Postulates of Quantum Mechanics

1. To every physical observable A there corresponds a linear Hermitian operator A that is established by postulate or by extension from other postulates. For example

a. The position operator is $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

- b. The linear momentum operator is $\mathbf{p} = (\mathbf{h}/\mathbf{i}) \nabla$
- c. The Hamiltonian operator corresponds to the total energy of the system.
- d. Etc.

2. Everything measurable that can be known about a system is contained in the wavefunction $\Psi(\mathbf{r},t)$ which is obtained from the Schrödinger Equation

$$\mathbf{H}\Psi = \mathbf{i}\mathbf{h}\partial\Psi/\partial t$$

where **H** is the Hamiltonian operator.

3. A measurement of a physical observable A, whose corresponding operator is A, can return only one of the eigenvalues a_n of the eigenvalue equation

$$\mathbf{A}\boldsymbol{\varphi}_{n}(\mathbf{r}) = a_{n}\boldsymbol{\varphi}_{n}$$

4. The probability $c_n * c_n$ of measuring a particular eigenvalue a_n (corresponding to observable A) is obtained by expressing $\Psi(\mathbf{r},t)$ in the orthonormal basis of eigenvectors (eigenfunctions) φ_n where c_n is the n-th component in the expansion

$$\Psi(\mathbf{r},t) = \sum c_n(t)\varphi_n(\mathbf{r})$$

It follows from this that the expectation value (defined as the mean or average value of many measurements) of an observable A is obtained from the wavefunction Ψ through

$$\langle A \rangle = \int \Psi * \mathbf{A} \Psi d^3 x$$

5. If the measurement at time t_o of physical observable A results in eigenvalue a_n , then, regardless of its earlier state, the state of the system immediately after the measurement is φ_n where φ_n is the eigenstate corresponding to eigenvalue a_n . (Another way of saying this is that the act of making a measurement causes the wavefunction to collapse on the eigenstate corresponding to the measurement.)