Intermediate Lab PHYS 3870

Lecture 3

Distribution Functions

References: Taylor Ch. 5 (and Chs. 10 and 11 for Reference)
Taylor Ch. 6 and 7
Also refer to "Glossary of Important Terms in Error Analysis"
"Probability Cheat Sheet"

Intermediate Lab PHYS 3870

Distribution Functions

Practical Methods to Calculate Mean and St. Deviation

We need to develop a good way to tally, display, and think about a collection of repeated measurements of the same quantity.
Here is where we are headed:

- Develop the notion of a probability distribution function, a distribution to describe the probable outcomes of a measurement
- Define what a distribution function is, and its properties
- Look at the properties of the most common distribution function, the Gaussian distribution for purely random events
- Introduce other probability distribution functions

We will develop the mathematical basis for:

- Mean
- Standard deviation
- Standard deviation of the mean (SDOM)
- Moments and expectation values
- Error propagation formulas
- Addition of errors in quadrature (for independent and random measurements)
- Schwartz inequality (i.e., the uncertainty principle) (next lecture)
- Numerical values for confidence limits (t-test)
- Principle of maximal likelihood
- Central limit theorem

Two Practical Exercises in Probabilities

Flip Rquemy

Roll a pair of dice 50 times and record the results

Grab a partner and a set of instructions and complete the exercise.

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

Group Two Instructions

1. Flip penny 50 times
2. Record each results as "H" or "T" in list below
\qquad

What is the asymmetry of the results?

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

Group Two Instructions

1. Roll two dice 50 times
2. Record each results as "H" or "T" in list below

??\% asymmetry

Group One Instructions

1. Flip penny 50 times
2. Tally results on list below

4\% asymmetry

What is the asymmetry of the results?

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

Group One Instructions
Roll two dice 50 times
Record results on table below, checking one box for each die

Group Two Instructions
Roll two dice 50 times
Record each result in list below

What is the mean value?
The standard deviation?

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

Group Two Instructions
Roll two dice 50 times
Record each result in list below

-7- 6- 10 -5 - 8 - 5 - 5
What is the mean value?
The standard deviation?
What is the asymmetry (kurtosis)?

What is the probability of rolling a 4 ?

Group One Instructions
Roll two dice 50 times
Record results on table below, checking one box for each die

Mean $=7.3$
St. Dev. $=2.8$

Discrete Distribution Functions

A data set to play with
$26,24,26,28,23,24,25,24,26,25$.
$23,24,24,24,25,25,26,26,26,28$.

The mean value

$$
\bar{x}=\frac{\sum_{i} x_{i}}{N}=\frac{23+24+24+24+25+\ldots+28}{10}
$$

This equation is the same as

$$
\begin{aligned}
& \bar{x}=\frac{23+(24 \times 3)+(25 \times 2)+\ldots+28}{10} \\
& \sum_{\mathrm{k}}\left(n_{k}\right)=\mathrm{N} \rightarrow \mathrm{x}=\frac{\sum_{\mathrm{k}}\left(n_{k} \cdot x_{k}\right)}{\mathrm{N}}=\frac{\sum_{\mathrm{k}}\left(n_{k} \cdot x_{k}\right)}{\sum_{\mathrm{k}}\left(n_{k}\right)}
\end{aligned}
$$

or in general

Written in terms of "occurrence" F

Different values, \boldsymbol{x}_{k}	23	24	25	26	27	28
Number of times found, n_{k}	1	3	2	3	0	1

In terms of fractional expectations
Fractional expectations $\quad F_{k}=\frac{n_{k}}{N}$

Normalization condition

$$
\begin{aligned}
& 1=\sum_{\mathrm{k}}\left(\mathrm{~F}_{\mathrm{k}}\right) \\
& \mathrm{x}=\sum_{\mathrm{k}}\left(\mathrm{~F}_{\mathrm{k}} \cdot \mathrm{x}_{\mathrm{k}}\right)
\end{aligned}
$$

(This is just a weighted sum.)

Limit of Discrete Distribution Functions

Binned data sets

Table 5.2. The 10 measurements (5.9) grouped in bins.						
Bin Observations in bin	22 to 23	23 to 24	24 to 25	25 to 26	26 to 27	27 to 28

$26.4,23.9,25.1,24.6,22.7,23.8,25.1,23.9,25.3,25.4$.
(5.9)
"Normalizing" data sets $f_{k} \Delta_{k}=$ fraction of measurements in k th bin.
$\mathrm{f}_{\mathrm{k}} \equiv$ fractional occurrence
$\Delta_{\mathrm{k}} \equiv$ bin width

Mean value: $X=\sum_{k} F_{k} x_{k}=\sum_{k}\left(f_{k} \Delta_{k}\right) x_{k}$
Normalization: $\quad 1=\frac{\sum_{k}\left(f_{k} \Delta_{k}\right) x_{k}}{\sum_{k} \Delta_{k}}$

Expected value: $\quad \operatorname{Prob}(4)=\frac{F_{4}}{N}=f_{4}$

Limits of Distribution Functions

Consider the limiting distribution function as $\mathbf{N} \rightarrow \mathrm{db}$ and $\Delta_{\mathbf{k}} \rightarrow \mathbf{0}$

Larger data sets

\# Data Pts: $\quad \mathrm{N} \equiv 6000$
Mathcad Games:
Mean: $\quad \mu \equiv 10$
Std. Dev.:

$$
\sigma \equiv 5
$$

SDOM: $\quad \frac{\sigma}{\sqrt{\mathrm{N}}}=0.065$

Fractional

Error:

$$
\left(\frac{\sigma}{\sqrt{\mathrm{N}}}\right) \cdot \frac{1}{\mu}=0.645 \%
$$

Continuous Distribution Functions

Meaning of Distribution Interval

$$
\begin{aligned}
f(x) d x= & \text { fraction of measurements that } \\
& \text { fall between } x \text { and } x+d x .
\end{aligned}
$$

Normalization of Distribution

$$
\sum_{\mathrm{k}}\left(\mathrm{~F}_{\mathrm{k}}\right)=1 \quad \rightarrow \quad \int_{-\infty}^{+\infty} f(x) d x=1
$$

Width of Distribution

$$
\begin{aligned}
& \sum_{\mathrm{k}}\left[\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}\right)^{2} \cdot \mathrm{~F}_{\mathrm{k}}\right]=\sigma_{\mathrm{X}}^{2} \quad \rightarrow \\
& \int_{-\infty}^{+\infty}(x-\bar{x})^{2} f(x) d x=\sigma_{X}^{2}=\left\langle(x-\bar{x})^{2}\right\rangle(5.16)
\end{aligned}
$$

Moments of Distribution Functions

The first moment for a probability distribution function is

$$
\bar{x} \equiv\langle x\rangle=\text { first moment }=\int_{-\infty}^{+\infty} x f(x) d x
$$

For a general distribution function,

$$
\bar{x} \equiv\langle x\rangle=\text { first moment }=\frac{\int_{-\infty}^{+\infty} x g(x) d x}{\int_{-\infty}^{+\infty} g(x) d x}
$$

Generalizing, the $\mathrm{n}^{\text {th }}$ moment is

$$
x_{n} \equiv\left\langle x^{n}\right\rangle=\text { nth moment }=\frac{\int_{-\infty}^{+\infty} x^{n} g(x) d x}{\int_{-\infty}^{+\infty} g(x) d x}=\int_{-\infty}^{+\infty} x^{n} f(x) d x
$$

$\mathrm{O}^{\text {th }}$ moment $\equiv \mathrm{N}$
$1^{\text {st }}$ moment $\equiv \bar{x}$

$$
2^{\text {nd }} \text { moment } \equiv\left\langle\left(x-\bar{x}^{0}\right)^{2}\right\rangle \rightarrow\left\langle x^{2}\right\rangle
$$

$3^{\text {rd }}$ moment \equiv kurtosis

Moments of Distribution Functions

Generalizing, the $\mathrm{n}^{\text {th }}$ moment is

$$
x_{n} \equiv\left\langle x^{n}\right\rangle=\text { nth moment }=\frac{\int_{-\infty}^{+\infty} x^{n} g(x) d x}{\int_{-\infty}^{+\infty} g(x) d x}=\int_{-\infty}^{+\infty} x^{n} f(x) d x
$$

$\mathrm{O}^{\text {th }}$ moment $\equiv \mathrm{N}$
$2^{\text {nd }}$ moment $\equiv\left\langle(x-\bar{X})^{2}\right\rangle \rightarrow\left\langle x^{2}\right\rangle$
$1^{\text {st }}$ moment $\equiv \bar{x}$
$3^{\text {rd }}$ moment \equiv kurtosis

The $\mathrm{n}^{\text {th }}$ moment about the mean is

$$
\begin{aligned}
\mu_{n} & \equiv\left\langle(x-\bar{x})^{n}\right\rangle=n t h \text { moment about the mean } \\
& =\frac{\int_{-\infty}^{+\infty}(x-\bar{x})^{n} g(x) d x}{\int_{-\infty}^{+\infty} g(x) d x}=\int_{-\infty}^{+\infty}(x-\bar{x})^{n} f(x) d x
\end{aligned}
$$

