Intermediate Lab
PHYS 3870

Lecture 2

Defining Errors

References: Taylor Ch. 1, 2, 3
Baird Problems (Ch 5-See web site)
Also refer to [HANDOUT]

“Glossary of Important Terms in Error Analysis”
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Week Lecture Reading Problems in Taylor | Assignments Deadlines
1 Introduction &ird. Ch. 5 _ Baird: 5.7.5.14. 5.18.
Experiment Design AIP Style Manual: pp. |5 23 (problems posted
(8/25/14 to 8/29/14) 1-30 on web)
Taylor: Preface
Error Analysis Taylor: Ch. 1 & 2 HW#1:2.2,23,28.2.9,
Uncertainty Taylor: Ch. 3 2.17.2.19.2.24,
Error Propagation \ 2.26.2.28
N ' A
2 D Problem Set 1 due
9/3/14
AN INTRODUCTIONTO
Error Analysis
THE STUDY OF UNCERTAINTIES
Pro b I e m Set #1 IN PHYSICAL MEASUREMENTS
Due NeXt Week SECOND EDITION john R,Taylor

Intermediate 3870
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Experimentation: An

Prentice-Hall, Inc. ZEnglewood Cliffs, New Jersey 1962

UtahState

UNIVERSITY

Introduction
lo
Measurement
Theery

and
Experiment
Pesign

D. C. Baird Associate Professor of Phystcs, Royal Military Colle 18.

5 Experiment Plaing 6

5.1 Preciion of Measurement, 89
5.1 Bxperimenting vith No Background, 1
5.5 Dimensional Analysis, 95
54 Taperimenting with a Theoretical Background, 100
55 Graphical Analysis, 105
5.6 Eperiment Anlysis and Design, 111
Problems, 117

Intermediate 3870
Fall 2013

CHAP. S  EXPERIMENT DESIGN

PROBLEMS

In all the following problems state the variables or combination of variables
that should be plotted 1o check the suggested variation and state how the un-
known (slope, intercept, etc.j may be fowid.

7. The fundamental frequency of vibration of a string is given by

v T
S =5

m

f. €, and T are measured variables. Determine nt.

14. The linear expansion of a solid is described by
£=¢,(1+a-AT)

¢ and AT are measurced variables. ¢, is constant but unknown. Deter-
mine ¢.
The force between electrostatic charges is described by

1 9%
4ne, r’

F and r are measured variables. g, and g, are fixed and known. How do
you check the form of the function?

23. The wavelengths of the lines in the Balmer series of the hydrogen
spectrum are given by
. R(l_ L)
A 4

# and n are measured variables. Determine R.
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UNIVERSITY Fall 2013

Useful Handout on Web

Intermediate Laboratory - PHY X 3870-3880
Glossary of Important Terms in Data And Error Analysis

Measurement Theory

Precision - A measure of the reproducibility of a
measurement. If an experiment has small random errors. it
is said to have high precision.

Accuracy - A measure of the validity of a measurement. If
an experiment has small systematic errors. if is said to have
high accuracy.

Discrepancy - The difference between two measured values
of the same quanfity.

Uncertainty - The outer limits of confidence within which
a given measurement "almost certainly” lies. It is
important to specify what criteria are used to determine the
confidence limits.

Intermediate 3870

DEFINING ERRORS

average value of the quantity.

Propagation of Errors - A method of determining the error
inherent in a derived quantity from the errors of the
measured quantities used to determine the derived quantity.

Significant Figures - A notation convention for writing the
value of measured quantities. In general. the measured
quantity should have only as many significant figures as
warranted by its absolute uncertainty.

Rounding - A method of truncating numbers. particularly
useful in the context of significant figures. By standard
convention. numbers to be rounded should be truncated for
trailing numbers less than 5. rounded up for trailing
numbers over 5, and rounded to the nearest even number
for a trailing 5.
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What i1s Science?

The scientific method goes further in:

 Developing a description (model) of the system
behavior based on observation

 Generalizing this description (model) to other
behavior and other systems

« That is to say, the scientific method is
experimentation and modeling intertwined

* Itis the scientific method that distinguishes
science from other forms of endeavor
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Scientific Method:

Leads to new discoveries — how scientific
progress is made!

Careful measurements,
Experiments

Models, Empirical * > Hypothesis,
Laws, Generalization Theory
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Uncertainties in Observations

Input N Output

[ E— [—)>

The Universe

 Observations characterize the system to within the uncertainty of the
measurements
* Uncertainties can arise from:
» Limitations of instrumentation or measurement methods
» Statistical fluctuations of the system

» Inherent uncertainties of the system
- Quantum fluctuations
- Non-deterministic processes (e.g., chaos):
- There are systems where uncertainties dominate and preclude models
predicting the outcome
- We will not (intentionally) deal with this type of system.

UtahState ISECEESE DEFINING ERRORS Lecture 2 Slide 7

UNIVERSITY Fall 2013




What i1s a Model?

Models of the physical world

1. A model:
a) Describes the system
b) Proposes how input variables interact with the
system to modify output variables
2. Models versus systems
a) A system s real. Information about the system can
be known incontrovertibly.
b) Models are not real.
(1) Models are mankind’s descriptions of reality
(2) Models can never be fact (period), though they
can be very good descriptions of how real systems
behave.
(3) Neither Newton’s Law’s, nor Special Realitivity,
nor Einstein’s Equations for General Relativity, nor
TOE (Theory of Everything) are the final answer,;
Nature is!
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|
What i1s a Model?

Models of the physical world

3. Modeling simple systems versus modeling complex systems

a) Modeling simple systems is easier, but often
insufficient

b) This brings up the point in the art of experimentation;
it is prudent to use the simplest model possible to get the
desired level of predictions from your model.

