Intermediate Laboratory – PHX 3870 Lecture Five

Chauvenet's Criterion

Consider the following example of the application of Chauvenet's Criterion to determine if a certain datum should be rejected.

A set of N=10 measurements of a length are made. The data are assumed to be described by a randon Gaussian distribution.

Enter Data

Number of data points:

46.3 · m

Data indices:

 $N_{i} := 10$ i := 0 .. (N - 1)

Enter data set:

x _i :=					
45.7 · m	Calculate mean:	$x_{\text{mean}} := \text{mean}(x) = 46.95 \text{ m}$			
46.2 · m	Calculate standard deviation:	$\sigma_x := stdev(x) = 2.673 \text{ m}$			
46.9 · m					
54.8 · m		$\mathbf{x}_{i} - \mathbf{x}_{max}$			
46.1 · m	Calculate fractional	Frac Dev. := $\left \frac{\frac{1}{1}}{1}\right $			
45.2 · m	deviation from the mean:	$-1 \sigma_x$			
45.4 · m					
47.0 · m					
45.9 · m					

To apply Chauvenet's criterion, we first sort the data x in order of ascending values of the fractional deviation from the mean. The probability that a data point is likely to fall outside a given deviation is then calculated. We then determine how many data that should be eliminated based on Chauvenet's

Sort data in ascending order:

The probability that a data point is likely to fall outside a given deviation is:

$$\operatorname{Prob}(\mathbf{x}_{\text{test}}, \mathbf{X}, \sigma) \coloneqq 1 - \int_{-\left|\mathbf{x}_{\text{test}}\right|}^{\left|\mathbf{x}_{\text{test}}\right|} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\left[\frac{\left(\mathbf{x} - \mathbf{X}\right)^{2}}{2 \cdot \sigma^{2}}\right]} d\mathbf{x}$$

Apply Chauvenet's criterion and determine how many data points should be rejected: $Reject(x, X, \sigma, N) \coloneqq if [(N \cdot Prob(x, X, \sigma)) > 50 \cdot \%, "Keep", "Reject"]$

$$N_{\text{reject}} \coloneqq \sum_{i=0}^{N-1} \text{ if } \left[\left(N \cdot \text{Prob}(x_i, x_{\text{mean}}, \sigma_x) \right) > 50 \cdot \%, 0, 1 \right] = 1$$

x =			Frac	=_Dev =	$\operatorname{FIOD}(x_i, x_{\text{mean}})$	$(0_x) -$		$(i, x_{\text{mean}}, 0_x) =$	Keje	$\chi_{1}^{\chi}, \chi_{\text{mean}}, \chi_{1}^{\chi}$, x, I
	0	· n		0	0.68		6.8			0	
0	45.7		0	0.468	0.61		6.105		0	"Keep"	
1	46.2		1	0.281	0.507		5.075		1	"Keep"	
2	46.9		2	0.019	1.66·10 ⁻³		0.017		2	"Keep"	
3	54.8		3	2.936	0.625		6.247		3	"Reject"	
4	46.1		4	0.318	0.744		7.436		4	"Keep"	
5	45.2		5	0.655	0.719		7.19		5	"Keep"	
6	45.4		6	0.58	0.493		4.925		6	"Keep"	
7	47		7	0.019	0.653		6.528		7	"Keep"	
8	45.9		8	0.393	0.596		5.961		8	"Keep"	
9	46.3		9	0.243				-	9	"Keep"	

 $Prob(x_{i}, x_{mean}, \sigma_{x}) = N \cdot Prob(x_{i}, x_{mean}, \sigma_{x}) = Reject(x_{i}, x_{mean}, \sigma_{x}, N) =$

Now recalculate the mean and standard deviation after rejecting N_{reject} data points.

Truncated data set indices and data array:

$$j := 0 .. N - 1 - N_{reject}$$
 $X_{CH_j} := \mathbf{x}_{order_j}$

The final analysis is:

	Including all data points	Excluding the rejected data point
Number data points:	N = 10	$N - N_{reject} = 9$
Mean:	$x_{\text{mean}} = \text{mean}(x) = 46.95 \text{ m}$	$X_{\text{mean}} := \text{mean}(\mathbf{X}_{CH}) = \mathbf{I}$
Standard Deviation:	$\sigma_{x} := stdev(x) = 2.673 \text{ m}$	$\sigma_{\mathbf{x}} := \operatorname{stdev}(\mathbf{X}_{\mathbf{CH}}) = \mathbf{I}$