The standard deviation (or second moment about the mean) is

$$
\begin{aligned}
\sigma_{x}^{2} & \equiv \mu_{2} \equiv\left\langle(x-\bar{x})^{2}\right\rangle=2 \text { nd moment about the mean } \\
& =\frac{\int_{-\infty}^{+\infty}(x-\bar{x})^{2} g(x) d x}{\int_{-\infty}^{+\infty} g(x) d x}=\int_{-\infty}^{+\infty}(x-\bar{x})^{2} f(x) d x
\end{aligned}
$$

Example of Continuous Distribution Functions and Expectation Values Harmonic Oscillator: Example from Mechanics

$$
\begin{aligned}
& \begin{array}{l}
x_{0}+A \not \sum_{0} \not \xi_{n} k+\sigma_{0} \\
x_{0}-A
\end{array} \\
& \omega=\sqrt{k / m}=\frac{2 \pi}{T} \\
& x(t)=A \sin \omega t+x_{\omega} \\
& \dot{x}(t)=-A_{\omega} \cos \omega t \quad \text { The auprge time } \\
& \ddot{x}(t)=-A \omega^{2} \sin \omega t \\
& \text { over one period is: } \\
& \text { The arrvage posstrau } \\
& \text { ewer ole periool land } \\
& \text { over all time) } 18: \\
& \text { The querage of the } \\
& \text { position squarediss } \\
& \langle\mathrm{R}(\mathrm{x})\rangle \equiv \frac{\int_{-\infty}^{+\infty} \mathrm{R}(\mathrm{x}) g(x) d x}{\int_{-\infty}^{+\infty} g(x) d x} \\
& =\int_{-\infty}^{+\infty} \mathrm{R}(\mathrm{X}) f(x) d x \\
& \text { The equations of } x(t)=A \sin \omega t \\
& \text { motion are? } \\
& \text { The expectation value of a function } R(x) \text { is } \\
& \text { The average of the } \\
& \text { force is: } \\
& \langle F\rangle=\left\langle-k\left(\lambda-x_{0}\right)\right\rangle=0 \\
& \text { The aurvage velocity } \\
& \langle F\rangle=\langle m \ddot{x}\rangle=-m \omega^{2}\left\langle x-x_{0}\right\rangle=0 \\
& \begin{array}{l}
\text { es: } \\
\text { The average tiruetic }
\end{array} \\
& \langle v\rangle=\frac{\int_{0}^{\top}(-A \omega \cos \omega t) d t}{T}=\frac{-A \omega}{T}\left[-\left.\sin \omega t\right|_{0} ^{\top}=0\right. \\
& \langle K E\rangle=-\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{m}{2} A^{2} \omega^{2} \int_{0}^{T} \cos ^{2} \omega t d t=\frac{m A^{2} \omega^{2}}{2}\left[\frac{t}{2}+\left.\frac{\sin 2 \omega t}{4 \omega}\right|_{0} ^{T}\right. \\
& =\frac{m A^{2} \omega^{2} T}{4}=\frac{\pi}{2} \sqrt{\mathrm{~km}} \\
& \text { Note: }\langle K E\rangle+\frac{1}{2} m\langle v\rangle^{2}=0 \\
& \langle t\rangle=\frac{\int_{0}^{T} t d t}{\int_{0}^{T} d t}=\frac{\left.\frac{1}{2} t^{2}\right|_{0} ^{T}}{\left.t\right|_{0} ^{T}}=\frac{\frac{1}{2} T^{2}}{T}=\frac{1}{2} T=\frac{\pi}{\omega} \\
& \langle x\rangle=\frac{\int_{0}^{T} x(t) d t}{T}=\frac{\int_{0}^{T}\left[A \sin \omega t+x_{0}\right] d t}{T} \\
& =\frac{\left[A \omega \cos \omega t+x_{0} t\right]_{0}^{T}}{T}=x_{0} \\
& \text { energy is: } \\
& \left\langle x^{2}\right\rangle=\frac{1}{T} \int_{0}^{T}[x|t|]^{2} d t=\frac{1}{T} \int_{0}^{T}\left[A \sin \omega t+x_{0}\right]^{2} d t \\
& =\frac{1}{T}\left[T\left(x_{0}^{2}+\frac{A}{2}\right)\right]=x_{0}^{2}-\frac{A^{2}}{2}
\end{aligned}
$$

Example of Continuous Distribution Functions and Expectation Values Boltzmann Distribution: Example from Kinetic Theory

Expected Values

The expectation value of a function $R(x)$ is

$$
\begin{aligned}
\langle\mathrm{R}(\mathrm{x})\rangle & \equiv \frac{\int_{-\infty}^{+\infty} \mathrm{R}(\mathrm{x}) g(x) d x}{\int_{-\infty}^{+\infty} g(x) d x} \\
& =\int_{-\infty}^{+\infty} \mathrm{R}(\mathrm{x}) f(x) d x
\end{aligned}
$$

The Boltzmann distribution function for velocities of particles as a function of temperature, T is:

$$
P(v ; T)=4 \pi\left(\frac{M}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} \exp \left[\frac{1}{2} M v^{2} / \frac{1}{2} k_{B} T\right]
$$

Then

$$
\begin{gathered}
\langle\mathrm{v}\rangle=\int_{-\infty}^{+\infty} v P(v) d v=\left[8 k_{B} T / \pi M\right]^{1 / 2} \\
\left\langle\mathrm{v}^{2}\right\rangle=\int_{-\infty}^{+\infty} \mathrm{v}^{2} P(v) d v=\left[\begin{array}{ll}
3 & \left.k_{B} T /\right]^{1 / 2} \\
& \text { implies }\langle\mathrm{KE}\rangle=\frac{1}{2} M\left\langle\mathrm{v}^{2}\right\rangle=\frac{3}{2} k_{B} T \\
\mathrm{v}_{\text {peak }}=\sqrt{\left[2 k_{B} T /_{M}\right]^{1 / 2}}=[2 / 3]^{1 / 2}\left\langle\mathrm{v}^{2}\right\rangle
\end{array}, ~\right.
\end{gathered}
$$

Example of Continuous Distribution Functions and Expectation Values Fermi-Dirac Distribution: Example from Kinetic Theory

For a system of identical fermions, the average number of fermions in a single-particle state i, is given by the Fermi-Dirac ($\mathrm{F}-\mathrm{D}$) distribution,

$$
\bar{n}_{i}=\frac{1}{e^{\left(\epsilon_{i}-\mu\right) / k T}+1}
$$

where k_{B} is Boltzmann's constant, T is the absolute temperature, ϵ_{i} is the energy of the single-particle state i, and μ is the total chemical potential.

Since the F-D distribution was derived using the Pauli exclusion principle, which allows at most one electron to occupy each possible state, a result is that $0<\bar{n}_{i}<1$
When a quasi-continuum of energies ϵ has an associated density of states $g(\epsilon)_{\text {(i.e. the number of }}$ states per unit energy range per unit volume) the average number of fermions per unit energv range per unit volume is,

$$
\overline{\mathcal{N}}(\epsilon)=g(\epsilon) F(\epsilon)
$$

where $F(\epsilon)$ is called the Fermi function

$$
F(\epsilon)=\frac{1}{e^{(\epsilon-\mu) / k T}+1}
$$

so that,

$$
\overline{\mathcal{N}}(\epsilon)=\frac{g(\epsilon)}{e^{(\epsilon-\mu) / k T}+1}
$$

Example of Continuous Distribution Functions and Expectation Values

 Finite Square Well: Example from Quantum MechanicsExpectation Values The expectation value of a QM operator $\mathrm{O}(\mathrm{x})$ is $\langle\mathrm{O}(\mathrm{x})\rangle \equiv \frac{\int_{-\infty}^{+\infty} \Psi^{*}(\mathrm{x}) O(x) \Psi(\mathrm{x}) d x}{\int_{-\infty}^{+\infty} \Psi^{*}(\mathrm{x}) \Psi(\mathrm{x}) d x}$ For a finite square well of width $L, \Psi_{n}(x)=\sqrt{2 / L} \sin \left[\frac{n \pi x}{L}\right]$

$$
\begin{gathered}
\left\langle\Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) \mid \Psi_{\mathrm{n}}(\mathrm{x})\right\rangle \equiv \frac{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) O(x) \Psi_{\mathrm{n}}(\mathrm{x}) d x}{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) \Psi_{\mathrm{n}}(\mathrm{x}) d x}=1 \\
\langle x\rangle=\left\langle\Psi_{\mathrm{n}}{ }^{*}(\mathrm{x})\right| \mathrm{x}\left|\Psi_{\mathrm{n}}(\mathrm{x})\right\rangle \equiv \frac{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) x \Psi_{\mathrm{n}}(\mathrm{x}) d x}{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) \Psi_{\mathrm{n}}(\mathrm{x}) d x}=L / 2 \\
\langle p\rangle=\left\langle\Psi_{\mathrm{n}}{ }^{*}(\mathrm{x})\right| \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}\left|\Psi_{\mathrm{n}}(\mathrm{x})\right\rangle \equiv \frac{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}} \Psi_{\mathrm{n}}(\mathrm{x}) d x}{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) \Psi_{\mathrm{n}}(\mathrm{x}) d x}=0 \\
\left\langle E_{n}\right\rangle=\left\langle\Psi_{\mathrm{n}}{ }^{*}(\mathrm{x})\right| \mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}}\left|\Psi_{\mathrm{n}}(\mathrm{x})\right\rangle \equiv \frac{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) \mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}} \Psi_{\mathrm{n}}(\mathrm{x}) d x}{\int_{-\infty}^{+\infty} \Psi_{\mathrm{n}}{ }^{*}(\mathrm{x}) \Psi_{\mathrm{n}}(\mathrm{x}) d x}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}
\end{gathered}
$$