I. When are Newton’s Laws, or Special Relativity, or
General Relativity sufficient?

Il. Should we worry about the Quantum nature of a system
or is a classical approach sufficient?}

c) Learning how to do modeling and experimentation is
easier on simple systems.

d) Hence, we do experiments on pendula, not Pentium
processors.
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Intermediate Lab
PHYS 3870

Designing “Good” Experiments

What is “Good”? One that:

* Gives “good” unambiguous results
* Gets a “good” grade

DEFINING ERRORS Lecture 2 Slide 10



An Exercise in Experimental Design

An Example of Experimental Design

Consider a simple data set, the output for one measurement.

Lecture 2-Exp Design.xmcd
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An Exercise in Experimental Design

Add units for the outout data point. The answer is "42 {m)".
1007
g
S 80
g
&
s
E
S ¢
g
s
5 20
[l
)
]
0 5 10 15 20

Lecture 2-Exp Design.xmcd
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An Exercise in Experimental Design

Add the input value of the data point (with units).
1007

B

S 807

g

A

ER

E
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0 5 10 15 20
Independant Variable-Time (s)

Lecture 2-Exp Design.xmcd
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An Exercise in Experimental Design

Add more observations, based on more pokes (inputs), to the data set.
1':"} T T T
=y 100
E .
5 * |
' .
_".I" 0 v L] L ¢ N
£ Datadpy
5 ees .
o &
= L . *
g .
5 3 i
3 0 .
r:] -0 T | |
0 5 10 15 20
Datadyy 20
Independant Variable-Time (s)

Lecture 2-Exp Design.xmcd
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An Exercise in Experimental Design

UtahState

Add more observations, based on more pokes (inputs), to the data set.

Dependant Variable-Distance (m)

lm T T T
‘
L ]
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L ]
. L ]
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.'
L ]
* @
L ]
ﬂ.h- . i
] ] ]
0 3 10 13 20

Independant Variable-Time ()

Intermediate 3870

Lecture 2-Exp Design.xmcd
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An Exercise in Experimental Design

Add more observations, based on more pokes (inputs), to the data set.

llI'r 1 1 1

&#% Data

Dependant Vanable-Distance (m)

Independant Variable-Time (s)

Lecture 2-Exp Design.xmcd
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An Exercise in Experimental Design

Try a linear model.

8

in
=

Dependant Variable-Distance (m)
Q T

Independant Variable-Time ()

Lecture 2-Exp Design.xmcd
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An Exercise in Experimental Design

TTLY
- /'5'//,,1:{ Is the linear fit the “best” model?
i" LA
E _,"/gf‘# -
3 . ts 7 L Lecture 2-Exp Design.xmcd
E i M / f' R
= e ’
: A
e ‘4
E L
=
E & L ]
=
2
A
'} —
L J
T — m —
0 m % Linear Model: Diinearlt) = Vot + D o= 4'; R~ 2m
Independant Variable-Time (s)
Sqguare Model: 2 =005 2
see Data | Diquare(t) =35t + Vyt+ D, %o 52
: Error in data Souare R L o
T . guare Koot . 2 Cy=15— C,=0m
Power L (Squared) Fit Model Psaroot® = E11+ G KE ’
- - - Power Law (Squar t
— Power Law (Square root) Fit Exponential . T E, =45m T = 62-sec
- - Exponential Fit Model: Desp(t) = Eq-e
— Simisoidal Fit . . 1 -1
Sinusoidal _ 8 = 100 = —- =0
Madel: Dyjn(t) = Sysinfwt + 1) ! " TR o
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An Exercise in Experimental Design

:10° . : .
- t

T
Dexp{t} =E,-e

| Taking the log of the equation

100

- 1
py m{nexp(t}} = m{Eo} + :'t

1
: Slope = —
T

- . Intercept = ln{Eo}

10F Fl

Dependant Variable-Distance (m)

I!]' 20 40 il ] 20 40 60
, , Data
Independant Variable-Time (s) Independant Variable-Time (s) Error in data
—— Linear Fit
- = - Power Law (Squared) Fit
—— Power Law (Square root) Fit

. = = - Hxponential Fit
Lecture 2-Exp Design.xmcd — Sicoidal Fi
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An Exercise in Experimental Design

110 :; Dyigpen(t) = Vgt + D, Dy out®= Cp 2. c,
B Taking the log of the equation Taking the log of the equation
C 7 - .
. |57y {Dinez () Do) = (V) + 14 {Dygroui® ~ Co) =) + 7
’ ,

. '—‘ 1
. ﬁ Slope=1 Slope = E

Dependant Variable-Distance (m)

o~ Intercept = ]n{‘.-'u} Intercept = ln{cl}
T |
v
7
10, — .ff s
- ==
o
-
Data
Error in data
. . - = - Power Law (Squared) Fit
Independant Variable-Time (s) —— Power Law (Square root) Fit
- - - Exponential Fit
— Sinusoidal Fit

Lecture 2-Exp Design.xmcd
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Intermediate Lab
PHYS 3870

Comparing Measurements to Models
Qualitatively
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Intermediate Lab
PHYS 3870

Dimensional Analysis
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Units and Dimensions

Units - An arbitrary set of measurement standards used to
compare physical quantities. Common systems of units include
the meter-kilogram-second (MKS or Sl) system, the centimeter-
gram-second (CGS) system, and the foot-pound-second (English)
system.

Fundamental Sl units are s, m, kg, A, K, mole, and Cd.

Dimensions - The fundamental quantities used to express
physical quantities independent of the system of units used.

The basic dimensions are length (L), time (T), mass (M), and
electric current (A), temperature (T), amount (N), and luminous
intensity (ly).
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Dimensional Analysis

Dimensional Analysis - The use of dimensions of physical quantities to verify
calculations and formulas.

Example:
Newton's Second Law states that F - ma.
Dimensional analysis shows that F2MLT? represents the dimensions of

force.

From Hooke’s Law, F=-kx what are the dimensions of k?
k=F/x2MT?

Note the symbol 2 represents the equality of dimensions.

Dimensional analysis is not capable of completely determining an unknown
functional relationship, but it can delimit the possibilities and, in some cases
it can give the complete relationship to within a constant of proportionality.

An Aside: Mathcad is great at handling units and dimensional analysis.

