Intermediate Lab PHYS 3870

Lecture 4

Comparing Data and ModelsQuantitatively

Linear Regression

References: Taylor Ch. 8 and 9
Also refer to "Glossary of Important Terms in Error Analysis"

Intermediate Lab PHYS 3870

Errors in Measurements and Models A Review of What We Know

Quantifying Precision and Random (Statistical) Errors

The "best" value for a group of measurements of the same quantity is the

Average

What is an estimate of the random error?

Deviations
A. If the average is the the best guess, then

DEVIATIONS (or discrepancies) from best guess are an estimate of error
B. One estimate of error is the range of deviations.

Single Measurement: Comparison with Other Data

Comparison of precision or accuracy?

$$
\text { Precent Difference }=\frac{\left(x_{1}-x_{2}\right)}{\frac{1}{2}\left(x_{1}+x_{2}\right)}
$$

Single Measurement: Direct Comparison with Standard

Comparison of precision or accuracy?

$$
\text { Precent Error }=\frac{x_{\text {meansured }}-x_{\text {Known }}}{x_{\text {Known }}}
$$

Multiple Measurements of the Same Quantity

Our statement of the best value and uncertainty is:
(<t> $\pm \sigma_{t}$) sec at the $\mathbf{6 8 \%}$ confidence level for \mathbf{N} measurements

1. Note the precision of our measurement is reflected in the estimated error which states what values we would expect to get if we repeated the measurement
2. Precision is defined as a measure of the reproducibility of a measurement
3. Such errors are called random (statistical) errors
4. Accuracy is defined as a measure of who closely a measurement matches the true value
5. Such errors are called systematic errors

Multiple Measurements of the Same Quantity

Standard Deviation

The best guess for the error in a group of N identical randomly distributed measurements is given by the standard deviation

$$
\ldots \sigma=\sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N}\left(t_{i}-\bar{t}\right)^{2}}
$$

this is the rms (root mean squared deviation or (sample) standard deviation
It can be shown that (see Taylor Sec. 5.4) σ_{t} is a reasonable estimate of the uncertainty. In fact, for normal (Gaussian or purely random) data, it can be shown that
(1) 68% of measurements of t will fall within $\langle t\rangle \pm \sigma_{t}$
(2) 95% of measurements of t will fall within $\langle t\rangle \pm 2 \sigma_{t}$
(3) 98% of measurements of t will fall within $\langle t\rangle \pm 3 \sigma_{t}$
(4) this is referred to as the confidence limit

Summary: the standard format to report the best guess and the limits within which you expect 68% of subsequent (single) measurements of t to fall within is $<t> \pm \sigma_{t}$

Multiple Sets of Measurements of the Same Quantity

Standard Deviation of the Mean

If we were to measure t again N times (not just once), we would be even more likely to find that the second average of N points would be close to $\langle t\rangle$.

The standard error or standard deviation of the mean is given by...
$\sigma_{S D O M}=\frac{\sigma_{S D}}{\sqrt{N}}=\sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N}\left(t_{i}-\bar{t}\right)^{2}}$
This is the limits within which you expect the average of N addition measurements to fall within at the 68% confidence limit

Errors Propagation-Error in Models or Derived Quantities

Define error propagation [Taylor, p. 45]
A method for determining the error inherent in a derived quantity from the errors in the measured quantities used to determine the derived quantity

Recall previous discussions [Taylor, p. 28-29]
I. Absolute error: $\left(\langle\mathrm{t}\rangle \pm \sigma_{\mathrm{t}}\right) \mathrm{sec}$
II. Relative (fractional) Error: 〈t> sec $\pm\left(\sigma_{\mathrm{t}} /\langle\mathrm{t}\rangle\right) \%$
III. Percentage uncertainty: fractional error in \% units

Specific Rules for Error Propagation (Worst Case)

Refer to [Taylor, sec. 3.2] for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]

For $\mathrm{q}_{\text {best }}=\mathrm{x}_{\text {best }} \pm \mathrm{y}_{\text {best }}$ the error is $\delta \mathrm{q} \approx \delta \mathrm{x}+\delta \mathrm{y}$
Follows from $\mathrm{q}_{\text {best }} \pm \delta \mathrm{q}=\left(\mathrm{x}_{\text {best }} \pm \delta \mathrm{x}\right) \pm\left(\mathrm{y}_{\text {best }} \pm \delta \mathrm{y}\right)=\left(\mathrm{x}_{\text {best }} \pm \mathrm{y}_{\text {best }}\right) \pm(\delta \mathrm{x} \pm \delta \mathrm{y})$
2. Multiplication and Division [Taylor, p. 51]

For $\mathrm{q}_{\text {best }}=\mathrm{x}_{\text {best }} * \mathrm{y}_{\text {best }}$ the error is $\left(\delta \mathrm{q} / \mathrm{q}_{\text {best }}\right) \approx\left(\delta \mathrm{x} / \mathrm{x}_{\text {best }}\right)+\left(\delta \mathrm{y} / \mathrm{y}_{\text {best }}\right)$
3. Multiplication by a constant (exact number) [Taylor, p. 54]

For $\mathrm{q}_{\text {best }}=\mathrm{B}\left(\mathrm{x}_{\text {best }}\right)$ the error is $\left(\delta \mathrm{q} / \mathrm{q}_{\text {best }}\right) \approx|\mathrm{B}|\left(\delta \mathrm{x} / \mathrm{x}_{\text {best }}\right)$
Follows from 2 by setting $\delta \mathrm{B} / \mathrm{B}=0$
4.Exponentiation (powers) [Taylor, p. 56]

For $\mathrm{q}_{\text {best }}=\left(\mathrm{x}_{\text {best }}\right)^{\mathrm{n}}$ the error is $\left(\delta \mathrm{q} / \mathrm{q}_{\text {best }}\right) \approx \mathrm{n}\left(\delta \mathrm{x} / \mathrm{x}_{\text {best }}\right)$
Follows from 2 by setting $\left(\delta x / x_{\text {best }}\right)=\left(\delta y / y_{\text {best }}\right)$

General Formula for Error Propagation

General formula for uncertainty of a function of one variable

Can you now derive for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]
2. Multiplication and Division [Taylor, p. 51]
3. Multiplication by a constant (exact number) [Taylor, p. 54]
4. Exponentiation (powers) [Taylor, p. 56]

General Formula for Multiple Variables

Uncertainty of a function of multiple variables [Taylor, Sec. 3.11]

1. It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a function of several variables

$$
\delta q(x, y, z, \ldots)=\left|\frac{\partial q}{\partial x}\right| \cdot \delta x+\left|\frac{\partial q}{\partial y}\right| \cdot \delta y+\left|\frac{\partial q}{\partial z}\right| \cdot \delta z+\ldots
$$

Worst case

[Taylor, Eq. 3.47]
2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a function of several variables

$$
\delta q(x, y, z, \ldots) \leq\left|\frac{\partial q}{\partial x}\right| \cdot \delta x+\left|\frac{\partial q}{\partial y}\right| \cdot \delta y+\left|\frac{\partial q}{\partial z}\right| \cdot \delta z+\ldots
$$

[Taylor, Eq. 3.47]
where the equals sign represents an upper bound, as discussed above.
3. For a function of several independent and random variables

$$
\delta q(x, y, z, \ldots)=\sqrt{\left(\frac{\partial q}{\partial x} \cdot \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \cdot \delta y\right)^{2}+\left(\frac{\partial q}{\partial z} \cdot \delta z\right)^{2}+\ldots}
$$

Best case
[Taylor, Eq. 3.48]

Again, the proof is left for Ch. 5.