Summary of Distribution Functions

Probabilit action (Discrete Case)
The ranoom variable \mathbf{X} will be called a discrete random variable if there exists a function f such that $f\left(x_{i}\right) \geq 0$ and $\sum_{i} f\left(x_{i}\right)=1$ for $i=1,2,3, \ldots$ and such that for any event E,

$$
P(E)=P[\mathrm{X} \text { is in } E]=\sum_{B} f(x)
$$

where \sum_{S} means sum $f(x)$ over those values x_{i} that are in E and where $f(x)=P[\mathbf{X}=x]$. The probability that the value of \mathbf{X} is some real number x, is given by $f(x)=P[\mathrm{X}=x]$, where f is called the probability function of the random variable \mathbf{X}.

Cumulative Distribution Function (Discrele Case)
The probability that the value of a random variable \mathbf{X} is less than or equal to some resl number x is defined as

$$
\begin{aligned}
F(x) & =P(\mathbf{X} \leq x) \\
& =\Sigma f\left(x_{i}\right), \quad-\infty<x<\infty
\end{aligned}
$$

where the summation extends over those values of i such that $x_{i} \leq x$.
Probability Density (Conlinuous Case)
The random variable \mathbf{X} will be called a continuous random variable if there exists a function f such that $f(x) \geq 0$ and $\int_{-\infty}^{-\infty} f(x) d x=1$ for all x in interval $-\infty<x<\infty$ and such that for any event E

$$
P(E)=P(\mathbf{X} \text { is in } E)=\int_{s} f(x) d x
$$

$f(x)$ is called the probability density of the random variable \mathbf{X}. The probability that \mathbf{X} assumes any given value of x is equal to zero and the probability that it assumes a value on the interval from a to b, including or excluding either end point, is equal to

$$
\int_{a}^{b} f(x) d x .
$$

Cumulative Distribution Function (Continuous Case)
The probability that the value of a random variable X is less than or equal to some real number x is defined as

$$
\begin{aligned}
F(x) & =P(\mathbf{X} \leq x), \quad-\infty<x<\infty \\
& =\int_{-\infty}^{x} f(x) d x .
\end{aligned}
$$

From the cumulative distribution, the density, if it exists, can be found from

$$
f(x)=\frac{d F(x)}{d x}
$$

From the cumulative distribution

$$
\begin{aligned}
P(a \leq \mathrm{X} \leq b) & =P(\mathrm{X} \leq b)-P(\mathrm{X} \leq a) \\
& =F(b)-F(a)
\end{aligned}
$$

Mathematical Expectation
A. Expected Valur.

Let \mathbf{X} be a random variable with density $f(x)$. Then the expected value of $\mathbf{X}, E(\mathbf{X})$, is defined to be

$$
E(\mathrm{X})=\sum_{x} x f(x)
$$

Available

$$
E(\mathbf{X})=\int_{-\infty}^{\infty} x f(x) d x
$$ on web site

if \mathbf{X} is continuous. The expected value of a function g of a random variable \mathbf{X} is defined as

$$
E[g(\mathbf{X})]=\sum_{x} g(x) \cdot f(x)
$$

if \mathbf{X} is discrete and

$$
E[g(\mathbf{X})]=\int_{-\infty}^{\infty} g(x) \cdot f(x) d x
$$

if X is continuous.
Theorems

1. $E[a \mathbf{X}+b \mathbf{Y}]=a E(\mathbf{X})+b E(\mathbf{Y})$
2. $E[\mathbf{X} \cdot \mathbf{Y}]=E(\mathbf{X}) \cdot E(\mathbf{X})$ if \mathbf{X} and \mathbf{Y} are statistically independent.

B. Moments

a. Moments About the Origin. The moments about the origin of a probability distribution are the expected values of the random variable which has the given distribution. The r th moment of \mathbf{X}, usually denoted by μ_{r}^{\prime}, is defined as

$$
\mu_{r}^{\prime}=E\left[\mathbf{X}^{r}\right]=\sum_{x} x^{r} f(x)
$$

if \mathbf{X} is discrete and

$$
\mu_{r}^{\prime}=E\left[\mathbf{X}^{r}\right]=\int_{-\infty}^{\infty} x^{r} f(x) d x
$$

if \mathbf{X} is continuous.
The first moment, μ^{\prime}, is called the mean of the random variable \mathbf{X} and is usually denoted by μ.
b. Moments About the Mean. The rth moment about the mean, usually denoted by μ_{r}, is defined as

$$
\mu_{r}=E\left[(\mathbf{X}-\mu)^{r}\right]=\sum_{x}(x-\mu)^{r} f(x)
$$

if \mathbf{X} is discrete and

$$
\mu_{r}=E\left[(\mathbf{X}-\mu)^{r}\right]=\int_{-\infty}^{\infty}(x-\mu)^{r} f(x) d x
$$

if \mathbf{X} is continuous.
The second moment about the mean, μ_{2}, is given by

$$
\mu_{2}=E\left[(\mathbf{X}-\mu)^{2}\right]=\mu_{2}^{\prime}-\mu^{2}
$$

and is called the variance of the random variable \mathbf{X}, and is denoted by σ^{2}. The square root of the variance, σ, is called the standard deviation.

Theorems

1. $\sigma^{2}{ }_{c \mathrm{x}}=c^{3} \sigma^{2} \mathrm{x}$
2. $\sigma_{c+\mathrm{x}}^{2}=\sigma^{2} \mathrm{x}$
3. $\sigma^{2}{ }_{a \mathrm{X}+b}=a^{2} \sigma^{2} \mathrm{x}$

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References: Taylor Ch. 5

Gaussian Integrals

Factorial Approximations

$n!\approx(2 \pi n)^{1 / 2} n^{n} \exp \left[-n+\frac{1}{12 n}+O\left(\frac{1}{n^{2}}\right)\right]$
$\log (n!) \approx \frac{1}{2} \log (2 \pi)+\left(n+\frac{1}{2}\right) \log (n)-n+\frac{1}{12 n}+O\left(\frac{1}{n^{2}}\right)$
$\log (n!) \approx n \log (n)-n($ for all terms decreasing faster than linearly with n$)$

Gaussian Integrals

$$
\begin{aligned}
& I_{m}=2 \int_{0}^{\infty} x^{m} \exp \left(-x^{2}\right) d x \quad ; \mathrm{m}>-1 \\
& I_{m}=2 \int_{0}^{\infty} y^{n} \exp (-y) d y \equiv \Gamma(n+1) \quad ; x^{2} \equiv y, 2 d x=y^{1 / 2} d y, \quad n \equiv \frac{1}{2}(m-1) \\
& I_{0}=\Gamma\left(n=\frac{1}{2}\right)=\sqrt{\pi} \quad ; \mathrm{m}=0, n=-\frac{1}{2} \\
& I_{2 k}=\Gamma\left(k+\frac{1}{2}\right)=(k-1 / 2)(k-3 / 2) \ldots(3 / 2)(1 / 2) \sqrt{\pi} \quad ; \text { even } \mathrm{m} \quad \mathrm{~m}=2 \mathrm{k}>0, n=k-\frac{1}{2} \\
& I_{2 k+1}=\Gamma(k+1)=k!\quad ; \text { odd } \mathrm{m} \quad \mathrm{~m}=2 \mathrm{k}+1>0, n=k \geq 0
\end{aligned}
$$

Gaussian Distribution Function

Figure 5.10. Two normal, or Gauss, distributions.