Intermediate 3870
UNIVERSITY Fall 2013
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Units and Dimensions--A Whole New World!

Units - An arbitrary set of measurement standards used to
compare physical quantities. Common systems of units include
the meter-kilogram-second (MKS or Sl) system, the centimeter-
gram-second (CGS) system, and the foot-pound-second (English)
system.

Fundamental Sl units are s, m, kg, A, K, mole, and Cd.

Dimensions - The fundamental quantities used to express
physical quantities independent of the system of units used.

The basic dimensions are length (L), time (T), mass (M), and
electric current (A), temperature (T), amount (N), and luminous
intensity (ly).

Fundamental Constants - The combination of exact (defined)
fundamental constants used to express physical quantities
independent of the system of units used. The basic fundamental
constants are AV(***Cs)uss, C, h, e, kg, Na, and Kcg.
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A more fundamental

Internationa
System of Units

————— David B.Newell ———————
» \ e

S

The universally accepted method of expressing physical measurements
for world commerce, industry, and science is about to get a facelift,
thanks to our improved knowledge of fundamental constants.

D.B. Newell, Physics Today, 67(7), 35 (2014).

Intermediate 3870
UNIVERSITY Fall 2013
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|
Units and Dimensions--A Whole New World!

Fundamental Constants -
Figure 1. Evolution of the Sl. A brief timeline of the history of the International System The combination of exact
of Units since John Wilkins's 16§8 essay is scaled to a meter bar. The photograph shows 2018 (defined) fundamental
a marble meter standard in Paris, dating from the 18th century. (Photo courtesy of The new SI will specify the exact
LPLT\Wikimedia Commons.) values of seven fundamental constants, constants us ed to ex p ress
shown in table 2. All SI units will be i 4
mnaslez M miswitke | / physical quantities
independent of the system
2 of units used. The basic
; . T fundamental constants are
\ . ] 133
"\ ‘5‘1 [} J L= " ) ' W AV( Cs)hfS1 C) hl e1 kB) NA1
8, S ‘,s-_ e P.‘ ' and Kcq.
“ " Y . o : . ¢ .
ig MY g el - 3
1 Lk N 5 s —~ - e .
e 5 .\ ool 2 0
1799 ‘ 1875 ‘ 1954 1983
The metric system is born. Seventeen member nations The ampere, kelvin, A new definition
The Archives de la sign the Meter Convention. and candela are of the meter links
République in Paris  Work begins on constructing officially adopted as it to the speed of
receives two platinum  new international prototypes base units by the light in vacuum.
artifact standards  for the meter and kilogram. 10th CGPM.
representing the meter 1971
and kilogram. 1889 @ 1960 The mole becomes a
® 1668 The first General The 11th CGPM adopts new base unit of the
John Wilkins's essay Conference on Weights the name International SI, and the list of base
is published. i and Measures (CGPM) System of Units (SI) with units grows to seven.
approves a system of the base units meter,
measures with the base  kilogram, second, ampere, @ 1967
units meter, kilogram, kelvin, and candela. The The second is

and second.

meter is redefined as the
wavelength of radiation

from a specific excitation
in krypton-86.

redefined in terms of
the hyperfine splitting
frequency of the
cesium-133

Units - An arbitrary set of measurement standards used to compare physical quantities. Common systems
of units include the meter-kilogram-second (MKS or Sl) system, the centimeter-gram-second (CGS) system,

and the foot-pound-second (English) system.
Fundamental Sl units are s, m, kg, A, K, mole, and Cd.

Intermediate 3870
Fall 2013
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}th‘lel.ms}buuqucm bcscunlls

Base quantity Base unit Definition U n I t S a_ n d
The second is the duration of 9192631770 periods of the radiation corresponding to the

e B tond transition between the two hyperfine levels of the ground state of the cesium-133 atom. D i m e n S i O n S - A

The meter is the length of the path traveled by light in vacuum during a time interval of

Eenom . 1/299792458 of a second.
The kilogram is the unit of mass; it is equal to the mass of the international prototype of the W h O I e N eW
Mass kilogram :
kilogram.
The ampere is that constant current which, if maintained in two straight parallel conductors of W I d I
Electric current ampere infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would O r

produce between these conductors a force equal to 2 x 107 newton per meter of length.

Thermodynamic The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic

temperature ] temperature of the triple point of water.
At of The mole is the amount of substance of a system which contains as many elementary entities as
S haanie mole there are atoms in 0.012 kilogram of carbon-12; the elementary entities must be specified and
may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
LAamionis The candela is the luminous intensity, in a given direction, of a source that emits monochro-
intensity candela matic radiation of frequency 540 x 10'? hertz and that has a radiant intensity in that direction of

1/683 watt per steradian.

j_rquez Nowﬂbasoqucnﬁlios ghﬁnmg'

eﬁning
constant

Definition

Base quantity

The unperturbed ground-state hyperfine splitting frequency of the cesium-133 atom

1
Frequency AV™®Cshy 5 mcq) is exactly 9192631770 hertz.

Velocity c The speed of light in vacuum c is exactly 299792458 meter per second.
Action h The Planck constant h is exactly 6.626X x 10~* joule second.
Electric charge e The elementary charge e is exactly 1.602X x 10-'? coulomb.
Heat capacity K The Boltzmann constant k is exactly 1.380X x 10-% joule per kelvin.
ls\:;:‘::‘:c:f N, The Avogadro constant N, is exactly 6.022X x 10* reciprocal mole.
Luminous K The luminous efficacy K, of monochromatic radiation of frequency 540 x 10" hertz is exactly
intensity = 683 lumen per watt.

The symbol X in the numerical values indicates additional digits to be set upon redefinition of the SI. The term “defining
constant” is used in the broader sense to include invariants of nature such as the hyperfine splitting frequency of the
cesium-133 atom and the luminous efficacy.
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Intermediate Lab
PHYS 3870

Graphical Analysis
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Graphical Analysis

An “old School” approach to linear fits.