Error Propagation: General Case

Thus, if x and y are:
a) Independent (determining x does not affect measured y)
b) Random (equally likely for $+\delta x$ as $-\delta x$)

Then method the methods above overestimate the error
Consider the arbitrary derived quantity $q(x, y)$ of two independent random variables x and y.

Expand $q(x, y)$ in a Taylor series about the expected values of x and y (i.e., at points near X and Y).

$$
q(x, y)=q(X, Y)+\left.\left(\frac{\partial q}{\partial x}\right)\right|_{X}(x-X)+\left.\left(\frac{\partial q}{\partial y}\right)\right|_{Y}(y-Y)
$$

Fixed Distribution centered at X with width σ_{X}

Error for a function of Two Variables: Addition in Quadrature

$$
\delta q(x, y)=\sigma_{q}=\sqrt{\left[\left.\left(\frac{\partial q}{\partial x}\right)\right|_{X} \sigma_{x}\right]^{2}+\left[\left.\left(\frac{\partial q}{\partial y}\right)\right|_{Y} \sigma_{y}\right]^{2}}
$$

Best case

Independent (Random) Uncertaities and Gaussian Distributions

For Gaussian distribution of measured values which describe quantities with random uncertainties, it can be shown that (the dreaded ICBST), errors add in quadrature [see Taylor, Ch. 5]

$$
\begin{aligned}
& \delta q \neq \delta \mathrm{x}+\delta \mathrm{y} \\
& \text { But, } \delta \mathrm{q}=\sqrt{\left[(\delta \mathrm{x}) 2+(\delta \mathrm{y})^{2}\right]}
\end{aligned}
$$

1. This is proved in [Taylor, Ch. 5]
2. ICBST [Taylor, Ch. 9] Method A provides an upper bound on the possible errors

Gaussian Distribution Function

Figure 5.10. Two normal, or Gauss, distributions.

Standard Deviation of Gaussian Distribution

$$
\begin{align*}
& \operatorname{Prob}(\text { within } \sigma)=\int_{X-\sigma}^{X+\sigma} G_{X, \sigma}(x) d x \tag{5.32}\\
& \quad=\frac{1}{\sigma \sqrt{2 \pi}} \int_{X=\sigma}^{X+\sigma} e^{-(x-X)^{2} / 2 \sigma^{2}} d x \tag{5.33}
\end{align*}
$$

See Sec. 10.6: Testing of Hypotheses

5 ppm or $\sim 5 \sigma$ "Valid for HEP"
 (probability that $-\sigma<x<+\sigma$) is 68\%

1\% or, ~3o "Highly Significant"

$$
\begin{aligned}
& 5 \% \text { or } \sim 2 \sigma \text { "Signific } \\
& 1 \sigma \text { "Within errors" }
\end{aligned}
$$

ant"

t	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.5	3.0	3.5	4.0
Prob (\%)	0	20	38	55	68	79	87	92	95.4	98.8	99.7	99.95	99.99

Figure 5.13. The probability $\operatorname{Prob}($ within $t \sigma)$ that a measurement of x will fall within t standard deviations of the true value $x=X$. Two common names for this function are the normal error integral and the error function, $\operatorname{erf}(t)$.

More complete Table in App. A and B

Mean of Gaussian Distribution as "Best Estimate"

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of \dot{x}), find X that yields the highest probability for the data set.

Consider a data set $\quad\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots \mathrm{x}_{\mathrm{N}}\right\}$
Each randomly distributed with

$$
\operatorname{Prob}_{X, \sigma}\left(x_{i}\right)=G_{X, \sigma}\left(x_{i}\right) \equiv \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(x_{i}-X\right)^{2} / 2 \sigma} \propto \frac{1}{\sigma} e^{-\left(x_{i}-X\right)^{2} / 2 \sigma}
$$

The combined probability for the full data set is the product

$$
\begin{aligned}
& \operatorname{Prob}_{X, \sigma}\left(x_{1}, x_{2} \ldots x_{N}\right)=\operatorname{Prob}_{X, \sigma}\left(x_{1}\right) \times \operatorname{Prob}_{X, \sigma}\left(x_{2}\right) \times \ldots \times \operatorname{Prob}_{X, \sigma}\left(x_{N}\right) \\
& \propto \frac{1}{\sigma} e^{-\left(x_{1}-X\right)^{2} / 2 \sigma} \times \frac{1}{\sigma} e^{-\left(x_{2}-X\right)^{2} / 2 \sigma} \times \ldots \times \frac{1}{\sigma} e^{-\left(x_{N}-X\right)^{2} / 2 \sigma}=\frac{1}{\sigma^{N}} e^{\sum-\left(x_{i}-X\right)^{2} / 2 \sigma}
\end{aligned}
$$

Best Estimate of X is from maximum probability or minimum summation

| Minimize | $\sum_{i=1}^{N}\left(x_{i}-X\right)^{2} / \sigma$ | Solve for
 derivative
 set to 0 |
| :--- | :--- | :--- | :--- |$\sum_{i=1}^{N}\left(x_{i}-X\right)=0$| Best |
| :--- |
| estimate |
| of X |$\quad X_{b s s t}=\sum x_{i} / N$

Uncertaity of "Best Estimates" of Gaussian Distribution

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of \dot{x}), find X that yields the highest probability for the data set.