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as $N \rightarrow \infty$ and $d x \rightarrow 0$

Defining the Gaussian distribution function in Mathcad

Measure Data:

Normal Distribution Parameters:

Histogram Calculations:

I suggest you "investigate" these with the Mathcad sheet

Number of intervals:	$\mathrm{M}:=$ floor $\left(\frac{1}{\mathrm{~N}^{2.5}}\right)+2 \quad$on the web site $\mathrm{M}=4.000$	$\mathrm{~m}:=0 . .(\mathrm{M})$
Interval spacing:	$\Delta \mathrm{x}:=\left(\frac{\text { ceil }(\max (\mathrm{x}))-\text { floor }(\min (\mathrm{x}))}{\mathrm{M}}\right)$	$\Delta \mathrm{x}=2.500$

Calculate Intervals:	$\operatorname{Int}_{\mathrm{m}}:=\operatorname{floor}(\min (\mathrm{x}))+\mathrm{m} \cdot \Delta \mathrm{x}$
Calculate	$\mathrm{F}:=\operatorname{hist}(\operatorname{Int}, \mathrm{x})$
Frequencies:	

Gaussian Distribution Function:

Define distribution
function:

Morm $(A, \mu, \sigma, x):=\frac{\mathrm{A}}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \exp \left[\frac{-(\mathrm{x}-\mu)^{2}}{2 \cdot \sigma^{2}}\right]$
Maximum of distribution function:

Alternative Distribution Function:

Distribution
function:

Binomial	$\mathrm{p}:=.68$	$\nu:=15$
Poisson	$\lambda:=10$	
Cauchy	$1:=\mu$	S
Chi-squared	$\mathrm{d}:=\sigma$	

"Measurements":
$\mathrm{x}_{\mathrm{b}}:=\operatorname{rbinom}(\mathrm{N}, \nu, \mathrm{p})$
$\mathrm{x}_{\mathrm{p}}:=\operatorname{rpois}(\mathrm{N}, \lambda)$
$\mathrm{x}_{\mathrm{c}}:=\operatorname{rcauchy}(\mathrm{N}, 1, \mathrm{~s})$
$x_{x}:=\operatorname{rpois}(N, \lambda)$

Frequencies:
$\mathrm{F}_{\mathrm{b}}:=\operatorname{hist}\left(\operatorname{Int}, \mathrm{x}_{\mathrm{b}}\right)$
$\mathrm{F}_{\mathrm{p}}:=\operatorname{hist}\left(\right.$ Int, $\left.\mathrm{x}_{\mathrm{p}}\right)$
$\mathrm{F}_{\mathrm{c}}:=\operatorname{hist}\left(\operatorname{Int}, \mathrm{X}_{\mathrm{c}}\right)$
$\mathrm{F}_{\chi}:=\operatorname{hist}\left(\operatorname{Int}, \mathrm{x}_{\chi}\right)$

Using Mathcad to define other common distribution functions.

Consider the limiting distribution function as $\mathbf{N} \rightarrow \mathrm{db}$ and $\Delta_{\mathrm{k}} \rightarrow \mathbf{0}$

x

Poisson Distribution

Gaussian Distribution Moments

Consider the Gaussian distribution function

$$
G_{\bar{X} \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[(x-\bar{X})^{2} / 2 \sigma^{2}\right]
$$

Use the normalization condition to evaluate the normalization constant (see Taylor, p. 132)

$$
\begin{gathered}
1=\int_{-\infty}^{\infty} G_{\bar{X} \sigma}(x) d x=\int_{-\infty}^{\infty} N \exp \left[-(x-\bar{X})^{2} / 2 \sigma^{2}\right] d x \\
1 \xrightarrow{y \equiv x-\bar{X}, d y \equiv d x} \int_{-\infty}^{\infty} N \exp \left[-y^{2} / 2 \sigma^{2}\right] d x \\
1 \xrightarrow{z \equiv y / \sigma, d z \equiv d y / \sigma} \int_{-\infty}^{\infty} N \exp \left[-z^{2} / 2\right] d z=N \sigma \sqrt{2 \pi} \\
N=1 /(\sigma \sqrt{2 \pi})
\end{gathered}
$$

The mean, $\dot{\mathrm{X}}$, is the first moment of the Gaussian distribution function (see Taylor, p. 134)

$$
\langle x\rangle=\int_{-\infty}^{\infty} x G_{\bar{X} \sigma}(x) d x=\bar{X}
$$

The standard deviation, σ_{x}, is the standard deviation of the mean of the Gaussian distribution function (see Taylor, p. 143)

$$
\sigma_{x}^{2}=\int_{-\infty}^{\infty}(x-\bar{X})^{2} G_{\bar{X} \sigma}(x) d x=\sigma^{2}
$$

When is mean x not $\mathrm{X}_{\text {best }}$?

Answer: When the distribution is not symmetric about X .

Example: Cauchy Distribution

When is mean X not $\mathrm{X}_{\text {best }} \underline{?}$

Maxwell speed distribution law is

There are three candidates for what is called the "average" value of the speed of the Maxwell speed distribution.
Firstly, by finding the maximum of the MSD (by differentiating, setting the derivative equal to zero and solving for the speed), we can determine the most probable speed. Calling this v_{mp}, we find that:
$v_{\mathrm{mp}}=\left(\frac{2 k T}{m}\right)^{1 / 2}$.
Second, we can find the mean value of v from the MSD. Calling this \bar{v} :

$$
\bar{v}=\left(\frac{8 k T}{\pi m}\right)^{1 / 2}
$$

Third and finally, we can find the root mean square of the speed by finding the expected value of v^{2}. (Alternatively, and much simpler, we can solve it by using the equipartition theorem.) Calling this $v_{\text {rms }}$: $v_{\mathrm{rms}}=\left(\frac{3 k T}{m}\right)^{1 / 2}$.
Notice that $v_{\mathrm{mp}}<\bar{v}<v_{\mathrm{rms}}$.
These are three different ways of defining the average velocity, and they are not numerically the same. It is important to be clear about which quantity is being used.

When is mean x not $\mathrm{X}_{\text {best }}$?

Answer: When the distribution is has more than one peak.

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to Errors

A Review of Probabilities in Combination

1 head

$$
\begin{aligned}
& \text { AND } 1 \text { Four } \\
& \mathrm{P}(\mathrm{H}, 4)=\mathrm{P}(\mathrm{H}) * \mathrm{P}(4)
\end{aligned}
$$

1 Six

1 Four

$$
P(6,4)=P(6)+P(4)
$$

(true for a "mutually exclusive" single role)

1 head
$P(H, 4)=P(H)+P(4)-P(H$ and 4)

1 Four
(true for a "non-mutually exclusive" events)

NOT 1 Six
$P($ NOT 6$)=1$ - $P(6)$

[^0]\qquad

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis for:

- Mean
- Standard deviation
- Standard deviation of the mean (SDOM)
- Moments and expectation values
- Error propagation formulas
- Addition of errors in quadrature (for independent and random measurements)
- Numerical values for confidence limits (t-test)
- Principle of maximal likelihood
- Central limit theorem
- Weighted distributions and Chi squared
- Schwartz inequality (i.e., the uncertainty principle) (next lecture)

Gaussian Distribution Moments

Consider the Gaussian distribution function

$$
G_{\bar{X} \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[(x-\bar{X})^{2} / 2 \sigma^{2}\right]
$$

Use the normalization condition to evaluate the normalization constant (see Taylor, p. 132)

$$
\begin{gathered}
1=\int_{-\infty}^{\infty} G_{\bar{X} \sigma}(x) d x=\int_{-\infty}^{\infty} N \exp \left[-(x-\bar{X})^{2} / 2 \sigma^{2}\right] d x \\
1 \xrightarrow{y \equiv x-\bar{X}, d y \equiv d x} \int_{-\infty}^{\infty} N \exp \left[-y^{2} / 2 \sigma^{2}\right] d x \\
1 \xrightarrow{z \equiv y / \sigma, d z \equiv d y / \sigma} \int_{-\infty}^{\infty} N \exp \left[-z^{2} / 2\right] d z=N \sigma \sqrt{2 \pi} \\
N=1 /(\sigma \sqrt{2 \pi})
\end{gathered}
$$

The mean, $\dot{\mathrm{X}}$, is the first moment of the Gaussian distribution function (see Taylor, p. 134)

$$
\langle x\rangle=\int_{-\infty}^{\infty} x G_{\bar{X} \sigma}(x) d x=\bar{X}
$$

The standard deviation, σ_{x}, is the standard deviation of the mean of the Gaussian distribution function (see Taylor, p. 143)

$$
\sigma_{x}^{2}=\int_{-\infty}^{\infty}(x-\bar{X})^{2} G_{\bar{X} \sigma}(x) d x=\sigma^{2}
$$

Standard Deviation of Gaussian Distribution

$$
\begin{align*}
& \operatorname{Prob}(\text { within } \sigma)=\int_{X-\sigma}^{X+\sigma} G_{X, \sigma}(x) d x \tag{5.32}\\
& \quad=\frac{1}{\sigma \sqrt{2 \pi}} \int_{X=\sigma}^{X+\sigma} e^{-(x-X)^{2 / 2 \sigma^{2}} d x} \tag{5.33}
\end{align*}
$$

See Sec. 10.6: Testing of Hypotheses

5 ppm or ~5 "Valid for HEP"

1\% or \sim _ 3σ "Highly Significant"

Figure 5.13. The probability $\operatorname{Prob}($ within $t \sigma)$ that a measurement of x will fall within t standard deviations of the true value $x=X$. Two common names for this function are the normal error integral and the error function, $\operatorname{erf}(t)$.