* Rough plot of data

 Estimate of uncertainties with error bars
* A “best” linear fit with a straight edge
 Estimates of uncertainties in slope and
intercept from the error bars

This is a great practice to get into as
you are developing an experiment!

Intermediate 3870
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Is It Linear?
sk ¥ | « Asimple model is a
linear model
l l - * You know it when you
% % i T see it (qualitatively)
i . .
- 3 + Tested with a straight
Ty edge
0 500 1,000
m (grams) — « Error bar are a first
© step in gauging the
“‘goodness of fit”
H
i Adding 2D error bars
I = ~is sometimes helpful.
-+
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Making It Linear or Linearization

-
L

(a) (b} (e}

« A simple trick for many models is to linearize the model in the independent variable.

« Refer to Baird Ch.5 and the associated homework problems.
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Linearizing Equations (1)

Problem 5.7
. 1 .
The functional form f(L.T) = [—)\ﬁ Determine a value for mass.
of fiL.T) is: 2-L+fmass

By plotting the measured value the fundemental frequency, f, as a function of the square root

of the period, T, one obtains a linear relationship with slope equal to . Solving
2-L-yfmass
for the mass, mass:
1 __ 2
slope s | —m—88 — | === mass = (2-L-slope)
2-L-fmass
Non-linear Linear
2 2
15 1.5
i ;!
= 05 =05
0 0
o 2 4 6 8 10 0 08 16 24 32 4
period, SqUars
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Linearizing Equations (2)

Problem 5.23

-1 .
T urctns o M)_H}‘Lzﬂ Determine a value for the Rydberg constant, R.

-1
By plotting the measured value of the wavelength, &, as a function of [i - L}] one
n

ohtains a linear relationship with slope equal to B

Non-linear Linear
3 3
@ A
5 ! = 7
& 2
g 6 g M) g
5 = 5 d
) S ) &e’(
vl £ 8 $on so48 a8 641 - Alternately, by plotting one over the measured value of the wavelength, 1/k, as a function of
1 1 . - . . . L
quantum {1——2) one over the square of the quantum index n, n 1, one obtains a linear relationship with
n

-1 .
slope equal to [E) Solving for the mass, mass:

slope= [_—l) === E= (—slnpe}_ !
R
Non-linear Linear

3 025

7 g 0213 %%L‘“
= . \1\\
t \ 21
£ 6 g 0.175 P
: \)\ 2 Nw o

3 \@\( 0.138

A oo 0.1

0 2 4 [ g 10 0 003 006 009 012 015

-1
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Special Graph Paper

_ Log-log paper tests for
Semi-log paper tests for power law models.
exponential models.

Both Semi-log and log -log
paper are handy for
displaying details of data
spread over many orders
of magnitude.

Linear

“Old School” graph paper
is still a useful tool,
especially for reality
checking during the
experimental design
process.

Semilog Lol
0g-LOg
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Special Graph Paper

Linear Polar
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Linear Fjy () = A+ Bx = 10

Quadratic szx] = Cﬂ + Cl-x + l:z-lli2

. n
PowerLaw  F,.(x):=Dx

Exponential  F_.(x) = ael®

810" J
6x10"

0 2 4 6 8 10

e |inear

s (Quadratic
== Power Law
e Exponential

Linearizing
Equations and

“Magic Graph
Paper”
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Some Common Models

Model Equation Differential Eq. Parameters
Constant y(x)=C dy/dx(x) =0 C is constant value
Linear y(x)=B-x+C dy/dx = B B is slope
C is constant value
Quadratic y(t) =A-xt>?+B-t+C dy/dt =2A-t+B A is “acceleration”
B is “velocity”
C is “initial position”
Power Law y(tx) =D -x" dy/dx=D-n-x""1 D is scale parameter
n is power
Model Equation Differential Eq. Parameters
Exponential y(t) = P dy/dx (x) = kt P, is initial value at t=0
Growth k>0 is growth constant
(t = 1/k 1s time constant)
(doubling time is In(2)/k))
Exponential y(t) = Pe=* dy/dx (x) = —At Pois initial value at t=0
Decay 2>0 is decay constant
(half life 1s In(2)/ 1))
Learning y(t) = M, (1 — ekt) dy/dx = k(M —y)
Curve y(0)=0
Logistic _ Mo/ dy/dx = ky(M —
Growth curve | 7 (1 + e Mokt) Y/ M=)

Intermediate 3870
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Intermediate Lab
PHYS 3870

Comparing Measurements to Models
Errors as a Quantitative Tool
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Intermediate Lab
PHYS 3870

Defining Errors
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What Is Error?

* The term “error” does not mean mistake in science.

« Rather, it means the inevitable uncertainty related to an observation
or measurement of any physical quantity.

» Itis a best guess at the range of values of subsequent measurements.

Example: x=1.0£0.1m

This is shorthand for “the best estimate of x is 1.0 m. Subsequent
measurements of x will ‘almost certainly’ lie between 0.9 m and 1.1 m

Intermediate 3870
UNIVERSITY Fall 2013
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Why Are Errors Important?

http://www.math.nyu.edu/~crorres/Archime
des/Crown/Crownlintro.html

Density p
(gram/cm?)
— l? .
. . . - — 16
Peaia = 15.5 gram/em? » gold
and |
George ——# — 15
Pay = 138 gramjcm®, B
If we can measure the density of the erown, we should be able (as Archimedes i
suggested) (0 decide whether the crown is really gold by comparing p with the Martha ___I — 14
known densities .. and py, .. [ alloy
Suppose we summon two cxperts in the measurement of density. The first ex- - -
pert, George, might make a quick measurement of p and report that his best cstimate i
for pis 15 and that it almost certainly lies between 13.5 and 16.5 gram/cm?®. Our - 13

second expert, Martha, might take a little longer and then report a best estimate of
13.9 and a probable range from 13.7 o 14.1 gram/cm?®. The findings of our two
experts are summarized in Figure 1.1.
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http://www.math.nyu.edu/~crorres/Archimedes/Crown/CrownIntro.html
http://www.math.nyu.edu/~crorres/Archimedes/Crown/CrownIntro.html