Consider a data set $\quad\left\{x_{1}, x_{2}, x_{3} \ldots x_{N}\right\}$
The combined probability for the full data set is the product

$$
\begin{aligned}
& \operatorname{Prob}_{X, \sigma}\left(x_{1}, x_{2} \ldots x_{N}\right)=\operatorname{Prob}_{X, \sigma}\left(x_{1}\right) \times \operatorname{Prob}_{X, \sigma}\left(x_{2}\right) \times \ldots \times \operatorname{Prob}_{X, \sigma}\left(x_{N}\right) \\
& \propto \frac{1}{\sigma} e^{-\left(x_{1}-X\right)^{2} / 2 \sigma} \times \frac{1}{\sigma} e^{-\left(x_{2}-X\right)^{2} / 2 \sigma} \times \ldots \times \frac{1}{\sigma} e^{-\left(x_{N}-X\right)^{2} / 2 \sigma}=\frac{1}{\sigma^{N}} e^{\sum-\left(x_{i}-X\right)^{2} / 2 \sigma}
\end{aligned}
$$

Best Estimate of X is from maximum probability or minimum summation

$\begin{array}{lll}\operatorname{Minimize} \\ \text { Sum }\end{array} \quad \sum_{i=1}^{N}\left(x_{i}-X\right)^{2} / \sigma \quad \begin{aligned} & \text { Solve for } \\ & \text { derivative } \\ & \text { wrst } \mathrm{X} \text { set to } 0\end{aligned} \quad \sum_{i=1}^{N}\left(x_{i}-X\right)=0 \begin{aligned} & \text { Best } \\ & \text { estimate } \\ & \text { of } \mathrm{X}\end{aligned} \quad X_{b e s t}=\sum x_{i} / N$
Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum	$\sum_{i=1}^{N}\left(x_{i}-X\right)^{2} / \sigma$	Solve for derivative wrst $\underline{\sigma}$ set to 0 0	Prob. 5.26
Best estimate of σ			

Weighted Averages

Question: How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty?

Weighted Averages

The probability of measuring two such measurements is

$$
\begin{gathered}
\operatorname{Prob}_{x}\left(x_{1}, x_{2}\right)=\operatorname{Prob}_{x}\left(x_{1}\right) \operatorname{Prob}_{x}\left(x_{2}\right) \\
=\frac{1}{\sigma_{1} \sigma_{2}} e^{-\chi^{2} / 2} \text { where } \chi^{2} \equiv\left[\frac{\left(x_{1}-X\right)}{\sigma_{1}}\right] 2+\left[\frac{\left(x_{2}-X\right)}{\sigma_{2}}\right] 2
\end{gathered}
$$

To find the best value for X, find the maximum Prob or minimum X^{2}

Best Estimate of X is from maximum probibility or minimum summation

Minimize Sum
$\chi^{2} \equiv\left[\frac{\left(x_{1}-X\right)}{\sigma_{1}}\right]^{2}+\left[\frac{\left(x_{2}-X\right)}{\sigma_{2}}\right]^{2}$

Solve for derivative wrst $\boldsymbol{\chi}$ set to $0 \quad$ Solve for best estimate of $\boldsymbol{\chi}$

$$
2\left\lfloor\frac{\left(x_{1}-X\right)}{\sigma_{1}}\right]+2\left[\frac{\left(x_{2}-X\right)}{\sigma_{2}}\right\rfloor=0 \quad \mathrm{X}_{\text {best }}=\left(\frac{x_{1}}{\sigma_{1}{ }^{2}}+\frac{x_{2}}{\sigma_{2}{ }^{2}}\right) /\left(\frac{1}{\sigma_{1}{ }^{2}}+\frac{1}{\sigma_{2}{ }^{2}}\right)
$$

This leads to

$$
x_{W_{-} \text {avg }}=\frac{w_{1} x_{1}+w_{2} x_{2}}{w_{1}+w_{2}}=\frac{\sum w_{i} x_{i}}{\sum w_{i}} \quad \text { where } w_{i}=1 /\left(\sigma_{i}\right)^{2}
$$

Note: If $w_{1}=w_{2}$, we recover the standard result $X_{\text {wavg }}=(1 / 2)\left(X_{1}+X_{2}\right)$
Finally, the width of a weighted average distribution is $\quad \sigma_{\text {weig hted avg }}=\frac{1}{\sum_{i} w_{i}}$

Intermediate Lab PHYS 3870

Comparing Measurements to Models Linear Regression

Motivating Regression Analysis

Question: Consider now what happens to the output of a nearly ideal experiment, if we vary how hard we poke the system (vary the input).

Uncertainties in Observations

The simplest model of response (short of the trivial constant response) is a linear response model

$$
y(x)=A+B x
$$

Questions for Regression Analysis

The simplest model of response (short of the trivial constant response) is a linear response model

$$
y(x)=A+B x
$$

Three principle questions:
What are the best values of A and B, for: (see Taylor Ch. 8)

- A perfect data set, where A and B are exact?
- A data set with uncertainties?

(a)

(b)

What are the errors in the fitting parameters A and B ?
What confidence can we place in how well a linear model fits the data?
(see Taylor Ch. 9)

Intermediate Lab PHYS 3870

Review of
Graphical Analysis

Graphical Analysis

An "old School" approach to linear fits.

- Rough plot of data
- Estimate of uncertainties with error bars
- A "best" linear fit with a straight edge
- Estimates of uncertainties in slope and intercept from the error bars

This is a great practice to get into as you are developing an experiment!

Is it Linear?

(b)

(c)

- A simple model is a linear model
- You know it when you see it (qualitatively)
- Tested with a straight edge
- Error bar are a first step in gauging the "goodness of fit"

Adding 2D error bars is sometimes helpful.

Making It Linear or Linearization

- A simple trick for many models is to linearize the model in the independent variable.
- Refer to Baird Ch. 5 and the associated homework problems.

Special Graph Paper

Semi-log paper tests for exponential models.

Semilog

Log-log paper tests for power law models.

Both Semi-log and log -log paper are handy for displaying details of data spread over many orders of magnitude.

Linear

"Old School" graph paper is still a useful tool, especially for reality checking during the experimental design

Log-Log

Intermediate Lab PHYS 3870

Linear Regression

References: Taylor Ch. 8

Basic Assumptions for Regression Analysis

We will (initially) assume:

- The errors in how hard you poke something (in the input) are negligible compared with errors in the response (see discussion in Taylor Sec. 9.3)
- The errors in y are constant (see Problem 8.9 for weighted errors analysis)
- The measurements of y_{i} are governed by a Gaussian distribution with constant width σ_{y}

Question 1: What is the Best Linear Fit (A and B)?

(a)

(b)

Figure 8.1. (a) If the two variables y and x are linearly related as in Equation (8.1), and if there were no experimental uncertainties, then the measured points (x_{i}, y_{i}) would all lie exactly on the line $y=A+B x$. (b) In practice, there always are uncertainties, which can be shown by error bars, and the points (x_{i}, y_{i}) can be expected only to lie reasonably close to the line. Here, only y is shown as subject to appreciable uncertainties.