More complete Table in App. A and B

Error Function of Gaussian Distribution

Error Function: (probability that $-\mathbf{t} \sigma<\mathrm{x}<+\mathrm{t} \sigma$).
$\operatorname{Prob}($ within $t \sigma)=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{t} e^{-z^{2} / 2} d z$.

in Table at right.

t	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.5	3.0	3.5	4.0
$\operatorname{Prob}(\%)$	0	20	38	55	68	79	87	92	95.4	98.8	99.7	99.95	99.99

Figure 5.13. The probability $\operatorname{Prob}($ within $t \sigma$) that a measurement of x will fall within t standard deviations of the true value $x=X$. Two common names for this function are the normal error integral and the error function, $\operatorname{erf}(t)$.

More complete Table in App. A and B

Useful Points on Gaussian Distribution

Full Width at Half Maximum
FWHM
(See Prob. 5.12)
$\mathrm{FWHM}=2 \sigma \sqrt{2 \ln 2}=2.35 \sigma$.

Points of Inflection
 Occur at $\pm \sigma$
 (See Prob. 5.13)

Figure 5.20. The points $X \pm \sigma$ are the points of inflection of the Gauss curve; for Problem 5.13.

Error Analysis and Gaussian Distribution

Adding a Constant

$$
\begin{equation*}
q=x+A \tag{5.47}
\end{equation*}
$$

x (measured)
(b)

$$
G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}
$$

(probability of obtaining value q) $\propto e^{-[(q-A)-x]^{2} / 2 \sigma_{x}^{2}}$

$$
\begin{equation*}
=e^{-[q-(X+A)]^{2} / 2 \sigma_{x}^{2}} . \tag{5.49}
\end{equation*}
$$

$X \rightarrow X+A$

Multiplying by a Constant

$$
q=B x
$$

$$
G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2 / 2} / \sigma^{2}}
$$

(probability of obtaining value q) \propto (probability of obtaining $x=q / B$)

$$
\begin{align*}
& \propto \exp \left[-\left(\frac{q}{B}-X\right)^{2} / 2 \sigma_{x}^{2}\right] \\
& =\exp \left[-(q-B X)^{2} / 2 B^{2} \sigma_{x}^{2}\right] \tag{5.50}
\end{align*}
$$

Error Propagation: Addition

Sum of Two Variables

Consider the derived quantity Z=X + Y (with $\mathrm{X}=0$ and $\mathrm{Y}=0$)

$$
\begin{equation*}
\operatorname{Prob}(x) \propto \exp \left(\frac{-x^{2}}{2 \sigma_{x}^{2}}\right) \tag{5.51}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Prob}(y) \propto \exp \left(\frac{-y^{2}}{2 \sigma_{y}^{2}}\right) . \tag{5.52}
\end{equation*}
$$

(a)

(c)

Error in Z:
Multiple two probabilities

(b)

$$
\operatorname{Prob}(x, y)=\operatorname{Prob}(x) \cdot \operatorname{Prob}(x) \propto \exp \left[-\frac{1}{2}\left(\frac{x^{2}}{\sigma_{x}{ }^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}\right)\right]
$$

$$
\propto \exp \left[-\frac{1}{2}\left(\frac{(x+y)^{2}}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)}-z^{2}\right)\right]
$$

$$
\propto \exp \left[-\frac{1}{2}\left(\frac{(x+y)^{2}}{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)}\right)\right] \exp \left[\frac{z^{2}}{2}\right]
$$

General Formula for Error Propagation

How do we determine the error of a derived quantity $Z(X, Y, \ldots)$ from errors in X, Y, \ldots ?
General formula for error propagation see [Taylor, Secs. 3.5 and 3.9]
Uncertainty as a function of one variable [Taylor, Sec. 3.5]

1. Consider a graphical method of estimating error
a) Consider an arbitaray function $q(x)$
b) Plot $q(x)$ vs. x.
c) On the graph, label:
(1) $q_{\text {best }}=q\left(x_{\text {best }}\right)$
(2) $\mathrm{q}_{\text {hi }}=\mathrm{q}\left(\mathrm{x}_{\text {best }}+\delta \mathrm{x}\right)$
(3) $\mathrm{q}_{\text {low }}=\mathrm{q}\left(\mathrm{x}_{\text {best }}-\delta \mathrm{x}\right)$
d)Making a linear approximation:

$$
\begin{aligned}
& q_{h i}=q_{\text {best }}+\text { slope } \cdot \delta x=q_{\text {best }}+\left(\frac{\partial q}{\partial x}\right) \\
& q_{\text {low }}=q_{\text {best }}-\text { slope } \cdot \delta x=q_{\text {best }}-\left(\frac{\partial q}{\partial x}\right)
\end{aligned}
$$

e) Therefore:

$$
\delta q=\left|\frac{\partial q}{\partial x}\right| \cdot \delta x
$$

Note the absolute value.

Figure 3.3. Graph of $q(x)$ vs x. If x is measured as $x_{\text {best }} \pm \delta x$, then the best estimate for $q(x)$ is $q_{\text {best }}=q\left(x_{\text {bess }}\right)$. The largest and smallest probable values of $q(x)$ correspond to the values $x_{\text {best }} \pm \delta x$ of x.

General Formula for Error Propagation

General formula for uncertainty of a function of one variable

Can you now derive for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]
2. Multiplication and Division [Taylor, p. 51]
3. Multiplication by a constant (exact number) [Taylor, p. 54]
4. Exponentiation (powers) [Taylor, p. 56]

General Formula for Multiple Variables

Uncertainty of a function of multiple variables [Taylor, Sec. 3.11]

1. It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a function of several variables

$$
\delta q(x, y, z, \ldots)=\left|\frac{\partial q}{\partial x}\right| \cdot \delta x+\left|\frac{\partial q}{\partial y}\right| \cdot \delta y+\left|\frac{\partial q}{\partial z}\right| \cdot \delta z+\ldots
$$

[Taylor, Eq. 3.47]
2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a function of several variables

$$
\delta q(x, y, z, \ldots) \leq\left|\frac{\partial q}{\partial x}\right| \cdot \delta x+\left|\frac{\partial q}{\partial y}\right| \cdot \delta y+\left|\frac{\partial q}{\partial z}\right| \cdot \delta z+\ldots
$$

[Taylor, Eq. 3.47]
where the equals sign represents an upper bound, as discussed above.
3. For a function of several independent and random variables

$$
\delta q(x, y, z, \ldots)=\sqrt{\left(\frac{\partial q}{\partial x} \cdot \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \cdot \delta y\right)^{2}+\left(\frac{\partial q}{\partial z} \cdot \delta z\right)^{2}+\ldots} \text { [Taylor, Eq. 3.48] }
$$

Again, the proof is left for Ch. 5.

Error Propagation: General Case

How do we determine the error of a derived quantity $Z(X, Y, \ldots)$ from errors in X, Y, \ldots ?
Consider the arbitrary derived quantity $q(x, y)$ of two independent random variables x and y.

Expand $q(x, y)$ in a Taylor series about the expected values of x and y (i.e., at points near X and Y).

$$
\left.q(x, y)=q(X, Y)+\left.\left(\frac{\partial q}{\partial x}\right)\right|_{X}(x)-X\right)+\left.\left(\frac{\partial q}{\partial y}\right)\right|_{Y}(y-Y)
$$

Fixed Distribution centered at X with width σ_{X}
Product of Two Variables

$$
\delta q(x, y)=\sigma_{q}=\sqrt{\underbrace{}_{0} q(X, Y)+\left[\left.\left(\frac{\partial q}{\partial x}\right)\right|_{X} \sigma_{x}\right]^{2}+\left[\left.\left(\frac{\partial q}{\partial y}\right)\right|_{Y} \sigma_{y}\right]^{2}}
$$

SDOM of Gaussian Distribution

Standard Deviation of the Mean

Each measurement has similar $\sigma_{\mathrm{Xi}}=\sigma_{\dot{\mathrm{x}}}$

$$
\sigma_{x_{1}}=\cdots=\sigma_{x_{j}}=\sigma_{x^{*}} \quad G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}
$$

and similar partial derivatives

$$
\begin{align*}
& \frac{\partial \bar{x}}{\partial x_{1}}=\cdots=\frac{\partial \bar{x}}{\partial x_{N}}=\frac{1}{N} . \\
& \sigma_{\bar{x}}=\sqrt{\left(\frac{1}{N} \sigma_{x}\right)^{2}+\cdots+\left(\frac{1}{N} \sigma_{x}\right)^{2}} \\
& \quad=\sqrt{N \frac{\sigma_{x}^{2}}{N^{2}}}=\frac{\sigma_{x}}{\sqrt{N}} \tag{5.66}
\end{align*}
$$

The SDOM decreases as the square root of the number of measurements.
That is, the relative width, σ / \dot{X}, of the distribution gets narrower as more measurements are made.

Two Key Theorems from Probability

Central Limit Theorem

For random, independent measurements (each with a well-define expectation value and well-defined variance), the arithmetic mean (average) will be approximately normally distributed.

Principle of Maximum Likelihood
Given the N observed measurements, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{N}}$, the best estimates for \dot{X} and σ are those values for which the observed $x_{1}, x_{2}, \ldots x_{N}$, are most likely.

Mean of Gaussian Distribution as "Best Estimate"

Principle of Maximum Likelihood

To find the most likely value of the mean (the best estimate of \dot{x}), find X that yields the highest probability for the data set.

