = 𝑞 𝑥 , 𝑦   

𝜎𝑞
2 =

1

𝑁
  𝑞𝑖 − 𝑞  2

𝑁

𝑖=1

 

𝜎𝑞
2 =

1

𝑁
  

𝜕𝑞

𝜕𝑥
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𝜕𝑞

𝜕𝑦
 𝑦𝑖 − 𝑦   

2𝑁

𝑖=1

 

0 0 
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Covariance of a Function of Variables 

The standard deviation of the N values of qi is 

𝜎𝑞
2 =

1

𝑁
  𝑞𝑖 − 𝑞  2

𝑁
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If x and y are independent  
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Schwartz  

Inequality 

Show that 

See problem 9.7 

Define a function 

𝐴 𝑡 ≡
1

𝑁
   𝑥𝑖 − 𝑋   + 𝑡 ∙  𝑦𝑖 − 𝑌    2

𝑁

𝑖=1

≥ 0 

 
𝐴 𝑡 ≥ 0, since the function is a square of real numbers.   
Using the substitutions 

𝜎𝑥 ≡
1

𝑁
  𝑥𝑖 − 𝑋  2𝑁

𝑖=1   Eq. (4.6) 

𝜎𝑥𝑦 ≡
1

𝑁
  𝑥𝑖 − 𝑋   𝑦𝑖 − 𝑌  𝑁

𝑖=1   Eq. (9.8) 

𝐴 𝑡 = 𝜎𝑥
2 + 2𝑡𝜎𝑥𝑦 + 𝑡2𝜎𝑦

2 ≥ 0  

 
Now find t for which A(tmin) is a minimum: 

𝜕𝐴 𝑡 
𝜕𝑡

 = 0 = 2𝜎𝑥𝑦 + 2𝑡𝑚𝑖𝑛 ∙ 𝜎𝑦
2   ⟹   𝑡𝑚𝑖𝑛 = −𝜎𝑥𝑦 𝜎𝑦

2   

Then since for any t, 𝐴 𝑡 ≥ 0 

𝐴𝑚𝑖𝑛  𝑡𝑚𝑖𝑛  = 𝜎𝑥
2 + 2𝜎𝑥𝑦  −𝜎𝑥𝑦 𝜎𝑦

2  +  −𝜎𝑥𝑦 𝜎𝑦
2  

2
𝜎𝑦

2   ≥ 0  

= 𝜎𝑥
2 −  2𝜎𝑥𝑦 /𝜎𝑦 

2
+  𝜎𝑥𝑦 /𝜎𝑦 

2
  ≥ 0  

=  𝜎𝑥 + 𝜎𝑥𝑦 𝜎𝑦    𝜎𝑥 − 𝜎𝑥𝑦 𝜎𝑦  ≥ 0  

 
Multiplying through by 𝜎𝑦

2 ≥ 0 

 =  𝜎𝑥𝜎𝑦 + 𝜎𝑥𝑦    𝜎𝑥𝜎𝑦 − 𝜎𝑥𝑦  ≥ 0  

which is true if 

 𝜎𝑥
2𝜎𝑦

2 − 𝜎𝑥𝑦
2 ≥ 0      ⟹       𝜎𝑥

2𝜎𝑦
2 ≥ 𝜎𝑥𝑦

2 

 
Now, since by definition 𝜎𝑥 > 0 and 𝜎𝑦 > 0, 

𝜎𝑥𝜎𝑦 ≥  𝜎𝑥𝑦   ,   QED 
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Schwartz Inequality 

Combining the Schwartz 

inequality 

With the definition of the 

covariance 

yields 

Then completing the 

squares 

And taking the square root of 

the equation, we finally have 

At last, the upper bound 

of errors is 

And for independent and 

random variables  

 22
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Another Useful Relation 

Taylor Problem 4.5 

Show     𝑥𝑖 − 𝑥   2𝑁
𝑖=1 =  𝑥𝑖

2 −
1

𝑁
𝑁
𝑖=1   𝑥𝑖

𝑁
𝑖=1  

2
 

Given         𝑥𝑖 − 𝑥   2𝑁
𝑖=1 =   𝑥𝑖

2 − 2𝑥𝑖𝑥 + 𝑥 2 𝑁
𝑖=1  

                                               =   𝑥𝑖
2 𝑁

𝑖=1 − 2𝑥   𝑥𝑖 
𝑁
𝑖=1 + 𝑥 2   𝑖 𝑁

𝑖=1  

                                               =   𝑥𝑖
2 𝑁

𝑖=1 − 2𝑥 (𝑁𝑥 ) + 𝑥 2(𝑁) 

                                               =   𝑥𝑖
2 𝑁

𝑖=1 − 𝑁𝑥 2 

                                              =   𝑥𝑖
2 𝑁

𝑖=1 − 𝑁   𝑥𝑖 
𝑁
𝑖=1  

2
,  QED 



LINEAR REGRESSION 

Introduction    Section 0     Lecture  1     Slide  53 

Lecture  5   Slide  53 

INTRODUCTION TO Modern Physics PHYX 2710 

Fall 2004 

Intermediate  3870 

Fall 2013 

Question 2:  Is it Linear? 

Coefficient of Linear Regression: 𝑟 ≡
   𝑥−𝑥   𝑦−𝑦     

   𝑥−𝑥  2   𝑦−𝑦  2
=  

𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
   

Consider the limiting cases for:  

•  r=0 (no correlation)             [for any x, the sum over y-Y yields zero] 

•  r=±1 (perfect correlation).   [Substitute yi-Y=B(xi-X)  to get r=B/|B|=±1] 

 y(x) = A + B x 
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Tabulated Correlation 

Coefficient 
Consider the limiting cases for:  

•  r=0 (no correlation)  

•  r=±1 (perfect correlation). 

 

To gauge the confidence imparted 

by intermediate r values consult the 

table in Appendix C. 

r value 

N data 

points 

Probability that analysis of N=70 data points with a 

correlation coefficient of r=0.5 is not modeled well by a 

linear relationship is 3.7%. 

Therefore, it is very probably that y is linearly related to x. 

If 

ProbN(|r|>ro)<32%  it is probably that y is linearly related to x 

ProbN(|r|>ro)<5%  it is very probably that y is linearly related to x 

ProbN(|r|>ro)<1%  it is highly probably that y is linearly related to x 
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Uncertainties in Slope and Intercept 
Taylor: 

Relation to R2 value: 

For the linear model y = A + B x 

 

Intercept: 𝐴 =
 𝑥2  𝑦− 𝑥   𝑥𝑦  

𝑁  𝑥2−  𝑥 2       𝜎𝐴 = 𝜎𝑦
 𝑥2  

𝑁  𝑥2−  𝑥 2     (Prob (8.16) 

 

Slope    𝐵 =
𝑁  𝑥𝑦− 𝑥   𝑥𝑦  

𝑁  𝑥2−  𝑥 2       𝜎𝐵 = 𝜎𝑦
𝑁

𝑁  𝑥2−  𝑥 2    

 

where  𝜎𝑦 =  
1

𝑁−2 
  𝑦𝑖 −  𝐴 + 𝐵𝑥𝑖  2 