Best Estimate of intercept, A , and slope, B, for
Linear Regression or Least SquaresFit for Line

For the linear model $\mathrm{y}=\mathrm{A}+\mathrm{B} \mathrm{x}$
Intercept: $\quad A=\frac{\sum x^{2} \sum y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}} \quad \sigma_{A}=\sigma_{y} \frac{\sum x^{2}}{N \sum x^{2}-\left(\sum x\right)^{2}}$

Slope

$$
B=\frac{N \sum x y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}}
$$

$$
\sigma_{B}=\sigma_{y} \frac{N}{N \sum x^{2}-\left(\sum x\right)^{2}}
$$

where $\sigma_{y}=\sqrt{\frac{1}{N-2} \sum\left[y_{i}-\left(A+B x_{i}\right)\right]^{2}}$

"Best Estimates" of Linear Fit

Consider a linear model for $y_{i}, \quad y_{i}=A+B x_{i}$
The probability of obtaining an observed value of y_{i} is

$$
\begin{aligned}
& \operatorname{Prob}_{A, B}\left(y_{1} \ldots y_{N}\right)=\operatorname{Prob}_{A, B}\left(y_{1}\right) \times \ldots \times \operatorname{Prob}_{A, B}\left(y_{N}\right) \\
& =\frac{1}{\sigma_{y}{ }^{N}} e^{-\chi^{2} / 2} \text { where } \chi^{2} \equiv \sum_{i=1}^{N} \frac{\left[y_{i}-\left(A+B x_{i}\right)\right]^{2}}{\sigma_{y}^{2}}
\end{aligned}
$$

To find the best simultaneous values for A and B , find the maximum Prob or minimum X^{2}
Best Estimates of A and B are from maximum probibility or minimum summation

Minimize Sum
$\chi^{2} \equiv \sum_{i=1}^{N} \frac{\left[y_{i}-\left(A+B x_{i}\right)\right]^{2}}{\sigma_{y}{ }^{2}}$

Solve for derivative wrst A and B set to 0

$$
\frac{\partial \chi^{2}}{\partial A} \equiv \frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N}\left[y_{i}-\left(A+B x_{i}\right)\right]=0
$$

$$
\frac{\partial \chi^{2}}{\partial B} \equiv \frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N} x_{i}\left[y_{i}-\left(A+B x_{i}\right)\right]=0
$$

$$
A \sum x_{i}+A \sum x_{i}^{2}=\sum x_{i} y_{i}
$$

"Best Estimates" of Linear Fit

Best Estimates of A and B are from maximum probibility or minimum summation

Minimize Sum
$\chi^{2} \equiv \sum_{i=1}^{N} \frac{\left[y_{i}-\left(A+B x_{i}\right)\right]^{2}}{\sigma_{y}{ }^{2}}$

Solve for derivative wrst A and B set to 0
$\frac{\partial \chi^{2}}{\partial A} \equiv \frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N}\left[y_{i}-\left(A+B x_{i}\right)\right]=0$
$\frac{\partial \chi^{2}}{\partial B} \equiv \frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N} x_{i}\left[y_{i}-\left(A+B x_{i}\right)\right]=0$
This is a standard eigenvalue problem

$$
\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
E_{1} \\
E_{2}
\end{array}\right]
$$

Best estimate of A and B $A N+B \sum x_{i}=\sum y_{i}$
$A \sum x_{i}+B \sum x_{i}{ }^{2}=\sum x_{i} y_{i}$

With solutions

$$
\begin{aligned}
A & =\frac{E_{1} M_{22}-E_{2} M_{12}}{M_{11} M_{22}-M_{12} M_{21}} \\
B & =\frac{E_{1} M_{21}-E_{2} M_{11}}{M_{11} M_{22}-M_{12} M_{21}}
\end{aligned}
$$

Intercept:

$$
\begin{array}{ll}
A=\frac{\sum x^{2} \sum y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}} & \sigma_{A}=\sigma_{y} \frac{\sum x^{2}}{N \sum x^{2}-\left(\sum x\right)^{2}} \tag{8.16}\\
B=\frac{N \sum x y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}} & \sigma_{B}=\sigma_{y} \frac{N}{N \sum x^{2}-\left(\sum x\right)^{2}}
\end{array}
$$

Slope
is the uncertainty in the measurement of y , or the $r m s$ deviation of the measured to predicted value of y

Least Squares Fits to Other Curves

a) Approaches
(1) Mathematical manipulation of equations to "linearize"
(2) Resort to probabilistic treatment on "least squares" approach used
to find A and B
b) Straight line through origin, $\mathrm{y}=\mathrm{Bx}$
(1) Useful when you know definitely that $\mathrm{y}(\mathrm{x}=0)=0$
(2) Probabilistic approach
(3) Taylor p. 198 and Problems 8.5 and 8.18

Slope $\quad B=\frac{\sum x y}{\sum x^{2}} \quad$ with $\quad \sigma_{B}=\frac{\sigma_{y}}{\sum x^{2}}$
uncertainty of measurements in y

$$
\sigma_{y}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-B x_{i}\right)^{2}}
$$

Least Squares Fits to Other Curves

1. Variations on linear regression
a) Weighted fit for straight line
(1) Useful when data point have different relative uncertainties
(2) Probabilistic approach
(3) Taylor pp. 196, 198 and Problems 8.9 and 8.19

Intercept: $\quad A=\frac{\sum w x^{2} \sum w y-\sum w x \sum w x y}{N \sum w x^{2}-\left(\sum w x\right)^{2}} \quad \sigma_{A}=\sigma_{y} \frac{\sum w x^{2}}{N \sum w x^{2}-\left(\sum w x\right)^{2}}$

Slope

$$
B=\frac{N \sum w x y-\sum w x \sum w x y}{N \sum w x^{2}-\left(\sum w x\right)^{2}}
$$

$$
\sigma_{B}=\frac{\sum w x}{N \sum w x^{2}-\left(\sum w x\right)^{2}}
$$

Least Squares Fits to Other Curves

a) Polynomial
(1) Useful when
(a)formula involves more than one power of independent variable
(e.g., $\left.x(t)=(1 / 2) a t^{2}+v_{0} \cdot t+x_{0}\right)$
(b)as a power law expansion to unkown models
(2) References
(a)Taylor pp. 193-194
(b) [Baird 6-11]

FITTING A POLYNOMIAL
Often, one variable, y, is expected to be expressible as a polynomial in a second variable, x,

$$
\begin{equation*}
y=A+B x+C x^{2}+\cdots+H x^{n} \tag{8.23}
\end{equation*}
$$

For example, the height y of a falling body is expected to be quadratic in the time t,

$$
y=y_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

where y_{0} and v_{0} are the initial height and velocity, and g is the acceleration of gravity. Given a set of observations of the two variables, we can find best estimates for the constants A, B, \ldots, H in (8.23) by an argument that exactly parallels that of Section 8.2, as I now outline.