Consider a data set $\quad\left\{x_{1}, x_{2}, x_{3} \ldots x_{N}\right\}$
Each randomly distributed with

$$
\operatorname{Prob}_{X, \sigma}\left(x_{i}\right)=G_{X, \sigma}\left(x_{i}\right) \equiv \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(x_{i}-X\right)^{2} / 2 \sigma} \propto \frac{1}{\sigma} e^{-\left(x_{i}-X\right)^{2} / 2 \sigma}
$$

The combined probability for the full data set is the product

$$
\begin{aligned}
& \operatorname{Prob}_{X, \sigma}\left(x_{1}, x_{2} \ldots x_{N}\right)=\operatorname{Prob}_{X, \sigma}\left(x_{1}\right) \times \operatorname{Prob}_{X, \sigma}\left(x_{2}\right) \times \ldots \times \operatorname{Prob}_{X, \sigma}\left(x_{N}\right) \\
& \quad \propto \frac{1}{\sigma} e^{-\left(x_{1}-X\right)^{2} / 2 \sigma} \times \frac{1}{\sigma} e^{-\left(x_{2}-X\right)^{2} / 2 \sigma} \times \ldots \times \frac{1}{\sigma} e^{-\left(x_{N}-X\right)^{2} / 2 \sigma}=\frac{1}{\sigma^{N}} e^{\sum-\left(x_{i}-X\right)^{2} / 2 \sigma}
\end{aligned}
$$

Best Estimate of X is from maximum probability or minimum summation

| Minimize
 Sum | $\sum_{i=1}^{N}\left(x_{i}-X\right)^{2 / \sigma}$ | Solve for
 derivative wrst
 X set to 0$\sum_{i=1}^{N}\left(x_{i}-X\right)=0$ |
| :--- | :--- | :--- | | Best |
| :--- |
| estimate |
| of X |$\quad X_{b s s t}=\sum x_{i} / N$

Uncertainty of "Best Estimates" of Gaussian Distribution

Principle of Maximum Likelihood

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution), find σ_{x} that yields the highest probability for the data set.
Consider a data set $\quad\left\{x_{1}, x_{2}, x_{3} \ldots x_{N}\right\}$
The combined probability for the full data set is the product

$$
\begin{aligned}
& \operatorname{Prob}_{X_{,} \sigma}\left(x_{1}, x_{2} \ldots x_{N}\right)=\operatorname{Prob}_{X, \sigma}\left(x_{1}\right) \times \operatorname{Prob}_{X, \sigma}\left(x_{2}\right) \times \ldots \times \operatorname{Prob}_{X, \sigma}\left(x_{N}\right) \\
& \propto \frac{1}{\sigma} e^{-\left(x_{1}-X\right)^{2} / 2 \sigma} \times \frac{1}{\sigma} e^{-\left(x_{2}-X\right)^{2} / 2 \sigma} \times \ldots \times \frac{1}{\sigma} e^{-\left(x_{N}-X\right)^{2} / 2 \sigma}=\frac{1}{\sigma^{N}} e^{\sum-\left(x_{i}-X\right)^{2} / 2 \sigma}
\end{aligned}
$$

Best Estimate of X is from maximum probability or minimum summation
$\begin{array}{lll}\operatorname{Minimize} \\ \text { Sum }\end{array} \quad \sum_{i=1}^{N}\left(x_{i}-X\right)^{2} / \sigma \quad \begin{aligned} & \text { Solve for } \\ & \text { derivative } \\ & \text { wrst } \mathrm{X} \text { set to } 0\end{aligned} \quad \sum_{i=1}^{N}\left(x_{i}-X\right)=0 \begin{aligned} & \text { Best } \\ & \text { estimate } \\ & \text { of } \mathrm{X}\end{aligned} \quad X_{b e s t}=\sum x_{i} / N$
Best Estimate of σ is from maximum probability or minimum summation

| Minimize
 Sum | $\sum_{i=1}^{N}\left(x_{i}-X\right)^{2} / \sigma$ | Solve for
 derivative
 wrst σ set to 0 | See | Best
 estimate 5.26
 of σ |
| :--- | :--- | :--- | :--- | :--- |$\quad \sigma_{\text {best }}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-X\right)^{2 / \sigma}$

Intermediate Lab PHYS 3870

Combining Data Sets Weighted Averages

References: Taylor Ch. 7

Weighted Averages

Question: How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty?

Weighted Averages

Consider two measurements of the same quantity, described by a random Gaussian distribution

$$
\left\langle x_{1}\right\rangle \pm \sigma_{x 1} \quad \text { and }\left\langle x_{2}\right\rangle \pm \sigma_{x 2} \quad \text { Assume negligible systematic errors. }
$$

The probability of measuring two such measurements is

$$
\begin{gathered}
\operatorname{Prob}_{x}\left(x_{1}, x_{2}\right)=\operatorname{Prob}_{x}\left(x_{1}\right) \operatorname{Prob}_{x}\left(x_{2}\right) \\
=\frac{1}{\sigma_{1} \sigma_{2}} e^{-\chi^{2} / 2} \text { where } \chi^{2} \equiv\left[\frac{\left(x_{1}-X\right)}{\sigma_{1}}\right]^{2}+\left[\frac{\left(x_{2}-X\right)}{\sigma_{2}}\right]^{2}
\end{gathered}
$$

To find the best value for χ, find the maximum Prob or minimum χ^{2}

Note: x^{2}, or Chi squared, is the sum of the squares of the deviations from the mean, divided by the corresponding uncertainty.

Such methods are called "Methods of Least Squares". They follow directly from the Principle of Maximum Likelihood.

Weighted Averages

The probability of measuring two such measurements is

$$
\begin{gathered}
\operatorname{Prob}_{x}\left(x_{1}, x_{2}\right)=\operatorname{Prob}_{x}\left(x_{1}\right) \operatorname{Prob}_{x}\left(x_{2}\right) \\
=\frac{1}{\sigma_{1} \sigma_{2}} e^{-\chi^{2} / 2} \text { where } \chi^{2} \equiv\left[\frac{\left(x_{1}-X\right)}{\sigma_{1}}\right]^{2}+\left[\frac{\left(x_{2}-X\right)}{\sigma_{2}}\right]^{2}
\end{gathered}
$$

To find the best value for χ, find the maximum Prob or minimum χ^{2}

Best Estimate of x is from maximum probibility or minimum summation

Minimize Sum

Solve for derivative wrst \underline{y} set to 0 Solve for best estimate of \underline{x}

$$
\chi^{2} \equiv\left[\frac{\left(x_{1}-X\right)}{\sigma_{1}}\right]^{2}+\left[\frac{\left(x_{2}-X\right)}{\sigma_{2}}\right]^{2} \quad 2\left[\frac{\left(x_{1}-X\right)}{\sigma_{1}}\right]+2\left[\frac{\left(x_{2}-X\right)}{\sigma_{2}}\right]=0 \quad \mathrm{X}_{b \text { est }}=\left(\frac{x_{1}}{\sigma_{1}{ }^{2}}+\frac{x_{2}}{\sigma_{2}{ }^{2}}\right) /\left(\frac{1}{\sigma_{1}{ }^{2}}+\frac{1}{\sigma_{2}{ }^{2}}\right)
$$

This leads to

$$
x_{W_{-} a v g}=\frac{w_{1} x_{1}+w_{2} x_{2}}{w_{1}+w_{2}}=\frac{\sum w_{i} x_{i}}{\sum w_{i}} \text { where } w_{i}=1 /\left(\sigma_{i}\right)^{2}
$$

Note: If $w_{1}=w_{2}$, we recover the standard result $X_{\text {wavg }}=(1 / 2)\left(X_{1}+X_{2}\right)$
Finally, the width of a weighted average distribution is

$$
\sigma_{\text {wieg hted avg }}=\frac{1}{\sum_{i} w_{i}}
$$

Weighted Averages on Steroids

A very powerful method for combining data from different sources with different methods and uncertainties (or, indeed, data of related measured and calculated quantities) is Kalman filtering.

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate. The estimate is updated using a state transition model and measurements. $\mathrm{x}_{\mathrm{k} \mid \mathrm{k}-1}$ denotes the estimate of the system's state at time step k before the $k^{\text {th }}$ measurement y_{k} has been taken into account; $P_{k \mid k-1}$ is the corresponding uncertainty. --Wikipedia, 2013.

Ludger Scherliess, of USU Physics, is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather .

Intermediate Lab PHYS 3870

Rejecting Data
 Chauvenet's Criterion

References: Taylor Ch. 6

Rejecting Data

What is a good criteria for rejecting data?

Question: When is it "reasonable" to discard a seemingly "unreasonable" data point from a set of randomly distributed measurements?

- Never
- Whenever it makes things look better
- Chauvenet's criterion provides a (quantitative) compromise

Rejecting Data

Zallen's Criterion

Question: When is it "reasonable" to discard a seemingly "unreasonable" data point from a set of randomly distributed measurements?