A Timely Example of

What time is it now?
And the “best” answer is:

Data Reduced Data | Best Value Discrepanc | Error -
{Deviations) Er r O rS I n
f
e Measurements
_+_ sec
Average RMS
(Standard)
Deviation
(_ +_ )sec
= What time
(e IS It now?
or ( + )sec [absolute error]
or ( sec+ %) [relative (fractional) error]

This is the best value and estimated uncertainty for a set of N measurements of the
time.
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A Timely Example of Errors in Measurements

Intermediate Laboratory — PHX 3870

AnaIySIS Lecture Two
with
Error Analysis
Mathcad , @y
Uncertainties
sheet?
Enter the data.
At =
Enter reduced data: N =10 a=0.(N-1) "
35
M is number of L7
data points: 66
72
a5
28
145
33
62
32
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A Timely Example of Errors in Measurements

Analysis with Mathcad sheet?

Find the "best gquess":

Method 1: Center of histogram Method 2: Average (mean) Value
Histogram of time data
1

T , : — 1 _

3 E) Longhand : . Z ,mﬂ 0.6 5
= A ; = — n
E 1
2 3k : |
g 5 Shorthand ©  mean(Af) = 50.6s
[ Y 1

r —

1 I : |

40 60
Reduced time (zac)
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L
What is the uncertainty?

Calculate deviations Dev = At — mean(At) n= At = Dev = M\ TI I I l e | v

from the mean 00 o1 =1
Example of

Method 1: Range of deviations ig 66.0 15.4 .
. 720 214 E

ean(At) = 50.6 T meben) = A :E — = rrors
m t) = 306s ’ 28.0 -22 6
Do) - 226 o e = Measurements

' 53.0 2.4
8.0

Method 2: Standard (RMS) Deviation B zg 1:::

2 Analysis with
wor Mathcad
sheet?

Stdev(Af) = 1355

What is the uncertainty?.
Method 3: Standard Deviation of the Mean

z{_ne‘-ﬂf

i

(N-1)N

Stdev(At)

N

43s
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A Timely Example of Errors in Measurements

What time
IS It now?

And the “best”
answer is:

(53+£9)sec
[absolute error]

or

(53 sec+20%)
[relative (fractional)
error]

This is the best value
and estimated
uncertainty for a set
of N measurements
of the time.

Intermediate 3870

Data Reduced Data | Best Value Discrepancy | Error
(Deviations)
9:10:35 | 9:10 + 35 sec -18 sec Range of
A . )
9:10:47 | 9:10 + 47 sec verage - 6 sec discrepancies
9:11:06 | 9:10 + 66 sec 9:10 + 33 sec | +13 sec
9:45:05 | 9:10 + 2710 sec +2710 sec
11- . Average RMS
9:11:12 | 9:10 + 12 sec +19 sec (Standard)
9:10:36 | 9:10 + 36 sec +17 sec Deviation
+46 ( +
+28 sec se¢
+45 sec
For a set of N
measurements
+53 sec
+62 sec
+52 sec ( .
sec
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Summary of Stating Errors in Measurements

The standard format to report the best guess and the limits within which you expect 68% of
subsequent (single) measurements of t to fall within is:

1. Absolute error: ( <t>+ ) sec

2. Relative (fractional) Error: <t>sec + (o/<t>)%

It can be shown that (see Taylor Sec. 5.4) the standard deviation o is a reasonable estimate
of the uncertainty.

In fact, for normal (Gaussian or purely random) data, it can be shown that
3. 68% of measurements of t will fall within <t> + o,
4. 95% of measurements of t will fall within <t> + 2c;
5. 98% of measurements of t will fall within <t> + 3c;
6. 99.99994% (all but 0.6 ppm) of measurements of t will fall within <t> + 5c;
(this is the high energy physics gold standard)
7. this is referred to as the confidence limit
8. If a confidence limit is not stated it usually means ONE standard deviation or 68%
confidence limit

Significant Figures (see Taylor Sec. 2.2 and 2.8)
9. There is no need to write down unnecessary (unmeaningful) digits in your answer

10.Basic idea: write down only the digitis you know something about Correct

11.Uncertainty dictates number of sig fig displayed in best guess DU i
12.Errors are usually stated to within 1 sig fig. 1.23£0.02 m (£2%)
13.See sheet for rules of thumb for sig figs Incorrect

14.This is a pet peeve of mine

1.23456+4+0.024 m

Intermediate 3870
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Intermediate Lab
PHYS 3870

Accuracy and Systematic Errors
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Random and Systematic Errors

Precision is defined as a measure of the reproducibility of a measurement

Such errors are called random (statistical) errors.
If an experiment has small random error, it is said to have high precision.

Accuracy is a measure of the validity of a measurement.

If an experiment has small systematic error, it is said to have high
accuracy.
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Accuracy and Systematic Error

Consider 4 “dart experiments”

Which experiments are precise (have
good reproducibility or low random
error)?

Random: small Random: small

Svstematic: small Systematic: large ) .
! s Which experiments are accurate (are

(a) (b) close to “true” result or have low
systematic error)?

Random: large Random: large
Systematic: small Systemnartic: large
ie) (d)
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Precision and Accuracy

Eandom: small Random: small
L S L Random: small Random: small
(a) (b} Systematic: small Systematic: large
(a) (b)

E“”dm'_‘:_lfrﬁt “if“d':"m—'_'“-r%': Random: large Random: large
WALETmatic: | Systematic: Systematic: small Systematic; large
ich id) (c) (d)
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Accuracy and Systematic Error

A.Another (and different) question is how accurately do we know <t>, that is, how
close is <t>to the “true” value

B.To be able to determine accuracy, we must know the “true” value or have access
to an accurate measurement, e.g.,
1. from my watch (calibrated before class via the NIST link) we know t to £1
sec.
2. from our computer via the NIST link, we know t to £0.003 sec
3. from the NIS atomic clock, we can know t to +1x10™? sec
4. from proposed NIST clocks, we will be able to know t to +1x10™% s (see
Scientific American September 2002, special issue on time keeping)

C.Using your uncalibrated watches lead to systematic errors, which affect the
accuracy of a measurement
1. Systematic errors — Errors which are characterized by their deterministic
nature
2. Another systematic error is the reaction time in responding to my verbal cue
to read the time.