To simplify matters, we suppose that the polynomial (8.23) is actually a quadratic,

$$
\begin{equation*}
y=A+B x+C x^{2} \tag{8.24}
\end{equation*}
$$

(You can easily extend the analysis to the general case if you wish.) We suppose, as before, that we have a series of measurements $\left(x_{i}, y_{j}\right), i=1, \ldots, N$, with the y_{i} all equally uncertain and the x_{i} all exact. For each x_{i}, the corresponding true value of y_{i} is given by (8.24), with A, B, and C as yet unknown. We assume that the measurements of the y_{i} are governed by normal distributions, each centered on the appropriate truc value and all with the same width σ_{y}. This assumption lets us compute the probability of obtaining our observed values y_{1}, \ldots, y_{N} in the familiar form

$$
\begin{equation*}
\operatorname{Prob}\left(y_{1}, \ldots, y_{N}\right) \propto e^{-x^{2} / 2} \tag{8.25}
\end{equation*}
$$

where now

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-A-B x_{i}-C x_{i}^{2}\right)^{2}}{\sigma_{y}^{2}} \tag{8.26}
\end{equation*}
$$

[This equation corresponds to Equation (8.5) for the linear case.] The best estimates for A, B, and C are those values for which $\operatorname{Prob}\left(y_{1}, \ldots, y_{N}\right)$ is largest, or χ^{2} is smallest. Differentiating χ^{2} with respect to A, B, and C and setting these derivatives equal to zero, we obtain the three equations (as you should check; see Problem 8.21):

$$
\begin{aligned}
A N+B \sum x+C \sum x^{2} & =\sum y \\
A \sum x+B \sum x^{2}+C \sum x^{3} & =\sum x y \\
A \sum x^{2}+B \sum x^{3}+C \sum x^{4} & =\sum x^{2} y
\end{aligned}
$$

Fitting a Polynomial

Extend the linear solution to include on more tem, for a second order polynomial

This looks just like our linear problem, with the deviation in the summation replace by

$$
\left[y_{i}-\left(A+B x_{i}\right)\right] \rightarrow\left[y_{i}-\left(A+B x_{i}+C x_{i}^{2}\right)\right] \equiv\left\lfloor y_{i}-f_{f i t}\left(x_{i}\right)\right\rfloor
$$

This leads to a standard 3×3 eigenvalue problem,

Which can easily be generalized to any order polynomial

Least Squares Fits to Other Curves

a) Exponential function
(1) Useful for exponential models
(2)"linearized" approach
(a)recall semilog paper - a great way to quickly test model
(b) recall linearizaion

$$
\begin{aligned}
& \text { (i) } y=A e^{B x} \\
& \text { (ii) } z=\ln (y)=\ln A+B \cdot x=A^{\prime}+B \cdot x
\end{aligned}
$$

(3)References
(a) Taylor pp 194-196
(b) Baird p. 137

Least Squares Fits to Other Curves

C. Power law

1. Useful for variable power law models
2. "linearized" approach
a) recall \log paper - a great way to quickly test model
b) recall linearizaion
(1) $y=A x^{B}$
(2) $\mathrm{z}=\ln \mathrm{A}+\mathrm{B} \cdot \ln (\mathrm{x})=\mathrm{A}^{\prime}+\mathrm{B} \cdot \mathrm{w}$
(a) $\mathrm{z}=\ln (\mathrm{y})$
(b) $\mathrm{w}=\ln (\mathrm{x})$
3. References
a) Baird p. 136-137

(a)

(b)

(c)

Least Squares Fits to Other Curves

D. Sum of Trig functions

1. Useful when
a) More than one trig function involved
b) Used with trig identities to find other models (1) $A \sin (w \cdot t+b)=A \sin (w t)+B \cos (w t)$
2. References
a) Taylor p. 194 and Problems 8.23 and 8.24
b) See detailed solution below
E. Multiple regression
3. Useful when there are two or more independent variables
4. References
a) Brief introduction: Taylor pp. 196-197
5. More advanced texts: e.g., Bevington

Problem 8.24

8.24. \star A weight oscillating on a vertical spring should have height given by

$$
y=A \cos \omega t+B \sin \omega t .
$$

A student measures ω to be $10 \mathrm{rad} / \mathrm{s}$ with negligible uncertainty. Using a multiflash photograph, she then finds y for five equally spaced times, as shown in Table 8.10.

Table 8.10. Positions (in cm) and times (in tenths of a second) for an oscillating mass; for Problem 8.24.

$" x ":$ Time t	-4	-2	0	2	4
$" y ":$ Position y	3	-16	6	9	-8

Use Equations (8.41) to find best estimates for A and B. Plot the data and your best fit. (If you plot the data first, you will have the opportunity to consider how hard it would be to choose a best fit without the least-squares method.) If the student judges that her measured values of y were uncertain by "a couple of centimeters," would you say the data are an acceptable fit to the expected curve?
$805+1$ Tr

Problem 8.24

Problem 8.24 Enter the data: \quad Number of data points: $\quad N:=5 \quad n:=0 . .(N-1)$

$\mathrm{t}_{\mathrm{n}}:=$	$\mathrm{y}_{\mathrm{n}}:=$
$-4 \cdot \mathrm{sec}$	$3 \cdot \mathrm{~cm}$ $-2 \cdot \mathrm{sec}$ $0 \cdot \mathrm{sec}$ $2 \cdot \mathrm{sec}$ $4 \cdot \mathrm{sec}$ $-16 \cdot \mathrm{~cm}$ $6 \cdot \mathrm{~cm}$ $9 \cdot \mathrm{~cm}$ $-8 \cdot \mathrm{~cm}$

To solve equations (8.41) for the coefficients A and B, where $y=A \cdot f(x)+B \cdot g(x)$, we rewrite them in matrix format.

$$
\left[\begin{array}{l}
\sum_{n}\left(y_{n} f\left(t_{n}\right)\right) \\
\sum_{n}\left(y_{n} \cdot g\left(t_{n}\right)\right)
\end{array}\right]=\left[\begin{array}{cc}
\sum_{n}\left(f\left(f_{n}\right)\right)^{2} & \sum_{n}\left(f\left(f_{n}\right) \cdot g\left(t_{n}\right)\right) \\
\sum_{n}\left(f\left(f_{n}\right) \cdot g\left(t_{n}\right)\right) & \sum_{i}\left(g\left(t_{n}\right)\right)^{2}
\end{array}\right]\binom{A}{B}
$$