Often in physics, experimental observations are termed "anomalous" before they are understood. Once theory succeeds in explaining and illuminating the observations, they are no longer "anomalous'" and instead come to be regarded as "obvious." A crucial paper can trigger such an "anomalous \rightarrow obvious" transition, and in the present case that key role was played by a 1975 paper by Scher and Montroll. That landmark paper has become basic to our understanding of a striking characteristic of carrier motion (now called dispersive transport) which is a common occurrence in amorphous semiconductors, though foreign to our experience with crystals.

Rejecting Data

Disney's Criterion

Question: When is it "reasonable" to discard a seemingly "unreasonable" data point from a set of randomly distributed measurements?

- Whenever it makes things look better

Disney's First Law

Wishing will make it so.
Disney's Second Law
Dreams are more colorful than reality.

Rejecting Data

Chauvenet's Criterion

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50%.

Consider a set of N measurements of a single quantity
$\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \mathrm{x}_{\mathrm{N}}\right\}$
Calculate $\langle x\rangle$ and σ_{x} and then determine the fractional deviations from the mean of all the points:

$$
x_{f r a c _d e v}=\frac{\left|x_{i}-\bar{x}\right|}{\sigma_{x}}
$$

For the suspect point(s), $x_{\text {suspect }}$, find the probability of such a point occurring in N measurements
$\mathrm{n}=\left(\right.$ expected number as deviant as $\left.x_{\text {suspect }}\right)$
$=\mathrm{N} \operatorname{Prob}\left(\right.$ outside $\left.x_{\text {suspect }} \cdot \sigma_{x}\right)$

Error Function of Gaussian Distribution

Error Function: (probability that $-\mathbf{t \sigma}<\mathbf{x}<+\mathbf{t \sigma}$).

$$
\begin{equation*}
\operatorname{Prob}(\text { within } t \sigma)=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{t} e^{-z^{2} / 2} d z \tag{5.35}
\end{equation*}
$$

Figure 5.13. The probability Prob (within $t \sigma$) that a measurement of x will fall within t stan-
Probable Error: (probability that $-0.67 \sigma<x<+0.67 \sigma$) is 50%. dard deviations of the true value $x=X$. Two common names for this function are the normal error integral and the error function, $\operatorname{erf}(t)$.

Chauvenet's Criterion

The probability that a data point is likely to fall outside a given deviation is:

$$
\operatorname{Prob}\left(\mathrm{x}_{\text {test }}, \mathrm{X}, \sigma\right):=1-\int_{-\left|\mathrm{x}_{\text {test }}\right|}^{\left|\mathrm{x}_{\text {test }}\right|} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \mathrm{e}^{-\left[\frac{(\mathrm{x}-\mathrm{X})^{2}}{2 \cdot \sigma^{2}}\right]_{\mathrm{dx}}}
$$

$\mathrm{x}=$

	0
0	45.7
1	46.2
2	46.9
3	54.8
4	46.1
5	45.2
6	45.4
7	47
8	45.9
9	46.3

Frac_Dev =

	0
0	0.468
1	0.281
2	0.019
3	2.936
4	0.318
5	0.655
6	0.58
7	0.019
8	0.393
9	0.243

$\operatorname{Prob}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\text {masn }}, \sigma_{\mathrm{x}}\right)=$

0.68
0.61
0.507
$1.66 \cdot 10^{-3}$
0.625
0.744
0.719
0.493
0.653
0.596

Including all data points

$$
\begin{aligned}
& x_{\text {xpasa }}=\operatorname{mean}(\mathrm{x})=46.95 \mathrm{~m} \\
& \sigma_{\mathrm{x}}:=\operatorname{stdev}(\mathrm{x})=2.673 \mathrm{~m}
\end{aligned}
$$

Excluding the rejected data point

$$
\begin{aligned}
& \mathrm{X}_{\operatorname{man}}:=\operatorname{mean}\left(\mathrm{X}_{\mathrm{CH}}\right)=46.078 \mathrm{~m} \\
& \sigma_{\mathrm{x}}:=\operatorname{stdev}\left(\mathrm{X}_{\mathrm{CH}}\right)=0.577 \mathrm{~m}
\end{aligned}
$$

Chauvenet's Criterion-Example 1

Example: Ten Measurements of a Length

A student makes 10 measurements of one length x and gets the results (all in mm)

$$
46,48,44,38,45,47,58,44,45,43 .
$$

Noticing that the value 58 seems anomalously large, he checks his records but can find no evidence that the result was caused by a mistake. He therefore applies Chauvenet's criterion. What does he conclude?

Accepting provisionally all 10 measurements, he computes

$$
\bar{x}=45.8 \text { and } \sigma_{x}=5.1
$$

Chauvenet's Details (1)

The difference between the suspect value $x_{\mathrm{sas}}=58$ and the mean $\bar{x}=45.8$ is 12.2 , or 2.4 standard deviations; that is,

$$
t_{\text {sus }}=\frac{x_{\text {sus }}-\bar{x}}{\sigma_{x}}=\frac{58-45.8}{5.1}=2.4 .
$$

Referring to the table in Appendix A, he sees that the probability that a measurement will differ from \bar{x} by $2.4 \sigma_{x}$ or more is

$$
\begin{aligned}
\operatorname{Prob}(\text { outside } 2.4 \sigma) & =1-\operatorname{Prob}(\text { within } 2.4 \sigma) \\
& =1-0.984 \\
& =0.016
\end{aligned}
$$

In 10 measurements, he would therefore expect to find only 0.16 of one measurement as deviant as his suspect result. Because 0.16 is less than the number 0.5 set by Chauvenet's criterion, he should at least consider rejecting the result.

If he decides to reject the suspect 58 , then he must recalculate \bar{x} and σ_{x} as

$$
\bar{x}=44.4 \text { and } \sigma_{x}=2.9 .
$$

As you would expect, his mean changes a bit, and his standard deviation drops appreciably.

Chauvenet's Criterion—Details (2)

Consider the following example of the application of Chauvenet's Criterion to determine if a certain datum should be rejected.

A set of $\mathrm{N}=10$ measurements of a length are made. The data are assumed to be described by a randon Gaussian distribution.

Enter Data

Number of data points:	$N=10$
Data indices:	$i:=0 . .(N-1)$

$$
N:=10
$$

$$
\mathrm{i}:=0 . .(\mathrm{N}-1)
$$

Enter data set: $\quad x_{1}:=$

$45.7 \cdot \mathrm{~m}$
$46.2 \cdot \mathrm{~m}$
$46.9 \cdot \mathrm{~m}$
$54.8 \cdot \mathrm{~m}$
$46.1 \cdot \mathrm{~m}$
$45.2 \cdot \mathrm{~m}$
$45.4 \cdot \mathrm{~m}$
$47.0 \cdot \mathrm{~m}$
$45.9 \cdot \mathrm{~m}$
$46.3 \cdot \mathrm{~m}$

Calculate mean:
Calculate standard deviation:

$$
\begin{gathered}
\mathrm{x}_{\text {mean }}:=\operatorname{mean}(\mathrm{x})=46.95 \mathrm{~m} \\
\sigma_{\mathrm{x}}:=\operatorname{stdev}(\mathrm{x})=2.673 \mathrm{~m} \\
\text { Frac_Dev }_{\mathrm{i}}:=\left|\frac{\mathrm{x}_{1}-\mathrm{x}_{\text {mean }}}{\sigma_{\mathrm{x}}}\right|
\end{gathered}
$$

Calculate fractional deviation from the mean:

To apply Chauvenet's criterion, we first sort the data x in order of ascending values of the fractional deviation from the mean. The probability that a data point is likely to fall outside a given deviation is then calculated. We then determine how many data that should be eliminated based on Chauvenet's

Sort data in ascending order

The probability that a data point is likely to fall outside a given deviation is:

Apply Chauvenet's criterion:

Determine how many data points should be rejected:

$$
\mathrm{x}_{\text {order }}:=\operatorname{csort}\left(\text { augment }\left(\frac{\mathrm{x}}{\mathrm{~m}}, \text { Frac_Dev }\right), 1\right)
$$

Chauvenet's Criterion Details (3)

$\mathrm{x}=$		- m	Frac_Dev		$\operatorname{Prob}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\text {mean }}, \sigma_{\mathrm{x}}\right)$		$\operatorname{Reject}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\text {mean }}, \sigma^{\text {a }}\right.$	
	0			0	0.68	6.8		0
0	45.7		0	46.759	0.61	6.105	0	"Kеep"
1	46.2		1	28.055	0.507	5.075	1	"Kеep"
2	46.9		2	1.87	$1.66 \cdot 10^{-3}$	0.017	2	"Keep"
3	54.8		3	293.645	0.625	6.247	3	"Reject"
4	46.1		4	31.796	0.744	7.436	4	"Kеep"
5	45.2		5	65.462	0.719	7.19	5	"Keep"
6	45.4		6	57.981	0.493	4.925	6	"Кеер"
7	47		7	1.87	0.653	6.528	7	"Keep"
8	45.9		8	39.277	0.596	5.961	8	"Kеep"
9	46.3		9	24.315			9	"Kеep"

$$
\mathrm{N}_{\text {reject }}:=\sum_{\mathrm{i}=0}^{\mathrm{N}-1} \text { if }\left[\left(\mathrm{N} \cdot \operatorname{Prob}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\text {mean }}, \sigma_{\mathrm{x}}\right)\right)>50 \cdot \%, 0,1\right]=1
$$