D.Repeated measurements can reduce random errors, but does not usually reduce
systematic errors

E. Note systematic errors are not the same as illegitimate errors (blunders), e.g.,
writing down the time wrong is a blunder

Intermediate 3870
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A Timely Example of Errors in Measurements

What time is it? o
nistime-32hit exe

Log on to the National Institute of Standards and Technology (NIST) web site.

GOOD: A low resolution time stamp to 0.3 s http://nist.time.qov/

BETTER: “The NIST servers listen for a NTP request on port 123, and
respond by sending a udp/ip data packet in the NTP format. The data packet
includes a 64-bit (1 part in 2 101°) timestamp containing the time in UTC
seconds since Jan. 1, 1900 with a resolution of 200 ps.
http://www.boulder.nist.gov/timefreg/service/its.htm

BEST: If that isn’t good enough, try these details on current research, with
proposed precision of #1x1018 s (21 as!!!) (also see Sc. American, 2002
special issue on time keeping). http://www.boulder.nist.gov/timefreqg/

Intermediate 3870
UNIVERSITY Fall 2013
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A Timely Example of Errors in Measurements

What time 1s 1t?

EVEN BETTER: NIST's Second "Quantum
Logic Clock" is World's Most Precise Clock

NIST scientists have built a second
"quantum logic clock,"” using quantum
information processing techniques on a
single ion of aluminum to make a clock that
would not gain or lose more than one
second in about 3.7 billion years.

For more information, please see
http://www.nist.gov/pml/div688/logicclock O
20410.cfm .
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Intermediate Lab
PHYS 3870

Precision and Random
(Statistical) Errors
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|
Precision of Measurements

Our statement of the best value and uncertainty is: ( <t> + o) sec

At the 68% confidence level for N measurements

1. Note the precision of our measurement is reflected in the estimated error
which state what values we would expect to get if we repeated the

measurement
2. Precision is defined as a measure of the reproducibility of a measurement

3.Such errors are called random (statistical) errors
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Precision and Random (Statistical) Error

Precision of an instrument is (typically) determined by the finest increment of the measuring
device. Sources of estimates of precision in direct measurements

1. Spread of repeated measurements (Taylor p.47)
2. Scales
a) Digital are 0.5 of LSD (Taylor p. 47)
b) Analog are +fraction of smallest division on instrument (Taylor p. 46)
c) Verniers are + smallest increment on vernier scale
3. Problem of definition (Taylor p. 46 and Fig. 3.1)
4. Square root of counts for timing (Taylor p. 48)
a) (v + v ) = avg number of events in time T
b) counting events that occur at random, but at a definite rate, e.g., decay of radioactive
Isotopes, spontaneous emission

image focused

. a-'""'-f H&{w-‘ 1 - on this screen lens bulb
~ N 123.45 \/ / /
Fgirs 1.0, A readizg =n b wollneer 3 /L - g AQ ) @ )
mil brereTs
T I v O A
T Figure 3.1, An image of the light bulb on the right is focused by the lens onto the screen at
Figrn 13 Mpswing o kegik with @ ik the Ieft.
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Reading a Vernier Scale

A vernier scale provides a way to gain added precision from an instrument scale

Vernier Caliper

770

10

7al

750
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Intermediate Lab
PHYS 3870

The Ruler Exercise
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The Ruler Exercise

A. Using the rulers provided, measure the width of the table.
B. Record, on the board, your “best” value and an estimate of the
random error (the precision of your measurement)
C. Based on all the class’ data, determine the best value and
uncertainty of this length
D. Record this on the board
E. Based on the values on the board and comparison of the
measuring devices discussed in class, discuss in class:
1.the precision of the measurements
2.the accuracy of the measurements
3.the sources of random errors in this exercise
4.the sources of systematic errors in this exercise
5.the illegitimate errors in this exercise
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The Ruler Exercise

* Measure the width of the conference table.
* Record you measured value and associated error on the white board.

Name Ruler Type Measured Value Uncertantity.
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Ato=
Enter reduced data: N =13 n=0.(N-1) n Th R |
75m e xuler
M is number of 04 in A .
data points: 01 625-in E
oe Xercise
2537 cm
240-cm | 2 Pk
Duto= —
242 cm it
243 cm
241 5-om
2d-om | D
2564 om
218 5 em
221-em
Find the "hest guess"™
Method 1: Center of histogram Method Z?: Average imean) Value
Histogram of titne data
T T T
eat A1) Longhand : i-Z&t = 2351
& p— - B h
-, | n
= :
- y
B H shorthand @ meanc Af) = 2351
sk 4
|:| | | ]
200 220 240 2a0
Beduced time (sec)
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What is the uncertainty?
blimimurn value: min ) = 2185 -

Maimum value: maz At) = 2430 T h e R u | er
Calculate deviations Dev = At — meany At) f= At Dew EX e r C I S e

frorm the mean 00
. 2349 -0.2
10 2388 KN 5]
2.0
Method 1: Range of deviations 0 2403 5.2
i 241.0 a4
4.0
+  maxDev) =79 o0 237.0 1.4
meanAf) = 2351 ; 240.0 449
6.0
- minDev) = -166 0 2420 6.9
i 243.0 Ty
8.0 2414 6.4
Method 2: Standard (RMS) Deviation a1 : :
222.0 -13.1
100 236.4 1.3
10 2184 -16.6
120 221.0 -14.1

Stdev(Af) = 87

Method 3: Standard Deviation of the Mean

SN
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Precision, Accuracy and Systematic Errors

Precision is defined as a measure
of the reproducibility of a

measurement
Random: small Eandom: small

Such errors are called random Systematic: 7 Systematic: ?
(statistical) errors. If an @) )
experiment has small random
error, it is said to have high
precision.
Accuracy is a measure of the
validity of a measurement.

- Random: large Random: large
If an experiment has small Systematic: 7 Systematic: 7
systematic error, it is said to have © , @

high accuracy.
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Intermediate Lab
PHYS 3870

Comparing Measurements to Models
Quantitatively

DEFINING ERRORS Lecture 2 Slide 66

UNIVERSITY



Comparison with Other Data

Density p
. (gram/em’)
1‘ 30 t 30 _-l'I"
§ e el .
3 2 discrepaney =10 T 20 discrepancy =10 - 16
= |
;-'E A¥- E € gold
%10 5 10 1 George —— -1
L 14
o 0 Martha ———§ [ alloy
(a) (h) - N
L 13

Is there agreement? (With what?)
Are these comparisons of precision or accuracy?
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Direct Comparison with Standard

340
l Density p
z ' {gram/cm®)
T i e +—— accepted value I
a I | o
) B - F
320 :

B _ 16

rold

p-g (kgmis)—
=

> expected value (zero) 4
. i
= (.10

0.20 r
George ——# — 15
0.10 3 :
I [ 14
E ] T | Martha I : alloy

Is there agreement? (With what?)
Are these comparisons of precision or accuracy?
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Intermediate Lab
PHYS 3870

Using Errors to
Quantitatively Test Models

Basic Approach [Baird, Ch 4.1].

a. Know data and uncertainties (presumably)

b. Use this to identify system, inputs and outputs
c. Now develop a model

d. Then test model by comparison with data (first qualitatively, then
guantitatively)
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Testing a Model?

e Steps in a Scientific Investigation [Baird, Ch. 5-3]
o  Clearly Identify:
» The problem or question or interaction to be addressed.
» The system to study and its boundaries.
= The significant variables in observation—key is to set up experiment with
isolated input and output variable(s)

o Develop a model of the system—Kkey is to quantitatively describe interaction of
inputs with system (see below).

o  Testthe model through experimentation—key to designing experiment is
whether data will allow quantitative evaluation of model for given input
variable(s) and output variable(s) [see Baird, Ch. 5 on Experimental Design]

o  Evaluate the model as a description of the system—key is to know how good
is “good enough” and how to test this quantitatively [see Baird Ch. 6 on
Experiment Evaluation]

o Refine the model to cover:
= More precise measurements
= More general conditions

e Basic approach to develop and evaluate the usefulness of a model [Baird, Ch 4.1].

o Know data and uncertainties (presumably)

o Usethis to identify system, inputs and outputs

o Now develop a model

o  Then test model by comparison with data (first qualitatively, then
guantitatively)

Intermediate 3870
UNIVERSITY Fall 2013
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Summary of Stating Errors in Measurements

The standard format to report the best guess and the limits within which you expect 68% of
subsequent (single) measurements of t to fall within is:

1. Absolute error: ( <t>+ ) sec

2. Relative (fractional) Error: <t>sec + (o/<t>)%

It can be shown that (see Taylor Sec. 5.4) the standard deviation o is a reasonable estimate
of the uncertainty.

In fact, for normal (Gaussian or purely random) data, it can be shown that
3. 68% of measurements of t will fall within <t> + o,
4. 95% of measurements of t will fall within <t> + 2c;
5. 98% of measurements of t will fall within <t> + 3c;
6. 99.99994% (all but 0.6 ppm) of measurements of t will fall within <t> + 5c;
(this is the high energy physics gold standard)
7. this is referred to as the confidence limit
8. If a confidence limit is not stated it usually means ONE standard deviation or 68%
confidence limit

Significant Figures (see Taylor Sec. 2.2 and 2.8)
9. There is no need to write down unnecessary (unmeaningful) digits in your answer

10.Basic idea: write down only the digitis you know something about Correct

11.Uncertainty dictates number of sig fig displayed in best guess DU i
12.Errors are usually stated to within 1 sig fig. 1.23£0.02 m (+2%)
13.See sheet for rules of thumb for sig figs Incorrect

14.This is a pet peeve of mine

1.23456+4+0.024 m
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|
Quantifying Precision and Random (Statistical) Errors

The “best” value for a group of measurements of the same
quantity is the

Average
What is an estimate of the random error?

Deviations
A. If the average is the the best guess, then
DEVIATIONS (or discrepancies) from best guess are an
estimate of error
B. One estimate of error is the range of deviations.
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|
Standard Deviation

A better guess is the average deviation t... = l T (-0

g

...but one needs to calculate the average of the absolute value of deviations ....7._. = %Ef‘;ilri — | (called the

mean deviation) to avoid effects of positive and negative deviations canceling

...but it is easier to calculate (positive) square root of average of the square of the deviation

| .

(1 v (1‘_ ‘T:Iﬂ
g= |— t, —f)*

I."I'fr |.=1 :

\
this is the (population) standard deviation
nactually, in most cases encountered in physics you should use N-1 not N (see Taylor Sec. 4.2)

g = =TV (t, —F)
5 (—1) TS
this is the rms (root mean squared deviation or (sample) standard deviation

It can be shown that (see Taylor Sec. 5.4) o is a reasonable estimate of the uncertainty. In fact, for normal
(Gaussian or purely random) data, it can be shown that

(1) 68% of measurements of t will fall within <t> + o,

(2) 95% of measurements of t will fall within <t> + 2c;

(3)98% of measurements of t will fall within <t> + 3o,

(4) this is referred to as the confidence limit

Summary: the standard format to report the best guess and the limits within which you expect 68% of
subsequent (single) measurements of t to fall within is <t> + o

Intermediate 3870
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|
Standard Deviation of the Mean

If we were to measure t again N times (not just once), we would be even
more likely to find that the second average of N points would be close to
<t>,

The standard error or standard deviation of the mean is given by...

oz | 1 N 5
Tspom = T AN (V-1 Zi=4(t — )

This is the limits within which you expect the average of N addition
measurements to fall within at the 68% confidence limit
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Errors in Models—Error Propagation

Define error propagation [Taylor, p. 45]

A method for determining the error inherent in a derived quantity
from the errors in the measured quantities used to determine the
derived quantity.

That is, the errors associated with a mathematical model of a
dependant variable in terms of independent variables.

Recall previous discussions [Taylor, p. 28-29]
|. Absolute error: ( <t> = o) sec
I1. Relative (fractional) Error: <t>sec + (o/<t>)%
[11. Percentage uncertainty: fractional error in % units
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Specific Rules for Error Propogation

Refer to [Taylor, sec. 3.2] for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]
FOr Opest=XpesttYhest the error is dg=0x+3dy
Follows from CIbestigq :(Xbesti é‘)X) i(Ybest iésy): (Xbesti Ybest) i( OX 16y)

2. Multiplication and Division [Taylor, p. 51]
For Obest=Xbpest * Ybest the error is (6(]/ qbest) ~ (SX/ Xbest)+(6y/ ybest)

3. Multiplication by a constant (exact number) [Taylor, p. 54]
For Obest— B(Xbest) the error is (5C|/ qbest) ~ |B| (SX/ Xbest)
Follows from 2 by setting 6B/B=0

4. Exponentiation (powers) [Taylor, p. 56]
FOr Ghes= (Xpest )" the error is (8a/ Qpest) = N (5X/Xpest)
Follows from 2 by setting (0X/Xpest)=(0Y/Ypest)

Intermediate 3870
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Independent Uncertainties

Independent Uncertainties see [Taylor, Secs. 3.3 and 3.4]

A. Method A: General estimate of uncertainty (worst case):
1. for addition and subtraction absolute errors add
2. for multiplication and division fractional errors add

B. Method B: When original uncertainties are independent and random:
1. for addition and subtraction absolute errors add in quadrature
5q = \[(8x) + (8y)°]
2. for multiplication and division fractional errors add in quadrature
8q/x = V[(8x/X)* + (8yly)?]
3. Note: these errors are less than rule A
4. Given this, we must define
a) Random
b) Independent
c) Addition in quadrature
5. Note: proof of statement B is left to Ch. 5
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Specific Rules for Independent Error Propagation

Easy to see why A leads to an overestimate:

1. Consider:
a) X £0x (to within 50% confidence limit)
b) y £dy (to within 50% confidence limit)
2. Thus,
a) there is only a 25% chance for Xmeasured > X & 06X
b)there is only a 25% chance for Ymeasured > Y £ 0y
3. Then there is only a (25%)-(25%) = 6% chance that

Ucalc = Xmeasured T Ymeasured ~ X T Y T OX + Sy

4. Thus, if xand y are:
a) Independent (determining x does not affect measured y)
b)Random (equally likely for +0x as —0x )
Then method A overestimates error
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Independent (Random) Uncertaities and
Gaussian Distributions

For Gaussian distribution of measured values which describe
quantities with random uncertainties, it can be shown that (the
dreaded ICBST), errors add in quadrature [see Taylor, Ch. 5]

0q # 0x + Oy
But, 8q = V[(8x)* + (3y)’]

1. This is proved in [Taylor, Ch. 5]
2.1CBST [Taylor, Ch. 9] Method A provides an upper bound on
the possible errors
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|
General Formula for Error Propagation

General formula for error propagation see [Taylor, Secs. 3.5 and 3.9]
Uncertainty as a function of one variable [Taylor, Sec. 3.5]

1. Consider a graphical method of estimating error
a) Consider an arbitaray function g(x)
b)Plot g(x) vs. X. g o)
c) On the graph, label:

(1) Obest = q(Xbest)

(2) Oni = q(Xpest + 0%)

(3) Qiow = CI(Xbest' 0X)
d)Making a linear approximation:

Ohi = Opest + SlOpe '5X=qbest + (%j - X

0
Uiow = Opest — SlOpe X = Opest — [_qJ - OX

xbmt&x of x.

aX X
e) Therefore:
&qz‘a—q - X _
OX Figure 3.3. Graph of g(x) vs x. If x is measured as x,,, = & then the best estimate for gfx)
Note the absolute value. 38 Gusa = GiXoe). The largest and smallest probable values of q(x) correspond to the values
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General Formula for Error Propagation

General formula for uncertainty of a function of one variable
o“q:‘g—jﬁx [Taylor, Eq. 3.23]

Can you now derive for specific rules of error propagation:

1. Addition and Subtraction [Taylor, p. 49]

2. Multiplication and Division [Taylor, p. 51]

3. Multiplication by a constant (exact number) [Taylor, p. 54]
4. Exponentiation (powers) [Taylor, p. 56;

A more complicated example: Bragg’s Law

A(d,8)=d -sin(6)
o _ od N o[sin(6)]
A d sin(0)
o _ 128 N cos(d)
A d sin(9)

ﬁ=ﬁ+cot(¢9)-56?
A d

80 ..5[sin(g)]=4 4 g[sin(0)]- 80 =cos(6) - 50
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General Formula for Multiple Variables

Uncertainty of a function of multiple variables [Taylor, Sec. 3.11]

1. It can easily (no, really) be shown that (see Taylor Sec. 3.11) for a
function of several variables

|99 aq oq
XX, Y, 2. )= ox E‘gy e A [Taylor, Eq. 3.47]

2. More correctly, it can be shown that (see Taylor Sec. 3.11) for a
function of several variables

- OX +

cof

= Rt [Taylor, Eq. 3.47]

aql ol
é‘CI(X,y,z,...)s‘aX‘ X + ay‘ S +

where the equals sign represents an upper bound, as discussed above.

3. For a function of several independent and random variables

req S 2 oq 2 &q j 2
A(X,Y,2,...)= e 553/ T\ 5z %) T [Taylor, Eg. 3.48]

Again, the proof is left for Ch. 5.
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A Complex Example for Multiple Variables
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