In shorthand notation, this is simply an eigen function equation of the form:

$$
\binom{\mathrm{E} 1}{\mathrm{E} 2}=\binom{\mathrm{M} 11 \cdot \mathrm{~A}+\mathrm{M} 12 \cdot \mathrm{~B}}{\mathrm{M} 21 \cdot \mathrm{~A}+\mathrm{M} 22 \cdot \mathrm{~B}}
$$

Problem 8.24

In shorthand notation, this is simply an eigen function equation of the form:

$$
\binom{\mathrm{E} 1}{\mathrm{E} 2}=\binom{\mathrm{M} 11 \cdot \mathrm{~A}+\mathrm{M} 12 \cdot \mathrm{~B}}{\mathrm{M} 21 \cdot \mathrm{~A}+\mathrm{M} 22 \cdot \mathrm{~B}}
$$

This can be solved symbollically to find A and B :

$$
\begin{aligned}
& \text { Given } \\
& \begin{array}{l}
\mathrm{M} 11 \cdot \mathrm{~A}+\mathrm{M} 12 \cdot \mathrm{~B}=\mathrm{E} 1 \\
\mathrm{M} 21 \cdot \mathrm{~A}+\mathrm{M} 22 \cdot \mathrm{~B}=\mathrm{E} 2
\end{array}
\end{aligned}
$$

That is, for A

$$
\operatorname{Find}(\mathrm{A}, \mathrm{~B}) \rightarrow\binom{\frac{\mathrm{E} 1 \cdot \mathrm{M} 22-\mathrm{E} 2 \cdot \mathrm{M} 12}{\mathrm{M} 11 \cdot \mathrm{M} 22-\mathrm{M} 12 \cdot \mathrm{M} 21}}{-\frac{\mathrm{E} 1 \cdot \mathrm{M} 21-\mathrm{E} 2 \cdot \mathrm{M} 11}{\mathrm{M} 11 \cdot \mathrm{M} 22-\mathrm{M} 12 \cdot \mathrm{M} 21}}
$$

$$
\mathrm{A}=\frac{(\mathrm{M} 22 \cdot \mathrm{E} 1-\mathrm{E} 2 \cdot \mathrm{M} 12)}{(\mathrm{M} 11 \cdot \mathrm{M} 22-\mathrm{M} 21 \cdot \mathrm{M} 12)}
$$

Problem 8.24

$$
\mathrm{A}=\frac{(\mathrm{M} 22 \cdot \mathrm{E} 1-\mathrm{E} 2 \cdot \mathrm{M} 12)}{(\mathrm{M} 11 \cdot \mathrm{M} 22-\mathrm{M} 21 \cdot \mathrm{M} 12)}
$$

Now, substituting the expressions for the shorthand notation, we arrive at the general form:

$$
A=\frac{\left[\sum_{n}\left(g\left(t_{n}\right)\right)^{2} \cdot\left[\sum_{n}\left(y_{n} \cdot f\left(t_{n}\right)\right)\right]-\left[\sum_{n}\left(y_{n} \cdot g\left(t_{n}\right)\right) \cdot\left[\sum_{n}\left(f\left(t_{n}\right) \cdot g\left(t_{n}\right)\right)\right]\right.\right.}{\left[\sum_{n}\left(f\left(t_{n}\right)\right)^{2}\right] \cdot\left[\sum_{n}\left(g\left(t_{n}\right)\right)^{2}\right]-\left[\sum_{n}\left(f\left(t_{n}\right) \cdot g\left(t_{n}\right)\right)\right] \cdot\left[\sum_{n}\left(f\left(t_{n}\right) \cdot g\left(t_{n}\right)\right)\right]}
$$

Finally, inserting the expressions $f(x)=\cos (\omega t)$ and $g(x)=\sin (\omega t)$, we get:

$$
A:=\frac{\left[\sum _ { n } [\operatorname { s i n } [(\omega \cdot t) _ { n }] ^ { 2 }] \cdot \left[\sum_{n}\left[y_{n} \cdot \cos \left[(\omega \cdot t)_{n}\right]\right]-\left[\sum _ { n } [y _ { n } \cdot \operatorname { s i n } ((\omega \cdot t _ { n }))] \cdot \left[\sum_{n}\left[\cos \left[(\omega \cdot t)_{n}\right] \cdot \sin \left[(\omega \cdot t)_{n}\right]\right]\right.\right.\right.\right.}{\left.\left[\sum_{n}\left[\cos \left[(\omega \cdot t)_{n}\right]\right]^{2}\right] \cdot \sum_{n}\left(\sin \left(\omega \cdot t_{n}\right)\right)^{2}\right]-\left[\sum_{n}\left[\cos \left[(\omega \cdot t)_{n}\right] \cdot \sin \left[(\omega \cdot t)_{n}\right]\right] \cdot\left[\sum_{n}\left[\cos \left[(\omega \cdot t)_{n}\right] \cdot \sin \left[(\omega \cdot t)_{n}\right]\right]\right]\right.}
$$

which yields a value for A of

$$
\mathrm{A}=5.535 \mathrm{~cm}
$$

Problem 8.24

Likewise, for B we have

$$
\mathrm{B}=\frac{(\mathrm{M} 11 \cdot \mathrm{E} 2-\mathrm{E} 1 \cdot \mathrm{M} 21)}{(\mathrm{M} 11 \cdot \mathrm{M} 22-\mathrm{M} 21 \cdot \mathrm{M} 12)}
$$

Now, substituting the expressions for the shorthand notation, we arrive at the general form:

$$
B=\frac{\left[\sum_{n}\left(f\left(t_{n}\right)\right)^{2}\right] \cdot\left[\sum_{n}\left(y_{n} \cdot g\left(t_{n}\right)\right)\right]-\left[\sum_{n}\left(y_{n} \cdot f\left(t_{n}\right)\right)\right] \cdot\left[\sum_{n}\left(f\left(t_{n}\right) \cdot g\left(t_{n}\right)\right)\right]}{\left[\sum_{n}\left(f\left(t_{n}\right)\right)^{2}\right] \cdot\left[\sum_{i}\left(g\left(t_{n}\right)\right)^{2}\right]-\left[\sum_{n}\left(f\left(t_{n}\right) \cdot g\left(t_{n}\right)\right)\right] \cdot\left[\sum_{n}\left(f\left(t_{n}\right) \cdot g\left(t_{n}\right)\right)\right]}
$$

Finally, inserting the expressions $f(x)=\cos (\omega t)$ and $g(x)=\sin (\omega t)$, we get:

$$
B:=\frac{\left[\sum_{n}\left(\cos \left(\omega \cdot t_{n}\right)\right)^{2}\right] \cdot\left[\sum_{n}\left(y_{n} \cdot \sin \left(\omega \cdot t_{n}\right)\right)\right]-\left[\sum_{n}\left(y_{n} \cdot \cos \left(\omega \cdot t_{n}\right)\right)\right] \cdot\left[\sum_{n}\left(\cos \left(\omega \cdot t_{n}\right) \cdot \sin \left(\omega \cdot t_{n}\right)\right)\right]}{\left[\sum_{n}\left(\cos \left(\omega \cdot t_{n}\right)\right)^{2}\right] \cdot\left[\sum_{n}\left(\sin \left(\omega \cdot t_{n}\right)\right)^{2}\right]-\left[\sum_{n}\left(\cos \left(\omega \cdot t_{n}\right) \cdot \sin \left(\omega \cdot t_{n}\right)\right)\right] \cdot\left[\sum_{n}\left(\cos \left(\omega \cdot t_{n}\right) \cdot \sin \left(\omega \cdot t_{n}\right)\right)\right]}
$$

which yields a value for B of

$$
\mathrm{B}=11.095 \mathrm{~cm}
$$

Intermediate Lab PHYS 3870

Correlations

Uncertaities in a Function of Variables

Consider an arbitrary function q with variables x, y, z and others.
Expanding the uncertainty in y in terms of partial derivatives, we have

$$
\delta q(x, y, z, \ldots) \approx\left|\frac{\partial q}{\partial x}\right| \cdot \delta x+\left|\frac{\partial q}{\partial y}\right| \cdot \delta y+\left|\frac{\partial q}{\partial z}\right| \cdot \delta z+\ldots
$$

If x, y, z and others are independent and random variables, we have

$$
\delta q(x, y, z, \ldots)=\sqrt{\left(\frac{\partial q}{\partial x} \cdot \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \cdot \delta x\right)^{2}+\left(\frac{\partial q}{\partial z} \cdot \delta x\right)^{2}+\ldots}
$$

If $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and others are independent and random variables governed by normal distributions, we have

$$
\sigma_{x}=\sqrt{\left(\frac{\partial q}{\partial x} \cdot \sigma_{x}\right)^{2}+\left(\frac{\partial q}{\partial y} \cdot \sigma_{y}\right)^{2}+\left(\frac{\partial q}{\partial z} \cdot \sigma_{z}\right)^{2}+\ldots}
$$

We now consider the case when x, y, z and others are not independent and random variables governed by normal distributions.

Covariance of a Function of Variables

We now consider the case when x and y are not independent and random variables governed by normal distributions.
Assume we measure N pairs of data (x_{i}, y_{i}), with small uncertaities so that all x_{i} and y_{i} are close to their mean values X and Y .

Expanding in a Taylor series about the means, the value q_{i} for $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$,

$$
\begin{aligned}
& q_{i}=q\left(x_{i}, y_{i}\right) \\
& q_{i} \approx q(\bar{x}, \bar{y})+\frac{\partial q}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial q}{\partial y}\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

Note partial derivatives are all taken at X or Y and are hence the same for each i
We then find the simple result for the mean of q

$$
\bar{q}=\frac{1}{N} \sum_{i=1}^{N} q_{i}=\frac{1}{N} \sum_{i=1}^{N}\left[q(\bar{x}, \bar{y})+\frac{\partial q}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial q}{\partial y}\left(\bar{y}_{i}^{0}-\bar{y}\right)\right] \xrightarrow{\text { yields }} \bar{q}=q(\bar{x}, \bar{y})
$$

The standard deviation of the \mathbf{N} values of q_{i} is

$$
\begin{aligned}
\sigma_{q}{ }^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left[q_{i}-\bar{q}\right]^{2} \\
\sigma_{q}{ }^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left[\frac{\partial q}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial q}{\partial y}\left(y_{i}-\bar{y}\right)\right]^{2}
\end{aligned}
$$

Covariance of a Function of Variables

The standard deviation of the N values of q_{i} is

$$
\begin{aligned}
& \sigma_{q}{ }^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[q_{i}-\bar{q}\right]^{2} \\
& \sigma_{q}{ }^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[\frac{\partial q}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial q}{\partial y}\left(y_{i}-\bar{y}\right)\right]^{2} \\
& \sigma_{q}{ }^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}+2\left(\frac{\partial q}{\partial x} \frac{\partial q}{\partial y}\right) \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \sigma_{q}{ }^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}{ }^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}{ }^{2}+2\left(\frac{\partial q}{\partial x} \frac{\partial q}{\partial y}\right) \sigma_{x y} \\
& \text { with } \sigma_{x y} \equiv \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

If x and y are independent

$$
\sigma_{x y} \equiv \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \rightarrow 0
$$

Schwartz Inequality

Show that

$$
\left|\sigma_{x y}\right| \leq \sigma_{x} \sigma_{y}
$$

Define a function

$$
A(t) \equiv \frac{1}{N} \sum_{i=1}^{N}\left[\left(x_{i}-\bar{X}\right)+t \cdot\left(y_{i}-\bar{Y}\right)\right]^{2} \geq 0
$$

$A(t) \geq 0$, since the function is a square of real numbers.
Using the substitutions

$$
\begin{aligned}
& \sigma_{x} \equiv \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)^{2} \\
& \sigma_{x y} \equiv \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right) \\
& A(t)=\sigma_{x}^{2}+2 t \sigma_{x y}+t^{2} \sigma_{y}{ }^{2} \geq 0
\end{aligned}
$$

Now find t for which $A\left(t_{\text {min }}\right)$ is a minimum:

$$
\partial A(t) / \partial t=0=2 \sigma_{x y}+2 t_{\min } \cdot \sigma_{y}^{2} \Rightarrow t_{\min }=-\sigma_{x y} / \sigma_{y}^{2}
$$

Then since for any $\mathrm{t}, A(t) \geq 0$

$$
\begin{aligned}
A_{\min }\left(t_{\min }\right)= & \sigma_{x}^{2}+2 \sigma_{x y}\left(-\sigma_{x y} / \sigma_{y}^{2}\right)+\left(-\sigma_{x y} / \sigma_{y}^{2}\right)^{2} \sigma_{y}^{2} \geq 0 \\
& =\sigma_{x}^{2}-\left(2 \sigma_{x y} / \sigma_{y}\right)^{2}+\left(\sigma_{x y} / \sigma_{y}\right)^{2} \geq 0 \\
& =\left(\sigma_{x}+\sigma_{x y} / \sigma_{y}\right)\left(\sigma_{x}-\sigma_{x y} / \sigma_{y}\right) \geq 0
\end{aligned}
$$

Multiplying through by $\sigma_{y}{ }^{2} \geq 0$

$$
=\left(\sigma_{x} \sigma_{y}+\sigma_{x y}\right)\left(\sigma_{x} \sigma_{y}-\sigma_{x y}\right) \geq 0
$$

which is true if

$$
\left(\sigma_{x}{ }^{2}{\sigma_{y}}^{2}-\sigma_{x y}{ }^{2}\right) \geq 0 \quad \Rightarrow \quad \sigma_{x}{ }^{2} \sigma_{y}{ }^{2} \geq \sigma_{x y}{ }^{2}
$$

Now, since by definition $\sigma_{x}>0$ and $\sigma_{y}>0$,

$$
\sigma_{x} \sigma_{y} \geq\left|\sigma_{x y}\right|, \quad \text { QED }
$$

Schwartz Inequality

Combining the Schwartz inequality

With the definition of the covariance
yields

Then completing the squares

And taking the square root of the equation, we finally have

$$
\left|\sigma_{x y}\right| \leq \sigma_{x} \sigma_{y}
$$

$$
\begin{aligned}
& \sigma_{q}^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}^{2}+2\left(\frac{\partial q}{\partial x} \frac{\partial q}{\partial y}\right) \sigma_{x y} \\
& \sigma_{q}^{2} \leq\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}^{2}+2\left|\frac{\partial q}{\partial x} \frac{\partial q}{\partial y}\right| \sigma_{x} \sigma_{y}
\end{aligned}
$$

$$
\sigma_{q}^{2} \leq\left[\left|\frac{\partial q}{\partial x}\right| \sigma_{x}+\left|\frac{\partial q}{\partial y}\right| \sigma_{y}\right]^{2}
$$

$$
\sigma_{q} \leq\left|\frac{\partial q}{\partial x}\right| \sigma_{x}+\left|\frac{\partial q}{\partial y}\right| \sigma_{y}
$$

At last, the upper bound of errors is

$$
\begin{aligned}
\sigma_{q} & =\left|\frac{\partial q}{\partial x}\right| \sigma_{x}+\left|\frac{\partial q}{\partial y}\right| \sigma_{y} \\
\sigma_{q} & =\sqrt{\left(\frac{\partial q}{\partial x} \cdot \sigma_{x}\right)^{2}+\left(\frac{\partial q}{\partial y} \cdot \sigma_{y}\right)^{2}}
\end{aligned}
$$

And for independent and random variables

Another Useful Relation

Taylor Problem 4.5
Show $\sum_{i=1}^{N}\left[\left(x_{i}-\bar{x}\right)\right]^{2}=\sum_{i=1}^{N} x_{i}{ }^{2}-\frac{1}{N}\left[\sum_{i=1}^{N} x_{i}\right]^{2}$
Given $\quad \sum_{i=1}^{N}\left[\left(x_{i}-\bar{x}\right)\right]^{2}=\sum_{i=1}^{N}\left[x_{i}{ }^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right]$

$$
=\sum_{i=1}^{N}\left[x_{i}^{2}\right]-2 \bar{x} \sum_{i=1}^{N}\left[x_{i}\right]+\bar{x}^{2} \sum_{i=1}^{N}[i]
$$

$$
=\sum_{i=1}^{N}\left[x_{i}^{2}\right]-2 \bar{x}(N \bar{x})+\bar{x}^{2}(N)
$$

$$
=\sum_{i=1}^{N}\left[x_{i}{ }^{2}\right]-N \bar{x}^{2}
$$

$$
=\sum_{i=1}^{N}\left[x_{i}^{2}\right]-N\left[\sum_{i=1}^{N}\left[x_{i}\right]\right]^{2}, \mathrm{QED}
$$

Question 2: Is it Linear?

(b)

Coefficient of Linear Regression:

(c)

$$
r \equiv \frac{\sum[(x-\overline{\bar{x}})(y-\overline{\bar{y}})]}{\sqrt{\sum(x-\overline{\bar{x}})^{2} \sum(y-\overline{\bar{y}})^{2}}}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}
$$

Consider the limiting cases for:

- $r=0$ (no correlation)
- $r= \pm 1$ (perfect correlation).
[for any x , the sum over $\mathrm{y}-\mathrm{Y}$ yields zero]
[Substitute yi- $\mathrm{Y}=\mathrm{B}(\mathrm{xi}-\mathrm{X})$ to get $\mathrm{r}=\mathrm{B} /|\mathrm{B}|= \pm 1$]

Table C. The percentage probability $\operatorname{Prob}_{N}\left(|r| \geqslant r_{\mathrm{o}}\right)$ that N measurements of two uncorrelated variables give a correlation coefficient with $|r| \geqslant r_{\mathrm{o}}$, as a function of N and r_{o}. (Blanks indicate probabilities less than 0.05%.)

Tabulated Correlation Coefficient

Consider the limiting cases for:

- $r=0$ (no correlation)
- $r= \pm 1$ (perfect correlation).

To gauge the confidence imparted by intermediate r values consult the table in Appendix C.

Uncertainties in Slope and Intercept

Taylor:
For the linear model $\mathrm{y}=\mathrm{A}+\mathrm{Bx}$

Intercept:	$A=\frac{\sum x^{2} \sum y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}}$	$\sigma_{A}=\sigma_{y} \frac{\sum x^{2}}{N \sum x^{2}-\left(\sum x\right)^{2}} \quad$ (Prob (8.16)
Slope	$B=\frac{N \sum x y-\sum x \sum x y}{N \sum x^{2}-\left(\sum x\right)^{2}}$	$\sigma_{B}=\sigma_{y} \frac{N}{N \sum x^{2}-\left(\sum x\right)^{2}}$

where $\sigma_{y}=\sqrt{\frac{1}{N-2} \sum\left[y_{i}-\left(A+B x_{i}\right)\right]^{2}}$
Relation to $\mathbf{R}^{\mathbf{2}}$ value:

$$
\begin{aligned}
\sigma_{A} & =\sigma_{B} \sqrt{\frac{1}{N} \sum x^{2}} \\
\sigma_{B} & =B \sqrt{\frac{1}{N-2}\left[\left(1 / R^{2}\right)-1\right]} \quad r \equiv \frac{\sum[(x-\overline{\bar{x}})(y-\overline{\bar{y}})]}{\sqrt{\sum(x-\overline{\bar{x}})^{2} \sum(y-\bar{y})^{2}}}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}
\end{aligned}
$$