$\operatorname{Reject}(\mathrm{x}, \mathrm{X}, \sigma, \mathrm{N}):=$ if $[(\mathrm{N} \cdot \operatorname{Prob}(\mathrm{x}, \mathrm{X}, \sigma))>50 \cdot \%$, Keep", "Reject" $]$
$\mathrm{x}=$

	0
0	45.7
1	46.2
2	46.9
3	54.8
4	46.1
5	45.2
6	45.4
7	47
8	45.9
9	46.3

$\underline{\text { Frac_Dev }}=$
$\operatorname{Prob}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\text {mean }}, \sigma_{\mathrm{x}}\right)=\mathrm{N} \cdot \operatorname{Prob}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\text {mean }}, \sigma_{\mathrm{x}}\right)=\operatorname{Reject}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\text {mean }}, \sigma_{\mathrm{x}}, \mathrm{N}\right)=$
m

	0
0	46.759
1	28.055
2	1.87
3	293.645
4	31.796
5	65.462
6	57.981
7	1.87
8	39.277
9	24.315

0.68
0.61
0.507
$1.66 \cdot 10^{-3}$
0.625
0.744
0.719
0.493
0.653
0.596
---:
---:
| ---: |\quad| 7.936 |
| ---: |

	0
0	"Keep"
1	"Keep"
2	"Keep"
3	"Reject"
4	"Keep"
5	"Keep"
6	"Keep"
7	"Keep"
8	"Keep"
9	"Keep"

Chauvenet's CriterionExample 2

Now recalculate the mean and standard deviation after rejecting $\mathrm{N}_{\text {reject }}$ data points.

Truncated data set indices and data array:

$$
\mathrm{j}:=0 . . \mathrm{N}-1-\mathrm{N}_{\mathrm{reject}} \quad \quad \mathrm{X}_{\mathrm{CH}_{\mathrm{j}}}:=\mathrm{x}_{\text {order }_{\mathrm{j}, 0}}
$$

The final analysis is:

Including all data points
Number data points:
Mean:
Standard Deviation:
$\mathrm{N}=10$
$\mathrm{x}_{\text {ммема }}:=\operatorname{mean}(\mathrm{x})=46.95 \mathrm{~m}$
$\sigma_{w}:=\operatorname{stdev}(\mathrm{x})=2.673 \mathrm{~m}$

Excluding the rejected data point

$$
\begin{aligned}
& \mathrm{N}-\mathrm{N}_{\text {reject }}=9 \\
& \mathrm{X}_{\text {mean }}:=\operatorname{mean}\left(\mathrm{X}_{\mathrm{CH}}\right)=46.078 \\
& \sigma_{\mathrm{N}}:=\operatorname{stdev}\left(\mathrm{X}_{\mathrm{CH}}\right)=0.577
\end{aligned}
$$

Intermediate Lab PHYS 3870

Summary of Probability Theory

Probabilit hetion (Discrete Case)

The ranoom variable \mathbf{X} will be called a discrete random variable if there exists a function f such that $f\left(x_{i}\right) \geq 0$ and $\sum_{i} f\left(x_{i}\right)=1$ for $i=1,2,3, \ldots$ and such that for any event E,

$$
P(E)=P[\mathrm{X} \text { is in } E]=\sum_{B} f(x)
$$

where \sum_{B} means sum $f(x)$ over those values x_{i} that are in E and where $f(x)=P[\mathrm{X}=x]$. The probability that the value of X is some real number x, is given by $f(x)=P[\mathrm{X}=x]$, where f is called the probability function of the random variable \mathbf{X}.

Cumulative Distribution Funclion (Discrele Case)
The probability that the value of a random variable \mathbf{X} is less than or equal to some real number x is defined as

$$
\begin{aligned}
F(x) & =P(\mathrm{X} \leq x) \\
& =\Sigma f\left(x_{i}\right), \quad-\infty<x<\infty,
\end{aligned}
$$

where the summation extends over those values of i such that $x_{i} \leq x$.
Probability Density (Conlinuous Case)
The random variable X will be called a continuous random variable if there exists a function f such that $f(x) \geq 0$ and $\int_{--}^{-} f(x) d x=1$ for all x in interval $-\infty<x<\infty$ and such that for any event E

$$
P(E)=P(\mathrm{X} \text { is in } E)=\int_{S} f(x) d x .
$$

$f(x)$ is called the probability density of the random variable \mathbf{X}. The probability that \mathbf{X} assumes any given value of x is equal to zero and the probability that it assumes a value on the interval from a to b, including or excluding either end point, is equal to

$$
\int_{a}^{b} f(x) d x
$$

Probability Density (Conlinuous Case)

The random variable \mathbf{X} will be called a continuous random variable if there exists a function f such that $f(x) \geq 0$ and $\int_{-\infty}^{\infty} f(x) d x=1$ for all x in interval $-\infty<x<\infty$ and such that for any event E

$$
P(E)=P(\mathrm{X} \text { is in } E)=\int_{s} f(x) d x .
$$

$f(x)$ is called the probability density of the random variable X . The probability that X assumes any given value of x is equal to zero and the probability that it assumes a value on the interval from a to b, including or excluding either end point, is equal to

$$
\int_{a}^{b} f(x) d x .
$$

Cumulative Distribution Function (Continuous Case)

The probability that the value of a random variable X is less than or equal to some resl number x is defined as

$$
\begin{aligned}
F(x) & =P(\mathbf{X} \leq x), \quad-\infty<x<\infty \\
& =\int_{-\infty}^{x} f(x) d x
\end{aligned}
$$

From the cumulative distribution, the density, if it exists, can be found from

$$
f(x)=\frac{d F(x)}{d x} .
$$

From the cumulative distribution

$$
\begin{aligned}
P(a \leq \mathrm{X} \leq b) & =P(\mathrm{X} \leq b)-P(\mathrm{X} \leq a) \\
& =F(b)-F(a)
\end{aligned}
$$

Summary of Probability Theory-III

Mathematical Expectation

A. Expected Valut.

Let \mathbf{X} be a random variable with density $f(x)$. Then the expected value of $\mathbf{X}, E(\mathbf{X})$, is defined to be

$$
E(\mathrm{X})=\sum_{x} x f(x)
$$

if \mathbf{X} is discrete and

$$
E(\mathbf{X})=\int_{-\infty}^{\infty} x f(x) d x
$$

if X is continuous. The expected value of a function g of a random variable X is defined as

$$
E[g(\mathbf{X})]=\sum_{x} g(x) \cdot f(x)
$$

if \mathbf{X} is discrete and

$$
E[g(\mathbf{X})]=\int_{-\infty}^{\infty} g(x) \cdot f(x) d x
$$

if X is continuous.
Theorems

1. $E[a \mathrm{X}+b \mathrm{Y}]=a E(\mathbf{X})+b E(\mathbf{Y})$
2. $E[\mathbf{X} \cdot \mathbf{Y}]=E(\mathbf{X}) \cdot E(\mathbf{X})$ if \mathbf{X} and \mathbf{Y} are statistically independent.

Summary of Probability Theory-IV

B. Moments
a. Moments About the Origin. The moments about the origin of a probability distribution are the expected values of the random variable which has the given distribution. The rth moment of \mathbf{X}, usually denoted by μ_{r}^{\prime}, is defined as

$$
\mu_{r}^{\prime}=E\left[\mathbf{X}^{r}\right]=\sum_{\equiv} x^{\prime} f(x)
$$

if \mathbf{X} is discrete and

$$
\mu^{\prime},=E\left[\mathbf{X}^{\gamma}\right]=\int_{-\infty}^{*} x^{\gamma} j(x) d x
$$

if X is continuous.
The first moment, μ^{\prime}, is called the mean of the random variable \mathbf{X} and is usually denoted by μ.
b. Moments About the Mean. The rth moment about the mean, usually denoted by μ_{r}, is defined as

$$
\mu_{r}=E\left[(\mathbf{X}-\mu)^{r}\right]=\sum_{x}(x-\mu)^{r} f(x)
$$

if \mathbf{X} is discrete and

$$
\mu_{r}=E\left[(\mathbf{X}-\mu)^{r}\right]=\int_{-\infty}^{\infty}(x-\mu)^{r} f(x) d x
$$

if X is continuous.
The second moment about the mean, μ_{2}, is given by

$$
\mu_{2}=E\left[(X-\mu)^{2}\right]=\mu_{2}^{\prime}-\mu^{2}
$$

and is called the variance of the random variable \mathbf{X}, and is denoted by σ^{2}. The square root of the variance, σ, is called the standard deviation.

Theorems

1. $\sigma^{2} c \mathrm{x}=c^{2} \sigma^{2} \mathrm{x}$
2. $\sigma^{2}{ }_{c+\mathrm{x}}=\sigma^{2} \mathrm{x}$
3. $\sigma^{2}{ }_{a x+b}=a^{2} \sigma^{2} \mathrm{x}$

[^0]:

