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Harmonic Oscillations / Complex Numbers 
 
Overview and Motivation:  Probably the single most important problem in all of 
physics is the simple harmonic oscillator. It can be studied classically or quantum 
mechanically, with or without damping, and with or without a driving force.  As we 
shall shortly see, an array of coupled oscillators is the physical basis of wave 
phenomena, the overarching subject of this course.  In this lecture we will see how the 
differential equation that describes the simple harmonic oscillator naturally arises in a 
classical-mechanics setting.  We will then look at several (equivalent) ways to write 
down the solutions to this differential equation.   
 
Key Mathematics:  We will gain some experience with the equation of motion of a 
classical harmonic oscillator, see a physics application of Taylor-series expansion, and 
review complex numbers.   
 
I.  Harmonic Oscillations  
The freshman-physics concept of an (undamped, undriven) harmonic oscillator (HO) 
is something like the following picture, an object with mass m  attached to an 
(immovable) wall with a spring with spring constant sk .  (There is no gravity here; 
only the spring provides any force on the object.) 
 

 
Note that the oscillator has only two parameters, the mass m  and spring constant 

sk .  Assuming that the mass is constrained to move in the horizontal direction, its 
displacement q  (away from equilibrium) as a function of time t  can be written as 
 
 ( ) ( )φω += tBtq ~sin , (1) 
 
where the angular frequency ω~  depends upon the oscillator parameters m  and sk  
via the relation mks=ω~  .  The amplitude B  and the phase φ  do not depend upon 
m  and sk , but rather depend upon the initial conditions (the initial displacement ( )0q  

mks 
q 

q = 0 
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and initial velocity ( ) ( )00 q
dt
dq

&=  of the object).  Note that the term initial conditions 

is a technical term that generally refers to the minimal specifications needed to 
describe the state of the system at time 0=t .  You should remember that the angular 
frequency is related to the (plain old) frequency ν  via πνω 2~ =  and that the frequency 
ν  and period T  are related via T1=ν .   
 
Now because the sine and cosine functions are really the same function (but with just 
a shift in their argument by 2π± ) we can also write Eq. (1) as 
 
 ( ) ( )ψω += tBtq ~cos , (2) 
 
where the amplitude B  is the same, but the phase 2πφψ −=  (for the same initial 
conditions).  It probably is not obvious (yet), but we can also write Eq. (1) as 
 
 ( ) ( ) ( )tEtDtq ωω ~sin~cos += , (3) 
 
where the amplitudes D  and E  depend upon the initial conditions of the oscillator.   
Note that the term harmonic function simply means a sine or cosine function.  Note 
also that all three forms of the displacement each have two parameters that depend 
upon the initial conditions.   
 
II.  Classical Origin of Harmonic Oscillations  
A. The Harmonic Potential 
The harmonic motion of the classical oscillator illustrated above comes about because 
of the nature of the spring force (which is the only force and thus the net force) on 
the mass, which can be written as 
 
 ( ) qkqF ss −= . (4) 
 
Because the spring force is conservative, sF  can be derived from a potential energy 
function ( )qV  via the general (in 1D) relationship 
 

 ( ) ( )
dq

qdVqF −= . (5) 

 
A potential energy function for the spring that gives rise to Eq. (4) for the spring 
force is 
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 ( ) 2

2
1 qkqV ss =  (6) 

 
(do the math!). 
 
Let's see how the potential energy represented by Eq. (6) arises in a rather general way.  
Let's consider an object constrained to move in one dimension (like the oscillator 
above).  However, in this case all we know is that the potential energy function has at 
least one local minimum, as illustrated in the following graph of ( )qV  vs q . 
 

 
 
Let's now assume that the mass is located near the potential energy minimum on the 
right side of the graph and that its energy is such that it does not move very far away 
from this minimum.  Just because we can, let's also assume that this minimum defines 
where 0=q  and 0=V , as shown in the picture.   
 
Now here is where some math comes in.  If the mass does not move very far away 
from 0=q  then we are only interested in motion for small q .  Let's see what the 
potential energy function looks like in this case.  For small q  it makes sense to expand 
the function ( )qV  in a Taylor series 
 

 ( ) ( ) ( ) ( ) ( ) ...0
6
10

2
100 32 +′′′+′′+′+= qVqVqVVqV , (7) 

 
where, e.g., ( )0V ′  is the first derivative of V  evaluated at 0=q .  Now the rhs of Eq. (7) 
has an infinite number of terms and so is generally quite complicated, but often only 
one of these terms is important.  Let's look at each term in order.  The first term ( )0V  
is zero because we defined the potential energy at this minimum to be zero.  So far so 
good.  The next term is also zero because the slope of the function ( )qV  is also zero at 

( )qV  

0=q

0=V  
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the minimum.  The next term is not zero and neither, in general, are any of the others.  
However, if q  is small enough, these other terms are negligible compared to the third 
(quadratic) term.1  Thus, if the object's motion is sufficiently close to the minimum in 
potential energy, then we have 
 

 ( ) ( ) 20
2
1 qVqV ′′≈ . (8) 

 
So this is pretty cool.  Even though we have no idea what the potential energy 
function is like, except that it has a minimum somewhere, we see that if the object is 
moving sufficiently close to that minimum, then the potential energy is the same as 
for a mass attached to a spring where the effective spring constant sk  is simply the 
curvature V ′′  evaluated at the potential energy minimum ( 0=q ), ( )0V ′′ .2  Equation (8) 
is known as the harmonic approximation to the potential ( )qV  (near the minimum). 
 
B. Harmonic Oscillator Equation of Motion 
OK, so we see that the potential energy near a minimum is equivalent to the potential 
energy of an harmonic oscillator.  If we happen to know how an harmonic oscillator 
behaves, then we know how our mass will behave near the minimum.  But let's 
assume for the moment that we know nothing about the specifics of a harmonic 
oscillator.  Where do we go from here to determine the motion of the mass near the 
minimum?  Well, as in most classical mechanics problems we use Newton's second 
law, which is generally written (for 1D motion) as 
 

 
m

F
a net= , (9) 

 
where a  is the acceleration of the object and netF  is the net force (i.e., sum of all the 
forces) on the object.   
 
In the case at hand, in which the object's acceleration is qdtqd &&=22  and the net force 
comes only from the potential energy (near the minimum) Eq. (9) becomes 
 

                                                 
1 In physics we are often interested in comparing terms in expressions such as Eq. (7), and we often use the 
comparators >>  and <<  to compare these terms.  These two comparators actually mean ×< 10

1  and 
×> 10 , respectively.  For example, ba >>  indicates that  ba 10> .   

 
2 Exceptions can occur.  If the potential minimum is so flat that ( ) 00 =′′V  then the third term will be zero 
and it will be some higher-order term(s) that determine(s) the motion near the potential-energy minimum.  
The object will oscillate, but it will not oscillate harmonically. 
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 ( )q
m

Vq 0′′
−=&& , (10) 

 
or, identifying ( )0V ′′  as the spring constant sk  we can write Eq. (10) as 
 

 0=+ q
m
k

q s&& . (11) 

 
Equation (11) is known as the equation of motion for an harmonic oscillator.  
Generally, the equation of motion for an object is the specific application of Newton's 
second law to that object.  Also quite generally, the classical equation of motion is a 
differential equation such as Eq. (11).  As we shall shortly see, Eq. (11) along with the 
initial conditions ( )0q  and ( )0q&  completely specify the motion of the object near the 
potential energy minimum.  Note that two initial conditions are needed because Eq. 
(11) is a second-order equation.   
 
Let's take few seconds to classify this differential equation.  It is second order 
because the highest derivative is second order.  It is ordinary because the derivatives 
are only with respect to one variable ( t ).  It is homogeneous because q  or its 
derivatives appear in every term, and it is linear because q  and its derivatives appear 
separately and linearly in each term (where they appear).  An major consequence of 
the homogeneity and linearity is that linear combinations of solutions to Eq. (11) are 
also solutions.  This fact will be utilized extensively throughout this course. 
 
C.  HO Initial Value Problem 
The solution to Eq. (11) can be written most generally as either Eq. (1), Eq. (2), or Eq. 
(3) (where mks=ω~ ).  Let's consider Eq. (3) 
 
 ( ) ( ) ( )tEtDtq ωω ~sin~cos += , (3) 
 
and see that indeed the constants D  and E  are determined by the initial conditions.  
By applying the initial conditions we are solving the initial value problem (IVP) for 
the HO.  Setting 0=t  in Eq. (3) we have 
 
 ( ) Dq =0  (12) 
 
Similarly, taking the time derivative of Eq. (3) 
 
 ( ) ( ) ( )tEtDtq ωωωω ~cos~~sin~ +−=&  (13) 
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and again setting 0=t  gives us 
 
 ( ) Eq ω~0 =& . (14) 
 
 
Hence, the general solution to the (undamped, undriven) harmonic oscillator problem 
can be written as 
 

 ( ) ( ) ( ) ( ) ( )tqtqtq ω
ω

ω ~sin~
0~cos0

&
+= . (15) 

 
To summarize, for a given set of initial conditions ( )0q  and ( )0q& , Eq. (15) is the 
solution to Eq. (11), the harmonic oscillator equation of motion.   
 
III.  Complex Numbers  
In our discussion so far, all quantities are real number (with possibly some units, such 
as 3=q  cm).  However, when dealing with harmonic oscillators and wave phenomena, 
it is often useful to make use of complex numbers, so let's briefly review some facts 
regarding complex numbers. 
 
The key definition associated with complex numbers is the square root of −1, known 
as i .  That is, 1−=i .  From this all else follows.   
 
Any complex number z  can always be represented in the form 
 
 iyxz += , (16) 
 
where x  and y  are both real numbers.  Common notations for the real and imaginary 
parts of z  are ( )zx Re=  and ( )zy Im= .  It is also often convenient to represent a 
complex number as a point in the complex plane, in which the x  coordinate is the 
real part of z  and the y  coordinate is the imaginary part of z , as illustrated by the 
picture on the following page. 
 
As this can be inferred from this picture, we can also use polar coordinates r  and θ  
to represent a complex number as 
 
 ( ) ( ) ( ) ( )[ ]θθθθ sincossincos irirrz +=+= . (17) 
 
Using the infamous Euler relation (which you should never forget!) 
 



Lecture 2  Phys 3750 

D M Riffe -7- 1/4/2013 

 
 
 ( ) ( )θθθ sincos iei +=  (18) 
 
 
we see that a complex number can also be written as 
 
 θirez = . (19) 
 
The last important definition associated with complex numbers is the complex 
conjugate of z  defined as 
 
 iyxz −=* . (20) 
 
As is apparent in the diagram above, this amounts to a reflection about the real ( x ) 
axis.  Note the following relationships: 
 

 ( )zxzz Re
2

*

==
+ , (21) 

 

 ( )zy
i
zz Im

2

*

==
− , 

 
and 
 

Real Axis ( )x  

Imaginary Axis ( )y  

r

θ

yxz i+=

y  

x

yxz i−=∗  
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 222* ryxzz =+= . (22) 
 
Note also the absolute value of a complex number, which is equal to r , is given by 
 
 *zzrz == . (23) 
 
IV.  Complex Representations of Harmonic Oscillator Solutions 
Because the HO equation of motion [Eq. (11)] is linear and homogeneous, linear 
combinations of solutions are also solutions.  These linear combinations can be 
complex combinations.  For example, because ( )tω~cos  and ( )tω~sin  are both solutions 
to Eq. (11) (we are not worrying about any particular initial conditions at the moment), 
another solution to Eq. (11) is the complex linear combination 
 
 ( ) ( ) ( ) tietittq ωαωαωα ~~sin~cos =+= , (24) 
 
where α  is some complex number.   
 
So what is the point here?  Well, as we shall see as we go along, it is often convenient 
to work with complex representations of solutions to the harmonic oscillator equation 
of motion (or to the wave equation that we will be dealing with later).  So what does it 
mean to have a complex displacement?  Nothing, really – a displacement cannot be 
complex, it is indeed a real quantity.  So if we are dealing with a complex solution, 
what do we do to get a physical (real) answer?  There are at least three approaches:   
 
(1)  The first approach is to, up front, make the solution manifestly real.  For example, 
let's say you want to work with the general complex solution 
 
 ( ) titi eetq ωω βα ~~ −+= , (25) 
 
where α  and β  are complex numbers.  You can impose the condition *αβ = , which 
results in ( )tq  being real.   
 
(2)  Another approach is to simply work with the complex solution until you need to 
doing something such as impose the initial conditions.  Then, for example, if we are 
working with the form in Eq. (25), the initial conditions might be something like 

( )[ ] Aq =0Re , ( )[ ] 00Im =q , ( )[ ] Bq =0Re & , and ( )[ ] 00Im =q& .  These four conditions would 
then determine the four unknowns, the real and imaginary parts of α  and β  (and 
again would result in ( )tq  being real). 
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(3)  A third approach is to simply use the real part of a solution when something like 
the initial conditions are needed, and then impose the initial conditions.  (Alternatively, 
because the imaginary part of the solution is also a real number, you could use the 
imaginary part of the solution if you were so inclined.) 
 
Note that these different approaches work because the harmonic oscillator equation 
of motion is real and linear.  We will not worry about the details of this at the moment, 
but if you are interested you can read more about this on pp. 9-10 of Dr. Torre’s text, 
Foundations of Wave Phenomena (FWP).   
 
 
Exercises 
*2.1  Show that Eqs. (1) and (2) are solutions to Eq. (11), the equation of motion for 
the harmonic oscillator.   
 
*2.2  Assuming the form of Eq. (1) for the solution to Eq. (11), find the values of B  
and φ  in terms of the initial conditions ( )0q  and ( )0q& . 
 
*2.3  Assuming the form of Eq. (2) for the solution to Eq. (11), find the values of B  
and ψ  in terms of the initial conditions ( )0q  and ( )0q& .  [This exercise along with 
Exercise 2.2 shows that Eqs. (1) and (2) are equivalent.] 
 
**2.4  Quadratic approximation to a particular potential energy.  Consider the 
potential energy function ( ) ( )qqV κcos1−= , where κ  is some positive constant. 
(a)  Carefully (!) plot (using a computer math program such as Mathcad, Maple, etc.) 
this function for πκπ <<− q  (For simplicity in making this and the following graph 
you may set κ  to 1)  Make sure that your axes are carefully labeled on this and 
all other graphs. 
(b)  Find the force ( )qF  associated with this potential-energy function (for arbitrary 
positive κ ). 
(c)  Taylor series expand the potential-energy function about the point 0=q ;  keep all 
terms up to the 4q  term. 
(d)  What is the effective spring constant sk associated with this potential-energy 
function?   
(e)  What condition on q  is necessary so that the 4q  term (in the Taylor series 
expansion) is much smaller (<< ) that the (harmonic) 2q  term? (See footnote 1 on p. 4.) 
(f)  Replot the original function ( ) ( )qqV κcos1−=  and the harmonic approximation to 
this function from πκπ <<− q .  Based on this graph, for what values of qκ  do you 
expect the harmonic approximation to be valid?  How does this compare to your 
answer in (e)? 
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**2.5  The Euler relation.  The Euler relation ( ) ( )θθθ sincos iei +=  can be shown to 
be true by comparing, term by term, the Taylor series of both sides of the relation.  
Calculate the first five Taylor series terms (about 0=θ , so these will be the 0θ , 1θ  , 

2θ , 3θ , 4θ , and 5θ  terms) of each side of the equation and show that they are 
equivalent. 
 
*2.6  Write the following complex expressions in the form iyx +  
(a)  ( )45 πie  
(b)  ( )( )ii 2345 +−  

(c)  
i76

1
−

 

(d)  ( )2162 ππ ii ee −⋅  
 
*2.7  Write the expressions in Exercise 2.6 in the form θiAe , where A  and θ  are both 
real. 
 
*2.8  Find the real part of ( ) titi eetq ωω αα

~~ −∗+= .  Here α  is complex.  Write your 
solution in terms of ( )αRe , ( )αIm , ( )tω~sin , and ( )tω~cos .   
 
*2.9  Complex solution and initial conditions 
(a)  Show that ( ) titi eetq ωω βα ~~ −+=  is a solution to Eq. (11), the harmonic oscillator 
equation of motion. 
(b)  Assuming that α  and β  are complex, find α  and β  in terms of the initial 
conditions ( )0q  and ( )0q& .  (Do this using one of the three methods discussed on p. 8.) 
 



Lecture 3  Phys 3750 

Two Coupled Oscillators / Normal Modes 
 
Overview and Motivation:  Today we take a small, but significant, step towards 
wave motion.  We will not yet observe waves, but this step is important in its own 
right.  The step is the coupling together of two oscillators via a spring that is attached 
to both oscillating objects. 
 
Key Mathematics:  We gain some experience with coupled, linear ordinary 
differential equations.  In particular we find special solutions to these equations, 
known as normal modes, by solving an eigenvalue problem.   
 
I.  Two Coupled Oscillators  
Let's consider the diagram shown below, which is nothing more than 2 copies of an 
harmonic oscillator, the system that we discussed last time.  We assume that both 
oscillators have the same mass m  and spring constant k .  Notice, however, that 
because there are two oscillators each has it own displacement, either  or .   

s

1q 2q
 
 

ks ks m m

01 =q

2q

02 =q

1q

 
 
Based on the discussion last time you should be able to immediately write down the 
equations of motion (one for each oscillating object) as 
 
 0~

1
2

1 =+ qq ω&& , and (1a) 
 
 0~

2
2

2 =+ qq ω&& , (1b) 
 
where mks=2~ω .  As we saw last time, the solution to each of theses equations is 
harmonic motion at the (angular) frequency ω~ .  As should be obvious from the 

D M Riffe -1- 1/4/2013 
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picture, the motion of each oscillator is independent of the other oscillator.  This is 
also reflected in the equation of motion for each oscillator, which has nothing to do 
with the other oscillator. 
 
Let's now make things a bit more interesting by adding in another spring that 
connects the two oscillating objects together, as illustrated in the following picture.  
To make things even more interesting we assume that this new spring has a different 
constant .  However, to keep things simple we assume that the middle spring 
provides no force if q .  That is, this spring is neither stretched or compressed 
if its length is equal to the its length when two objects are at equilibrium.   

sk ′
021 =− q

 
 

ks ks 
sk ′ m m

01 =q

2q

02 =q

1q

 
 
Thinking about this picture we should realize that the two equations of motion will no 
longer be independent.  That is, the equation of motion for the first object will 
depend (somehow) upon what the second object is doing, and vice versa.   
 
Let's use Newton's second law to write down the equation motion for each object.  
Recall that Newton's second law for either object ( 2,1=i ) can be written as 
 

 
m
F

q i
i =&& , (2) 

 
where  is the net force on object i .  The tricky part, if there is a tricky part, is to 
determine the sum  on each object.  The net force on the first object comes from 
the spring on the left and the spring in the middle.  With a little thought you should 
realize that this net force  is 

iF

iF

1F
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 . (3a) ( 2111 qqkqkF ss −′−−= )

)

 
Make sure that you understand the signs of all the term on the rhs of this equation.  
Notice that the force provided by the middle spring depends not only on the first 
object's displacement but also on the second object's displacement.  Similarly, the net 
force on the second object is  
 
 . (3b) ( 1222 qqkqkF ss −′−−=
 
Substituting these two forces into Eq. (2), once for each object, we obtain the two 
equations of motion, 
 
 ( ) 0~~

21
2

1
2

1 =−′++ qqqq ωω&&  (4a) 
 
for the first object and  
 
 ( ) 0~~

12
2

2
2

2 =−′++ qqqq ωω&&  (4b) 
 
for the second.  Here mk ′=′2~ω .  Given the symmetry of the problem, it might not 
surprise you that you can obtain one equation of motion from the other with the 
transformation 1  in the subscripts that label the objects.   2↔
 
So now we have a considerably more complicated problem:  as expected from looking 
at the drawing above, the equation of motion for each object depends upon what the 
other object is doing.  Specifically, each equation of motion depends upon the 
displacement of the other object.   
 
II.  Normal Modes  
A.  Harmonic Ansatz 
So what are the solutions to these differential equations?  Well, we will eventually 
write down the general solution (next lecture).  But right now we are going to look at 
a special class of solutions known as normal-mode solutions, or simply, normal modes.  
A normal mode is a solution in which both masses harmonically oscillate at the same 
frequency.  We state why these special solutions are extremely useful at the end of the 
lecture.  For now let's see if we can find them.  We use the complex form of harmonic 
motion and write 
 
  and (5a) ( ) tieqtq Ω= 011
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 . (5b) ( ) tieqtq Ω= 022

 
Notice that the (unknown) frequency of oscillation Ω  of both oscillators is the 
same, a key feature of a normal mode.  Also, because we are using the complex form 
of harmonic motion, the amplitudes q  and  may be complex, but they too are 
unknown at this point.  Keep in mind that Eq. (5) is only the form of a normal-mode 
solution:  it is only a solution if it satisfies the equations of motion.  In other words, 
we now need to find values of the frequency 

01 02q

Ω  and amplitudes  and  that 
satisfy Eqs. (4a) and (4b), the equations of motion.   

01q 02q

 
So let's substitute Eq. (5) into Eq. (4) and see what that tells us about Ω , , and q .  
Carrying out the substitution and calculating the derivatives yields 

01q 02

 
 ( ) 0~~

0201
2

01
2

01
2 =−′++Ω− ΩΩΩΩ titititi eqeqeqeq ωω , and (6a) 

 
 ( 0)~~

0102
2

02
2

02
2 =−′++Ω− ΩΩΩΩ titititi eqeqeqeq ωω . (6b) 

 
Dividing by  (Is this legal?) and rearranging some terms gives tie Ω

 
 ( ) 0~~~

02
2

01
222 =′−Ω−′+ qq ωωω , and (7a) 

 
 ( ) 0~~~

02
222

01
2 =Ω−′++′− qq ωωω . (7b) 

 
So what do we have here?  We have two algebraic equations and three unknowns Ω , 

, and .  The problem seems a bit underspecified, and it is:  as we shall see below, 
we will only be able to solve for 

01q 02q
Ω  and the ratio 0201 qq .   

 
B.  Eigenvalue Problem 
If you have previously studied differential equations and linear algebra you may be 
inclined to write Eq. (7) in matrix notation as 
 

 







Ω=
















′+′−

′−′+

02

012

02

01
222

222

~~~
~~~

q
q

q
q

ωωω
ωωω , (8) 

 
which you would recognize as an eigenvalue problem.  Generally, an eigenvalue 
problem is one where some linear operator (in this case a matrix) operating on some 
object (in this case a 2D column vector) produces a constant (in this case Ω ) times 
the original object.  Generally, an N -dimensional linear-algebra eigenvalue problem 

2
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has  solutions [which consist of special values of the constant (or eigenvalue) N 2Ω  

and amplitudes  (or eigenvector  )].   nqq 001K

~

















Nq

q

0

01

M

0
~

2

2

+
−Ω

ω

2




ω

02 == q

~
~

2

2

+
−

ω

2ω

) 0~ 4 =′−ω

22

~+ω

2 ~~ ωω ′±=

2Ω

2~~ ωω ′=

 
C.  Eigenvalues 
Well, that was a lot of terminology, but what about the solution?  Well, let's rewrite 
Eq. (8) as 
 

 ~~
~~

02

01
222

22

=











Ω−′′−

′−′+
q
q

ωω
ωω . (9) 

 
Now this is interesting.  Expressed in this way, we have the product of two quantities 
equal to zero.  There are two ways that Eq. (9) can be true.  The first, which is the 
trivial (i.e., uninteresting) solution, is 001q .  Physically, this corresponds to no 
motion of the system – pretty uninteresting!  The nontrivial way that Eq. (9) can be 
satisfied is if the determinant of the 2 × 2 matrix is zero.  That is 
 

 0~~
~~

222

22

=
Ω−′′−

′Ω−′+
ωω
ωω . (10) 

 

For a 2×2 matrix the determinant is easily calculated, BCAD
DC
BA

−= , so in this case 

Eq. (10) can be expressed as 
 
(~ 2222 Ω−′ω . (11) 
 
Eq. (11) [or Eq. (10)] is known as the characteristic equation for the eigenvalue 
problem.  This is great!  We now have an equation for the eigenvalue Ω  and thus the 
normal-mode frequency Ω ,  

2

 
 2~ω Ω−′+ . (12) 
 
Solving Eq. (12) for  produces the two eigenvalues 
 

222 2~,ω +Ω ,  (13) 
 
which gives us four solutions for the normal-mode frequency 
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 22 ~2~,~ ωωω ′+±±=Ω . (14) 
 
D.  Eigenvectors and Normal Modes 
So now that we have the eigenvalues 2~ω  and 22 ~2~ ωω ′+ , we need to find the 
eigenvector associated with each eigenvalue.  To do this we substitute each eigenvalue 
into either Eq. (7a) or (7b) (It doesn't matter which, you get the same equation in 
either case).   
 
1.  first normal mode 
For the first eigenvalue, 22 ~ω=Ω , this substitution produces 
 
 0~~

02
2

01
2 =′−′ qq ωω , (15) 

 
which gives us the result for the amplitudes 
 
 , (16) 0201 qq =
 

and so the eigenvector associated with the first normal mode is 
 .  This result tells 

us that both oscillators oscillate identically [check out Eq. (5) with the result of Eq. 
(16)] if this normal mode is excited.  That is, the objects oscillate with exactly the 
same amplitude and the same phase.   






1
1

 
Now because the eigenvalue 22 ~ω=Ω  corresponds to two normal-mode frequencies 

ω~±=Ω , this first eigensolution of the linear algebra problem gives us to two linearly-
independent solutions to the equations of motion. 
 
 ( ) tieAtq ω~

11 =  and ( ) tieAtq ω~
12 =  (17a),(17b) 

 
is the first solution, and  
 
 ( ) tieBtq ω~

11
−=  and ( ) tieBtq ω~

12
−=  (18a),(18b) 

 
is the second, where the amplitudes  and  are arbitrary.  Equations (17) and (18) 
can be written in linear-algebra inspired notation as 

1A 1B

 

  (19) ( )
( )

tieA
tq
tq

ω~
1

12

1

1
1








=









+

 
and 
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 , (20) ( )
( )

tieB
tq
tq

ω~
1

12

1

1
1

−

−








=









 
respectively.  The 1  and 1  denote the + − ω~+  and ω~−  solutions.  However, because 
oscillations at frequency ω~−  are really just oscillations at ω~ , any linear combination of 
these two solutions really just oscillates at the frequency ω~ , and so any linear 
combination of Eq. (19) and (20) can be thought of as the first normal-mode solution 
at frequency ω~ .  That is, the most general way we can write the first normal-mode 
solution is 
 

 ,  (21) ( )
( )

( )
( )

( )
( ) ( )titi eBeA
tq
tq

tq
tq

tq
tq ωω ~

1
~

1
12

1

12

1

12

1

1
1 −

−+

+







=








+








=









 
where  and  are unspecified constants.  Note that arbitrariness of A  and  is 
consistent with our knowledge that for an harmonic oscillator the frequency is 
independent of the amplitude.  Note also that (if we wish to at this point) we can 
specify the solution to be real, in which case we would set .   

1A 1B 1 1B

*
11 AB =

 
2.  second normal mode 
Let's now look at the second normal-mode solution, which corresponds to the second 
eigenvalue 22 ~2~ ωω ′+ .  As before, we substitute this eigenvalue into Eq. (7a), which 
gives us 
 
 0~~

02
2

01
2 =′−′− qq ωω  (22) 

 
or  
 
 , (23) 0201 qq −=
 

and so the eigenvector associated with the second normal mode is 
 .  So if this 

normal mode is excited the two oscillators oscillate with the same amplitude, but with 
opposite phase (or a phase difference of 






−1
1

2π ).  That is, when the first oscillator is 
moving to the left the second is moving to the right with the same magnitude in its 
displacement, and vice versa.   
 
As in the case of the first eigenvalue, there are two linearly-independent solutions 
corresponding to the two frequencies 22 ~2~ ωω ′+± .  The first solution is 
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 ( ) tieAtq 22 ~2~

22
ωω ′+=  and ( ) tieAtq 22 ~2~

22
ωω ′+−=  (24a),(24b) 

 
and the second is 
 
 ( ) tieBtq 22 ~2~

21
ωω ′+−=  and ( ) tieBtq 22 2

22
ωω ′+−−= , (25a),(25b) 

 
or in linear-algebra notation 
 

 ( )
( )

tieA
tq
tq 22 ~2~

2
22

1

1
1

ωω ′+

−








−

=






  (26) 

 
and 
 

 ( )
( )

tieB
tq
tq 22 ~2~

2
22

1

1
1

ωω ′+−

−








−

=






 . (27) 

 
As before, the general form of this normal-mode solution is 
 

 ( )
( )

( )
( )

( )
( ) ( titi eBeA
tq
tq

tq
tq

tq
tq 2222 ~2~

2
~2~

2
22

1

22

1

22

1

1
1

ωωωω ′+−′+

−+

+







−

=







+








=







 ) (28) 

 
The graphs on the following page plot the time-dependent amplitudes q  and ( )t1 ( )tq2  
for the  two normal modes for the following values of the arbitrary constants:  

2111 == BA  for the first normal mode and 2122 == BA  for the second normal mode. 
(With these choices the solutions are real.)  For these graphs we have also set m , , 
and  equal to 1, so that ~

sk

sk ′ 1=ω  and 3~2~ 22 =′+ ωω .  (Admittedly, we have not 
specified units here, but if standard SI units are used for the mass, spring constants, 
and time, then the unit for displacement is meters.)  As the graphs show, in the first 
normal mode the two objects oscillate identically, while in the  second normal mode 
they oscillate exactly oppositely.   
 
As we will see in the next lecture, a great usefulness of the normal mode solutions is 
that ANY solution of Eqs. (4a) and (4b), the equations of motion for this coupled 
oscillator system, can be written as a linear combination of these two normal-mode 
solutions.  Indeed, this property of normal-mode solutions is so important that it will 
be a theme throughout the course. 
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Exercises 
 
*3.1  Starting with the Euler formula ( ) ( )θθθ sincos iei +=  (and its complex conjugate), 
write ( )θcos  and ( )θsin  in terms of  and .   θ θie−ie
 
*3.2  Write the expression titi BeAe ωω ~~ −+   in the form ( ) ( tDt )C ωω ~sin~cos + .  That is, find 

 and  in terms of  and C D A B .  From this result show that if *AB =  then  and  
are both real (which means that 

C D
tiBe ωtiAe ω ~~ −+  is real).   

 
*3.3  In the graph of the first normal-mode solution, ( )tq1  and ( )tq2  both look like 
cosine functions.  Show for 2111 == BA , that  the solution  
 

( )
( ) ( titi eBeA
tq
tq

ωω ~
1

~
1

12

1

1
1

−+







=







 ) can indeed be written as ( )
( ) ( )t
tq
tq

ω~cos
1
1

12

1








=







 . 
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*3.4  If we take the limit  k  in the coupled oscillator problem, what does this 
correspond to physically?  What happens to the normal mode frequencies?   Does this 
make sense?  (Note:  if two normal modes have the same frequency, then they are said 
to be degenerate, and any linear combination of those two normal modes is also a 
normal mode.) 

0→′s

 
**3.5  Three coupled oscillators.  In this problem you will find the normal modes 
of three coupled oscillators, as illustrated below.  Assume that each object has mass  
and each spring constant is .   

m
sk

 
 

1q 2q 3q

 
 
(The following steps lead you through the same procedure as is used in the notes to 
solve the two-oscillator problem in order to solve this problem.  It will be most 
helpful if you carefully study that procedure before tackling this problem.) 
 
(a)  Using Newton's second law, write down the equation of motion for each object 
[in the form of Eq. (4) in the notes]. 
(b)  Assume a normal-mode type solution and find the three algebraic equations 
[equivalent to Eq. (7) in the notes] that govern 2Ω  and the amplitudes , q , and . 01q 02 03q
(c)  Write your equations in (b) in matrix form [equivalent to Eq. (9) in the notes]. 
(d)  Find the characteristic equation [equivalent to Eq. (11) in the notes] that 
determines the three eigenvalues. (Hint:  you will need to calculate the determinant of 
a 3×3 matrix.) 
(e)  Solve the characteristic equation and show that the three eigenvalues for this 
problem are ( ) ( ) 2222 ~22,~2,~22 ωωω +−=Ω . 
(f)  For each eigenvalue, find the eigenvector associated with that eigenvalue. 
(g)  Write down the 3 normal mode solutions in the form of Eqs. (21) and (28) in the 
notes. 
(h)  As precisely as possible, describe the motion of the three objects for each of the 
normal modes.   
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Normal Mode Coordinates / Initial Value Problem 
 
Overview and Motivation:  We continue to look at the coupled-oscillator problem.  
We extend our analysis of this problem by introducing functions known as normal-
mode coordinates. These coordinates make the coupled-oscillator problem simple 
because they transform the coupled equations of motion into two uncoupled 
equations of motion. Using the normal modes, we then solve the general initial-value 
problem for this system. 
 
Key Mathematics:  We gain experience with linear transformations and initial value 
problems. 
 
I. Normal Mode Solutions 
A.  Summary from Last Lecture 
The problem that we studied last time is shown in the following diagram.  There are 
two objects, each with mass m  and three springs.  The springs on the ends have 
spring constant sk  and the one in the center has spring constant sk ′ . 
 
 

 
 
Last time we found the two normal-mode solutions, which can be written as 
 

 ( )
( ) ( )titi eBeA
tq
tq

11
11

12

1

1
1 Ω−Ω +







=







  (1) 

 
and 
 

01 =q 02 =q

1q 2q

m  m ks ks 
sk ′
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 ( )
( ) ( )titi eBeA
tq
tq

22
22

22

1

1
1

Ω−Ω +







−

=






 , (2) 

 
where  ω~1 =Ω  and  22

2
~2~ ωω ′+=Ω  are the normal-mode frequencies of oscillation.  

As we will show below, any solution to this problem can be written as a linear 
combination of these two normal modes.  Thus, we can write the most general 
solution to this problem as 
 

 ( )
( ) ( ) ( )titititi eBeAeBeA
tq
tq

2211
2211

2

1

1
1

1
1

Ω−ΩΩ−Ω +







−

++







=







  (3) 

 
B.  Normal Mode Coordinates 
Let's now consider the following linear transformation1 of the displacements ( )tq1  
and ( )tq2 , 
 

 ( )
( )

( )
( )














−

=







tq
tq

tQ
tQ

2

1

2
1

2
1

2
1

2
1

2

1 . (4) 

 
Calculating the rhs of Eq. (4) produces2 
 

 ( )
( )

( ) ( )
( ) ( )






−
+

=







tqtq
tqtq

tQ
tQ

21

21

2

1

2
1 . (5) 

 
Written more pedantically, we have 
 

 ( ) ( ) ( )
2

21
1

tqtqtQ +
=  (6a) 

 
and 
 

 ( ) ( ) ( )
2

21
2

tqtqtQ −
= . (6b) 

 
For reasons that will soon become apparent, the functions ( )tQ1  and ( )tQ2 are known 
                                                 
1 Any linear transformation of an N -vector can be represented as lhs multiplication of that vector by an 

NN ×  matrix.   
2 Note that the normal-mode coordinate 2Q  as defined here is the negative of 2Q  as defined in Dr. Torre’s 
text FWP.  We define it here with this change so as to be more consistent with the later treatment of N  
coupled oscillators.  To be honest, it also makes some of the equations look prettier! 
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as normal-mode coordinates.  (Why aren't they called normal-mode functions?  
Don't ask me!)   
 
Let's now apply the linear transformation in Eq. (4) to the rhs of Eq. (3) and see what 
it tells us.  Applying the transformation and equating the result to the lhs of Eq. (4) 
yields 
 

 ( )
( ) ( ) ( )titititi eBeAeBeA
tQ
tQ

2211
2211

2

1

1
0

0
1

Ω−ΩΩ−Ω +







++








=







 . (7) 

 
This equation may look complicated, but, in fact, it is very simple. It says that ( )tQ1  
harmonically oscillates at the first normal-mode frequency 1Ω  and that ( )tQ2  
harmonically oscillates at the second normal-mode frequency 2Ω .  Pretty cool!  In fact, 
if Eq. (3) is the general solution to this problem (more on this below), Eq. (7) say that 
no matter what the motion, the sum ( ) ( )tqtq 21 +  always oscillates at 1Ω , and the 
difference ( ) ( )tqtq 21 −  always oscillates at 2Ω . 
 
C.  Equations of Motion 
Let's now go back to the coupled equations of motion, 
 
 ( ) 0~~

21
2

1
2

1 =−′++ qqqq ωω&&  (8a) 
 
and 
 
 ( ) 0~~

12
2

2
2

2 =−′++ qqqq ωω&& , (8b) 
 
and see what happens if we write them in terms of the normal-mode coordinates 

( )tQ1  and ( )tQ2 .  To do that we need the inverse of the transformation in Eq. (4).  
Using 
 

 







−

=







−

−

11
111

2
1

2
1

2
1

2
1

 (9) 

 
(make sure that you understand this!) we apply this inverse transformation to Eq. (4), 
which gives us (after switching the rhs and lhs) 
 

 ( )
( )

( ) ( )
( ) ( )






−
+

=







tQtQ
tQtQ

tq
tq

21

21

2

1 . (10) 
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That is, ( ) ( ) ( )tQtQtq 211 +=  and ( ) ( ) ( )tQtQtq 212 −= .  Substituting these results into Eq. 
(8) produces 
 
 ( ) 0~2~

2
2

21
2

21 =′++++ QQQQQ ωω&&&&  (11a) 
 
and 
 
 ( ) 0~2~

2
2

21
2

21 =′−−+− QQQQQ ωω&&&& . (11b) 
 
Looks pretty ugly, eh? Well , it is about to get much simpler. If we take the sum and 
difference of Eqs. (11a) and (11b) we get the following two equations, 
 
 0~

1
2

1 =+ QQ ω&&  (12a) 
 
and 
 
 ( ) 0~2~

2
22

2 =′++ QQ ωω&& . (12b) 
 
First, notice that these two equations are uncoupled:  the equation of motion for 1Q  
doesn't depend upon 2Q  and vice-versa.  Furthermore, you should now able to 
recognize each of these equations as the equation of motion for a single harmonic 
oscillator!  Thus, Eq. (12a) tells us that 1Q  harmonically oscillates at ω~  ( 1Ω= ), and Eq. 
(12b) tells us that 2Q  harmonically oscillates at 22 ~2~ ωω ′+  ( 2Ω= ).  Of course, this is 
exactly what was expressed earlier by Eq. (7). 
 
We can also infer something very important from this transformation.  Because the 
normal coordinates are governed by Eq. (12), which is simply an harmonic oscillator 
equation for each coordinate, we know that the general solution for ( )tQ1 and ( )tQ2  is 
given by Eq. (7).  Thus, the general solution for ( )tq1 and ( )tq2  is given by the inverse 
transformation of Eq. (7), which is simply Eq. (3).  This proves that the general 
solution for ( )tq1 and ( )tq2  is, indeed, a linear combination of the normal mode 
coordinates ( )tQ1 and ( )tQ2 .  This is a general result that we will use throughout the 
course. 
 
II.  Initial Value Problem 
Let's now solve the initial-value problem for the coupled-oscillator system.  That is, 
we want to write Eq. (3), the general solution to the coupled oscillator problem, in 
terms of the initial conditions ( )01q , ( )01q& , ( )02q , and ( )02q&  (which are all real 
quantities). 
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Now Eq. (3), 
 

 ( )
( ) ( ) ( )titititi eBeAeBeA
tq
tq

2211
2211

2

1

1
1

1
1

Ω−ΩΩ−Ω +







−

++







=







 , (3) 

 
uses the complex form of the harmonic oscillator solution.  Looking back on p. 8 of 
the Lecture 2 notes, we see that we have three choices about how to deal with making 
the IVP solution real.  Let's use the first approach and make Eq. (3) manifestly real by 
setting *

11 AB =  and *
22 AB = .  Then we have 

 

 ( )
( ) ( ) ( )titititi eAeAeAeA
tq
tq

2211
*

22
*

11
2

1

1
1

1
1

Ω−ΩΩ−Ω +







−

++







=







 . (13) 

 
This expression is real because each term in parenthesis is the sum of a complex 
number and its complex conjugate.  To rewrite Eq. (13) in a form that is explicitly real 
we use the relationship 
 
 ( ) ( ) ( ) ( ) ( )[ ]xAxAAeeAAe ixixix sinImcosRe2Re2* −==+ − , (14) 
 
so that Eq. (13) becomes 
 

( )
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]tAtAtAtA
tq
tq

22221111
2

1 sinImcosRe
1

1
2sinImcosRe

1
1

2 Ω−Ω







−

+Ω−Ω







=







 . (15) 

 
We now apply the initial conditions to Eq. (15), which gives us 
 

 ( )
( ) ( ) ( )21

2

1 Re
1

1
2Re

1
1

2
0
0

AA
q
q









−

+







=







 , (16) 

 
and 
 

 ( )
( ) ( ) ( )2211

2

1 Im
1

1
2Im

1
1

2
0
0

AA
q
q









−

Ω−







Ω−=








&

&
. (17) 

 
The easiest way to solve for the four unknowns [ ( )ARe , ( )AIm , ( )CRe , and ( )CIm ] is 

to apply the normal-mode transformation 







− 2

1
2
1

2
1

2
1

 to each side of these two 

equations, which produces 
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 ( ) ( )
( ) ( ) ( ) ( )21

21

21 Re
1
0

2Re
0
1

2
00
00

2
1 AA

qq
qq









+








=








−
+ , (18) 

 
and 
 

 ( ) ( )
( ) ( ) ( ) ( )2211

21

21 Im
1
0

2Im
0
1

2
00
00

2
1 AA

qq
qq









Ω−








Ω−=








−
+
&&

&&
. (19) 

 
From these last two equations we immediately see that 
 

 ( ) ( ) ( )
4

00Re 21
1

qqA +
= , (20a) 

 

 ( ) ( ) ( )
1

21
1 4

00Im
Ω
+

−=
qqA && , (20b) 

 

 ( ) ( ) ( )
4

00Re 21
2

qqA −
= , and  (20c) 

 

 ( ) ( ) ( )
2

12
2 4

00Im
Ω
−

=
qqA && . (20d) 

 
If we now substitute Eq. (20) into Eq. (15) we finally obtain the solution to the IVP, 
 

 

( )
( ) ( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( ) ( ) ( )








Ω







Ω
−

+Ω−







−

+









Ω







Ω
+

+Ω+







=









tqqtqq

tqqtqq
tq
tq

2
2

21
221

1
1

21
121

2

1

sin00cos00
1

1
2
1

sin00cos00
1
1

2
1

&&

&&

. (21) 

 
The graphs on the following page illustrate the motion that results for two sets of 
initial conditions.  For both graphs 1=m , 1=sk , and 1=′sk  (so that 11 =Ω  and 

32 =Ω ).  In the top graph ( ) 101 =q , ( ) 102 −=q , ( ) 001 =q& , and ( ) 002 =q& .  What special 
motion is this?  In the second graph the initial conditions are ( ) 101 =q , ( ) 002 =q , 
( ) 001 =q& , and ( ) 002 =q& .  This motion is quite complicated.  In fact, it is not even 

periodic:  it never repeats, even though the normal-mode coordinates are simply 
harmonically oscillating at their respective frequencies.  The nonrepetitive nature of 
the motion occurs because (in this example) the ratio is of the two normal-mode 
frequencies is not a rational number.   
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Exercises 

*4.1  Apply  the inverse transformation 







−11
11  to Eq. (7) to recover Eq. (3). 

 
*4.2  Assuming ( ) 001 =q  and ( ) 002 =q , find the general condition on the initial 
velocities ( )01q&  and ( )02q&  that results in only the first normal mode being excited.   
 
*4.3  Assuming ( ) 001 =q  and ( ) 002 =q , find the general condition on the initial 
velocities ( )01q&  and ( )02q&  that results in only the second normal mode being excited.   
 
**4.4  The general solution to the two-coupled oscillator problem can alternatively be 
expressed in terms of real quantities as 
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( )
( ) ( ) ( )[ ] ( ) ( )[ ]tDtCtBtA
tq
tq

2211
2

1 sincos
1

1
sincos

1
1

Ω+Ω







−

+Ω+Ω







=







  

 
Starting with this form of the general solution find the (real) parameters A , B , C , and 
D in terms of the initial conditions ( )01q , ( )01q& , ( )02q , and ( )02q& .  Check to see that 
your solution agrees with Eq. (21).   
 
*4.5  Use Euler’s relation to derive Eq. (14). 
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Linear Chain / Normal Modes 
 
Overview and Motivation:  We extend our discussion of coupled oscillators to a 
chain of N  oscillators, where N  is some arbitrary number.  When N  is large it will 
become clear that the normal modes for this system are essentially standing waves.   
 
Key Mathematics:  We gain some more experience with matrices and eigenvalue 
problems. 
 
I.  The Linear Chain of Coupled Oscillators  
Because two oscillators are never enough, we now extend the system that we have 
discussed in the last two lectures to N  coupled oscillators, as illustrated below.  For 
this problem we assume that all objects have the same mass m  and all springs have 
the same spring constant sk .   
 
 

 
 
Our first goal is to find the normal modes of this system.  At the beginning we 
approach this problem in the same manner as for two coupled oscillators:  we find the 
net force on each oscillator, find each equation of motion, and then assume a normal-
mode type solution for the system. Let's consider some arbitrary object in this chain, 
say the j th object.  The force on this object will depend upon the stretch of the two 
springs on either side of it.  With a little thought, you should be able to write down 
the net force on this object as 
 
 ( ) ( )11 +− −−−−= jjsjjsj qqkqqkF , (1) 
 
or, upon simplifying, 
 
 ( )11 2 +− +−= jjjsj qqqkF . (2) 

01 =q  02 =q  
1q  2q  

m  ks 

… 
0=Nq

Nq
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You might worry that this equation is not valid for the first ( 1=j ) and last ( Nj = ) 
objects, but if we assume that the 0=j  and 1+= Nj  objects (the walls) have infinite 
mass so that 0q  and 1+Nq  are identically zero, then Eq. (2) applies to all N  objects.  
We shall refer to these two conditions, 00 =q  and 01 =+Nq , as boundary conditions 
(bc's) on the chain of oscillators.   
 
With the expression for the net force on each object we can write down the equation 
of motion (Newton's second law!) for each object as 
 
 ( ) 02~

11
2 =+−− +− jjjj qqqq ω&& , (3) 

 
where Nj ≤≤1  and, as before, mks=2~ω .  Notice that each equation of motion is 
coupled:  the equation of motion for the j th object depends upon the  displacement 
of both the ( 1−j ) and ( 1+j ) objects.   
 
II.  Normal Mode Solutions 
We now look for normal-mode solutions (where all masses oscillate at the same 
frequency) by assuming that1 
 
 ti

jj eqq Ω= ,0 . (4) 
 
If we substitute Eq. (4) into Eq. (3), after a bit of algebra the equations of motion 
become 
 
 ( ) 02~

1,0,01,0
2

,0
2 =+−+Ω +− jjjj qqqq ω  (5) 

 
Now, keep in mind that what we have here are N  equations of motion, one for each 
value of j  from 1 to N .  As in the two-oscillator problem, the set of equations can be 
expressed in matrix notation 
 

 























Ω=













































−
−−

−−
−

MMM

L

4,0

3,0

2,0

1,0

2

4,0

3,0

2,0

1,0

22

222

222

22

~2~00

~~2~0
0~~2~
00~~2

q
q
q
q

q
q
q
q

ωω
ωωω

ωωω
ωω

 (6) 

                                                 
1 We have slightly changed notation here.  We now write the amplitudes jq ,0  with a comma between the zero and 

the mass index so that terms such as 1,0 +jq  are unambiguous.   
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or 
 

 0
~2~00

~~2~0
0~~2~
00~~2

4,0

3,0

2,0

1,0

222

2222

2222

222

=













































Ω−−
−Ω−−

−Ω−−
−Ω−

MM

L

q
q
q
q

ωω
ωωω

ωωω
ωω

 (7) 

 
So, as before, finding the normal modes reduces to finding eigenvalues 2Ω  and 

eigenvectors 
















M
2,0

1,0

q
q

 [of the NN ×  matrix in Eq. (6)].  Recall that the eigenvalues are 

found by solving the (characteristic) equation that arises when we set the determinant 
of the NN ×  matrix in Eq. (7) to zero.   
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A.  Eigenvectors 
Now for N  any larger than 3 solving the characteristic equation for the eigenvalues 
and eigenvectors by hand is not advisable.  So let's turn to a computer mathematics 
program, such as Mathcad, and see what insight we can gain into this problem.  Given 
the matrix in Eq. (6) (with a specific value for 2~ω ), Mathcad can calculate the 
eigenvalues and eigenvectors of that matrix.  In the graphs on the previous page we 
plot the eigenvectors corresponding to the three lowest eigenvalues for the 50=N  
problem.  
 
The key thing to notice is that these eigenvectors look like standing waves (on a string, 
for example).  That is, as a function of position (i.e., mass index) j , the components 

jq ,0  of the eigenvector appear to be a sine function [which must equal zero at the ends 
of the chain ( 0=j  and 1+= Nj ) because of the bc's].   
 
This observation inspires the following ansatz for the eigenvectors 
 
 ( )jAq j φsin,0 = , (8) 
 
where A  is some arbitrary amplitude for this sine function (it could be complex 
because we are dealing with a complex form of the solutions), and φ  is some real 
number that will be different for each normal mode.2  Now Eq. (8) obviously satisfies 
the 00 =q  bc on the lhs of chain, but not necessarily the rhs bc 01 =+Nq .  To satisfy 
this bc we must have  
 
 ( )[ ] 01sin1,0 =+=+ NAq N φ , (9) 
 
which is true only for ( ) πφ nN =+1 , where n  is an integer.  That is, we must have 
 

 
1+

=
N
n

n
πφ  (10) 

 
where the integer n  labels the (normal-mode) solution.  Now because any integer n  in 
Eq. (10) produces a value for φ  that satisfies Eq. (9), it looks like nφ  can take on an 
infinite number of values; this seems to imply an infinite number of normal modes.  
Well, this can't be right because we know that there are only two normal modes for 

                                                 
2 Recall, for a standing wave on a string the spatial part of the standing wave can be written as ( )xλ

π2sin , so the 

parameter φ  is obviously related to the wavelength of the normal modes (in some manner – more detail on this 
later). 
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the two-oscillator problem.  In fact, because the N  oscillator problem involves an N  
dimensional eigenvalue problem, there are exactly N  normal modes.  The solution to 
this conundrum lies in the fact that the sine function [in Eq. (9)] is periodic.  It can be 
shown that there are 1+N  unique solutions, but because the 0=n  solution is trivial, 
there are only N  unique, nontrivial solutions.  In fact, we can specify these N  unique 
solutions by  choosing n  such that 

 
 Nn ≤≤1 . (11) 
 
Combining Eqs. (8), (10), and (11) we can write the N  eigenvectors as 
 

 







+
= j

N
nAq j 1

sin,0
π ,       Nn ≤≤1  (12) 

 
B. Eigenvalues 
So we have now specified the eigenvectors.  What about the eigenvalues?  We can 
obtain these by inserting Eq. (8) into Eq. (5), which produces 
 
 ( ) ( )[ ] ( ) ( )[ ]{ } 01sinsin21sin~sin 22 =++−−+Ω jjjj φφφωφ . (13) 
 
Now it looks like this equation depends upon j , but it does not.  Using some trig 
identities it is not difficult to show that Eq. (13) simplifies and can be solved for 2Ω  as 
 

 





=Ω

2
sin~4 222 φω . (14) 

 
And remembering that φ  only takes on the discrete values given by Eq. (10), we have 
the N eigenvalues 
 

 ( )






+

=Ω
12

sin~4 222

N
n

n
πω ,  (15) 

 
where Nn ,,3,2,1 L= .  The normal-mode frequencies are thus given by 
 

 ( )






+

±=Ω ± 12
sin~2

N
n

n
πω . (16) 

 
It is interesting to plot the (positive) frequencies as a function of mode number n .  
Such a graph is shown below for several values of N .  As with previous graphs we 
have set 1=m  and 1=sk .   
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As we will discuss in the next lecture, these graphs are essentially graphs of frequency 
vs inverse wavelength, and as such are known as dispersion relations or dispersion 
curves.  As we will see as we work our way through the course, the dispersion 
relation is extremely useful in understanding the propagation of waves associated with 
that dispersion relation.  Also, as we will discuss in the next lecture, the dispersion 
relation also contains information on the interactions between (the springs connecting) 

the oscillating objects.  Notice that the frequencies plotted for two oscillators ( 2=N ) 
equal our previous results 11 =Ω  and 32 =Ω  (for the special case of 1=m  and 1=sk ).   
 
III.  The Initial Value Problem 
Lastly, we discuss how the initial value problem can be solved using the normal 
modes.  Quite generally, using the above results and including both the +Ωn  and −Ωn  
frequencies, we can write the n th normal-mode solution as 
 

 

( )
( )
( )

( )

( )
( )
( )

( )

( )ti
n

ti
n

N
n

N
n

N
n
N
n

nN

nn eBeA

Ntq

tq
tq
tq

Ω−Ω

+

+

+

+

+


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







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









=



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








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







1

1

1

1
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2

1
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3sin
2sin
1sin

π

π

π

π
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 (17) 
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where +Ω=Ω nn , and the constants nA  and nB  (which have replaced A  above) are 
arbitrary complex numbers.3  The general solution can thus be written as a linear 
combination of the normal modes as 
 

 

( )
( )
( )

( )

( )
( )
( )

( )

( )∑
=

Ω−Ω

+

+

+

+













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
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





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
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



















=






















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N

n

ti
n

ti
n

N
n

N
n

N
n
N
n

N

nn eBeA

Ntq

tq
tq
tq

1

1

1

1

1

3

2

1

sin

3sin
2sin
1sin

π

π

π

π

MM

. (18) 

 
[Equation (18) is the extension of Eq. (3) of the Lecture (4) notes.]  As before, the 
arbitrary amplitudes nA  and nB  depend upon the initial conditions of all the oscillating 
objects.   
 
To see exactly how the nA  and nB  are determined, let's consider the 3=N  case.  As in 
the two-oscillator case, let's make the normal modes explicitly real by setting *

nn AB = .  
For three oscillators Eq. (18) then becomes 
 

 
( )
( )
( )

( )
( )
( )

( )∑
=

Ω−Ω +















=















 3

1

*

4

4

4

3

2

1

3sin
2sin
1sin

n

ti
n

ti
n

n

n

n

nn eAeA
tq
tq
tq

π

π

π

 (19) 

 
As in Lecture Notes 4 for the two-oscillator problem, we can rewrite ti

n
ti

n
nn eAeA Ω−Ω + *  

as ( ) ( ) ( ) ( )[ ]tAtA nnnn Ω−Ω sinImcosRe2 and apply the initial conditions, which gives us 
 

 
( )
( )
( )

( )
( )
( )

( )∑
= 















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




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



 3
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4

4

4

3

2

1
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3sin
2sin
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2
0
0
0

n
n

n

n

n

A
q
q
q

π

π

π

, (20) 

 
and 
 

 
( )
( )
( )

( )
( )
( )

( )∑
= 















Ω−=






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


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4

4

4
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1
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n

n

n

n
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q
q
q

π

π

π

&

&

&

. (21) 

                                                 
3 Notice that the column vector of the rhs of Eq. (17) is the n th eigenvector of the associated eigenvalue 
problem.   
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So we see that the real part of the amplitudes nA  depend upon the initial positions of 
the three objects, while the imaginary part of the amplitudes depend upon their initial 
velocities.  So where do we go from here?  You may remember that for the two-
oscillator problem we applied the normal-mode transformation to the equivalent of 
Eqs. (20) and (21), which allowed us to find the amplitudes (see p. 5-6 of the Lecture 
4 notes).  There is an equivalent transformation here that will allow us to find the nA 's.  
To most easily see what it is, let's explicitly write out Eq. (20) as 
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and evaluate the sine functions, which gives us 
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. (23) 

 
Now notice what now happens if we multiply this equation by the first eigenvector 

( )
( )
( )
















4
3
2

4

sin
sin
sin

π

π

π

 when it is written as a row vector ( ) ( ) ( )( ) ( )222sinsinsin 2
1

4
3

24 =πππ .  We 

obtain 
 

 ( ) ( ) ( )( ) ( )1321 Re4020202
2
1 Aqqq =++ . (24) 

 
Notice the very nice result that the terms containing the amplitudes 2A  and 3A  
produce zero when multiplied by the first eigenvector (in row form).  We can now 
solve for the real part of 1A  in terms of the initial positions as 
 

 ( ) ( ) ( ) ( )( )020202
8
1Re 3211 qqqA ++= . (25) 

 
This equation is equivalent to the first row of Eq. (18) [or Eq. (20a)] in the Lecture 4 
notes for the two-oscillator problem.  To obtain ( )2Re A  and ( )3Re A  it should be 
obvious that one needs to multiply Eq. (23) by the respective (row) eigenvectors.  
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Further, to find the imaginary parts of the amplitudes, one similarly multiplies Eq. (21) 
by the row eigenvectors. 
 
This "trick" of multiplying by the row eigenvector to obtain the corresponding 
amplitude is probably the most important part of this lecture.  We will repeat it many 
times throughout the course:  when we discuss Fourier series we will use this trick to 
find the Fourier coefficients of a function; when we talk about vector spaces this trick 
will be recognized as the “inner product"; and when we talk about Fourier transforms 
this trick will be known as "inversion".  As we discuss these topics, you should keep in 
mind this little trick that allowed us to find the amplitudes nA .   
 
So we know how to find the nA 's, but what about the normal-mode transformation 
mentioned above?  Well, it is lurking about here.  If we now create an NN ×  matrix 
by stacking the row eigenvectors, then we indeed have that transformation.  So for the 
three-oscillator problem, the transformation matrix would be 
 

 
















−
−

222
202
222

2
1 . (26) 

 
If one multiples Eqs. (20) and (21) by Eq. (26) then one obtains two equations that 
are equivalent to Eqs. (18) and (19) of the Lecture 4 notes for the two-oscillator case.  

Also, if one multiplies the column vector 
( )
( )
( )















tq
tq
tq

3

2

1

 by Eq. (26) then one obtains the 

normal-mode coordinates 
( )
( )
( )















tQ
tQ
tQ

3

2

1

 for the three-oscillator case.   

 
 
Exercises 
 
*5.1  Using the appropriate trig formulae, obtain Eq. (14) for 2Ω  from Eq. (13). 
 
*5.2  Only N  unique eigenvalues and eigenvectors 
Eqs. (12) and (15) specify the N  eigenvector and eigenvalues for the N  oscillator 
problem.  The condition Nn ≤≤1  implies that values of n  outside of this range 
simply give a solution that is the same as one of the solutions inside the range 

Nn ≤≤1 . 
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(a)  Starting with Eq. (15) and using the angle-addition formula for the sine function, 
show, for example, that 2

2+ΩN  is the same as 2
NΩ .  [Hint:  write N  as ( ) 11 −+N  and 

2+N  as ( ) 11 ++N .] 
(b)  Starting with Eq. (12) show also that the eigenvector for 2+= Nn  is the same as 
the eigenvector for Nn = .   
 
*5.3  Similar to the second figure in the notes, graph the three eigenvectors for three 
coupled oscillators.   
 
*5.4  Four coupled oscillators 
(a)  What are the eigenvalues 2

nΩ  for four coupled oscillators? 
(b)  Similar to the second figure in the notes, find and then graph the four 
eigenvectors for four coupled oscillators. 
 
*5.5  Similar to Eq. (25), find the imaginary part of 2A  for the 3=N  system of 
coupled oscillators. 
 
*5.6  Apply Eq. (26), the normal-mode transformation, to Eqs. (20) and (21) to obtain 
the two equations for three oscillators that are equivalent to Eqs. (18) and (19) of the 
Lecture 4 notes for two oscillators.   
 
*5.7  Show that the square of Eq. (26), the normal-mode transformation, is 
proportional to the identity matrix.  Thus find the inverse of the normal-mode 
transformation. 
 
*5.8  For the three-oscillator problem find the normal-mode coordinates ( )tQ1 , ( )tQ2 , 
and ( )tQ3  in terms of the displacements ( )tq1 , ( )tq2 , and ( )tq3 .   
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Traveling Waves, Standing Waves, and the Dispersion Relation 
 
Overview and Motivation:  We review the relationship between traveling and 
standing waves.  We then discuss a general relationship that is important in all of wave 
physics – the relationship between oscillation frequency and wave vector – which is 
known as the dispersion relation. 
 
Key Mathematics:  We get some more practice with trig identities and eigenvalue 
problems.   
 
I.  Traveling and Standing Waves  
A.  Basic Definitions 
The simplest definition of a 1D traveling wave is a function of the form 
 
 ( ) ( )ctxgtxq −=,1  (1a) 
 
or 
 
 ( ) ( )ctxftxq +=,2 , (1b) 
 
where c  is some positive constant.1  The constant c  is the speed of propagation of 
the wave.  The wave in Eq. (1a) propagates in the positive x direction, while the wave 
in Eq. (1b) propagates in the  negative x direction.  Now the functions g  and f  in Eq. 
(1) can essentially be any (well behaved) function, but often we are interested in 
harmonic waves.  In this case the functions g  and f  in Eq. (1) take on the form 
 

 ( ) ( ) 



 +−=− φ
λ
π ctxActxg 2sin  (2a) 

 
and 
 

 ( ) ( ) 



 ++=+ ψ
λ
π ctxBctxf 2sin , (2b) 

 
where A  and B  are the amplitudes, φ  and ψ  are the phases, and λ  is the 
wavelength of the wave.  Now the x - and t -dependent parts of the sine-function 
arguments are often written as txk ω± , and so we can identify the wave vector k  as 

                                                 
1 As we shall see, the functions in Eq. (1) are the general solutions to the wave equation, which we will study in 
short order.  However, we shall also see, when we study the Schrödinger equation, that not all waves have these 
functional forms.   
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λ
π2

=k  (3) 

 
and the angular frequency ω  as2 
 

 
λ
πω c2

= . (4)  

 
You should recall from freshman physics that the speed c , frequency ( )πων 2=  and 
wavelength λ  are related by λν c= .   
 
So what is a standing wave?  Simply put, it is the superposition (i.e., sum) of two 
equal-amplitude, equal-wavelength (and thus equal-frequency) harmonic waves that 
are propagating in opposite directions.  Using Eqs. (2), (3), and (4) (and for simplicity 
setting 0==ψφ ) we can write such a wave as 
 
 ( ) ( ) ( )[ ]tkxtkxAtxqS ωω ++−= sinsin, . (5) 
 
With a bit of trigonometry, specifically the angle-addition formula for the sine 
function, Eq. (5) can be rewritten as 
 
 ( ) ( ) ( )tkxAtxqS ωcossin2, =  (6) 
 
So instead of being a function of tkx ω± , a standing wave is a product of a function of 
x  and a function of t .  Equation (6) also show us how to identify the wave vector k  
and angular frequency ω  in the case of an harmonic standing wave:  whatever 
multiplies x  is the wave vector and whatever multiplies t  is the angular frequency. 
 
In fact, for nonharmonic standing waves it is probably safe to define a standing wave 
as a wave where all parts of the system oscillate in phase, as is the case of the 
harmonic standing wave defined by Eq. (6).   
 
B.  Connection to the Coupled Oscillator Problem 
Let's now go back to the coupled oscillator problem, and reconsider the n th normal-
mode solutions to that problem, which we previously wrote as 
 
                                                 
2 Do not confuse this definition of ω  (the angular frequency of the wave) with our earlier definition of ω~  

(= mk ) that arises when discussing single or coupled harmonic oscillators.  It is easy to confuse the two 

definitions because for a single harmonic oscillator ω~  is also an angular frequency.   
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( )
( )
( )

( )

( )
( )
( )

( )

( )ti
n

ti
n

N
n

N
n
N
n
N
n

nN

nn eBeA

Ntq

tq
tq
tq

Ω−Ω

+

+

+

+

+























=























1

1

1

1

3

2

1

sin

3sin
2sin
1sin

π

π

π

π

MM

, (7) 

 
where ( )[ ]12sin~2 +=Ω Nnn πω .  As we mentioned last time, these modes are essentially 
standing waves.  Let's see that this is the case by writing Eq. (7) in the form of Eq. (6).  
After we do this, let's also identify the wave vector k  and frequency ω  for the normal 
modes.  As written, Eq. (7) explicitly lists the motion of each individual oscillator.  But 
the n th normal mode can also be written as a function of object index j  and time t  
as 
 

 ( )( ) ( )ti
n

ti
nn

nn eBeAj
N
ntjq Ω−Ω +








+
=

1
sin, π , (8) 

 
where j  labels the oscillator.  Although j  is a discrete index, we have included it in 
the argument of the normal-mode function because it is the variable that labels 
position along the chain.  Equation (8) is almost in the form of Eq. (6).  In fact, if we 
take the specialized case of ABA nn == , where A  is real, then Eq. (8) can be written 
as 
 

 ( ) ( ) ( )tj
N
nAtjq nn Ω








+
= cos

1
sin2, π . (9) 

 
This is very close, except in Eq. (6) the position variable is the standard distance 
variable x , while in Eq. (9) we are still using the object index j  to denote position.  
However, if we define the equilibrium distance between nearest-neighbor objects as d , 
then we can connect x  and j  via jdx = , and so we can rewrite Eq. (9) as 
 

 ( ) ( ) ( )t
d
x

N
nAtxq nn Ω








+
= cos

1
sin2, π . (10) 

 
Now, remembering that whatever multiplies x  is the wave vector k  and that whatever 
multiplies t  is the angular frequency ω , we have  
 

 
dN

nk 1
1+

=
π  (11) 
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and  
 

 ( )






+

=Ω=
12

sin~2
N
n

n
πωω  (12) 

 
for the coupled-oscillator standing waves. 
 
III.  Dispersion Relations 
A. Definition and Some Simple Examples 
Simply stated, a dispersion relation is the function ( )kω  for an harmonic wave.  For 
the simplest of waves, where the speed of propagation c  is a constant, we see from 
Eqs. (3) and (4) that their dispersion relation is simply  
 
 ( ) ckk =ω . (13) 
 
That is, the frequency ω  is a linear function of the wave vector k .  We also see from 
Eq.(13) that the ratio kω  is simply the propagation speed c .  As we will discuss in 
more detail in a later lecture, the ratio kω  is technically known as the phase 
velocity.3   
 
Now you may be thinking, what is the big deal here? – Eq. (13) is so simple, what 
could be interesting about it?  Now it is simple if the phase velocity c  is independent 
of k .  But this is usually not the case.  Recall, for example, the propagation of light in 
a dielectric medium (such as glass) where the index of refraction ccn 0=  (where 0c  is 
the speed of light in a vacuum) depends upon the wavelength (and thus the wave 
vector).4  In this case Eq. (13) becomes 
 

 ( ) ( ) kkn
ck 0=ω . (14) 

 
The dispersion relation now has the possibility of being quite interesting.   
 
Another example of an interesting, nonlinear dispersion relation is found in modern 
physics.  In your modern-physics class you (hopefully!) studied solutions to the 
Schrödinger equation.  The wave (function) that describes a free particle (one with no 

                                                 
3 OK, it should probably be called the phase speed, but it isn't.  Sorry, even in physics all quantities are not logically 
named. 
4 The dependence of the phase velocity on wave vector leads to dispersion of light by a prism, for example.  Thus 
the name "dispersion relation". 
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net force acting on it) propagating in the x  direction with momentum p  can be 
written as 
 

 ( ) 







−

=
t

m
pxpi

p etx hh 2
0

2

, ψψ , (15) 
 
where m  is the mass of the particle and h  is Planck's constant.  Comparing Eq. (15) 
with Eq. (5), for example, we identify the wave vector 
 

 
h

pk =  (17) 

 
and the frequency 
 

 
hm

p
2

2

=ω . (18) 

 
The dispersion relation is thus 
 

 ( )
m
kk

2

2h
=ω . (19) 

 
Notice that this dispersion relation is quadratic in the wave vector k .  As we will study 
later, a nonlinear dispersion relation has profound consequences for the propagation 
of a localized wave (often called a pulse or wave packet) associated with that 
dispersion relation.  First, for a nonlinear dispersion relation the propagation speed of 
the pulse will not be equal to the phase velocity.  Second, a nonlinear dispersion 
relation typically leads to the spreading of the pulse with time.  (This spreading is also 
known as dispersion!) 
 
B.  Connection to the Coupled Oscillator Problem 
So what is the dispersion relation for our coupled oscillator system?  By combining 
Eqs. (11) and (12) we see that we can write 
 

 ( ) 





= kdk

2
sin~2ωω  (20) 

 
This is another example of a nonlinear dispersion relation.   
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Let's make some graphs of the dispersion relation for the coupled-oscillator system.  
Now Eq. (20) is correct, but not particularly useful for doing this.  That is because for 
the coupled oscillator problem k  can only have the discrete values 
 

 
dN

nkn
1

1+
=

π , (21) 

 
where Nn ,,3,2,1 K= , are allowed [see Eq. (11)].5  So we must be a bit clever here.  
Let's rewrite Eq. (12) as 
 

 ( ) 







+

=







+
=

N

n
n k

k
N
N

N
n

N
Nk

12
sin~2

12
sin~ πωπωω . (22) 

 
(The rhs follows because nkn ∝ .  Thus, Nn kkNn = .)  This makes Eq. (12) look like 
the dispersion relation that we want, but in constructing a graph, we can simply plot 
ω  vs Nn  (keeping in mind that Nn  is the same as Nn kk .)  The following graph 
plots ( ) ωω ~

nk  vs Nn kk  for 5=N .6 
 

 
For 5=N , nk  is obviously a discrete variable (as the graph shows), but there are times 
when it is useful (and appropriate) to think of nk  as a continuous variable (even if it 

                                                 
5 Of course you already knew this because of your familiarity with standing waves on a string (although in that case 

∞=N  -- more on this later!) 
6 When making a graph, it is often useful to use normalized, unitless quantities for the axes.  This makes the graph 
more widely applicable. 

0 0.5 1
0 

0.5 

1 

1.5 

2 
N = 5 DISPERSION RELATION

Nn kk

 

( ) ωω ~
nk  
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isn't).  To see when this is the case, let's consider Eq. (22) for larger N , as illustrated 
in the next figure, where the dispersion relation is plotted for 50=N .  The key 
observation here is that that the spacing between adjacent values of Nn kk  becomes 
smaller as N  becomes larger.  In fact, it is not hard to show that the relative spacing 
between allowed values of k  is given by 
 

 
Nk

k
N

1
=

∆ . (20) 

 
For very large N , say 2310=N  (as one might be interested if one were modeling 
atoms in a solid as coupled oscillators), the spacing Nkk∆  is indeed truly negligible, 
and one is justified in thinking of k  as continuous.   
 
 
III.  Interparticle Interactions and Dispersion Relations 
Now you may think that our model of coupled oscillators is nothing more than an 
exercise in classical mechanics.  This model, however, contains the essence of 
vibrational dynamics in solid-state materials.  How can this be?  Surely the interactions 
between atoms in a solid are much more complicated than the quadratic potentials of 
a bunch of springs.  Yes, that is true.  However, let's think back to the first lecture 
where we discussed the Taylor-series expansion of an arbitrary potential energy 
function near a minimum.  We found out that if the object does not stray too far from 
equilibrium, then the potential is effectively quadratic – that is, the object is pulled 
back towards equilibrium as if it were attached to a spring.  Well, the same thing is 
true for atoms in a solid.  At most temperatures they never stray too far from their 

0 0.2 0.4 0.6 0.8 1
0 

0.5 

1 

1.5 

2 
N = 50 DISPERSION RELATION

( ) ωω ~
nk  

Nn kk
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equilibrium positions.  What this means is that a model where the atoms are hooked 
to other atoms with springs is, indeed, a pretty good model.  Thus, when thinking of 
vibrations (i.e., oscillations) of atoms (really, the nuclei because the nucleus contain 
nearly all the mass of an atom) we can think of the nuclei as if they are attached to 
other nuclei with springs, as the picture above suggests. 
  
Now because the nuclei are essentially connected together with springs, there is a set 
of normal modes for the system.  Further, as with our case of couple oscillators, there 
is a dispersion relation associated with the normal modes of vibration. In fact, for 
every wave vector (which is indeed a vector k  because of the 3 dimensional nature of 
the solid) there are three normal modes (because each nucleus can vibrate in three 
dimensional space).   
 
With regards to solid-state physics, the most important thing about dispersion 
relations is that they can be measured (and thus compared with theory).  The figure  
on the next page shows both experimental (the discrete points) and calculated (the 
continuous lines) dispersion curves for Li. 
 
For the wave-vector directions of propagation shown in the graph, there are two 
normal modes with transverse polarization and one with longitudinal polarization for 
each value of k , although along the (100) and (111) directions the two transverse  
modes are degenerate (have the same frequency).  Notice that along the (100) and 
(110) directions that the dispersion curves are similar to the dispersion curve for our 
simple 1D coupled oscillator system.  So what is the point?  Well, the measured curves 
provide insight into the microscopic interactions between the atoms:  in order to 
theoretically calculate the dispersion curves one must know which atoms are coupled 
with springs and what the spring constants are for the different springs. 
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To get a better sense of how the interactions between atoms affect the dispersion 
curves, let's go back to our simple 1D system and modify it by adding some more 
springs to see how the dispersion curve is affected.  In particular, let's add some next-
nearest-neighbor (NNN) springs in addition to the nearest-neighbor (NN) springs 
that we already have.  This modification is illustrated in the following picture.   
 

 
Of course, so that we have something to play with, we let the NN and NNN springs 
have different spring constants:  we continue to let the NN springs have spring 
constant sk  while the NNN springs have spring constant sk′ .  (Of course, this is what 
we would expect:  why should NN's and NNN's have the same interactions?) 
 

…
…

…

 

Li 

WAVE VECTOR ( maxq ) 

[q00] [qqq] [qq0] 
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The following picture shows the dispersion curves that result when these NNN 
springs are added.   (These curves are for large N  and so are plotted as continuous 
functions.)  Notice that the dispersion curves are quite sensitive to the value of sk′ , the 
spring constant for the NNN interaction.  Also notice that the dispersion curve in the 
graph on the right is similar to the dispersion curve for the longitudinal mode in Li 
along the (111) direction.   
 

 
 
 
Exercises 
 
*6.1  Using the appropriate trig identities, derive Eq. (6) from Eq. (5).  
 
*6.2  Under the condition ABA nn == , show that Eq. (9) is equivalent to Eq. (8). 
 
*6.3  Show that the superposition (sum) of the two standing waves ( ) ( )tkxA ωsinsin  
and ( ) ( )tkxA ωcoscos  is a traveling wave.  What is the direction of propagation of this 
traveling wave? 
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**6.4  Linear chain with NN and NNN interactions.  Here you will find the 
normal-mode frequencies for a linear chain of coupled oscillators with both NN 
springs ( k ) and NNN springs ( k ′ ). 
(a)  Write down the equation of motion for the j th oscillator for this system.  
Consulting the picture on p. 9 may be helpful. 
(b)  Analogous to the steps in Sec. II of the Lecture 5 notes, find the normal-mode 
frequencies nΩ  and show that they can be written as 
 

( )
21

2
2

2 sin~
~

2
sin2~


















 ′

+





±=

Ω ±
n

nn φ
ω
ωφ

ω
 

 
where mks=ω~ , mks′=′ω~ , and ( )1+= Nnn πφ . 
(c)  For this problem plot (using computer software) the dispersion curve ( ) ωω ~

nk  vs 
Nn kk  for 1=m , 1=sk , and =′sk  0.2, 0.5, and 0.8.  You may assume that there are 

many oscillators so that your dispersion curves are effectively continuous. 
 
*6.5  Show that the spacing between allowed wave vectors for the coupled oscillator 
problem is given by Eq. (20).   
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Long Wavelength Limit / Normal Modes 
 
Overview and Motivation:  Today we look at the long wavelength limit of the 
coupled-oscillator system.  In this limit the equations of motion for the coupled 
oscillators can be transformed into the partial differential equation known as the wave 
equation, which has wide applicability beyond the coupled-oscillator system  We also 
look at the normal modes and the dispersion relation for the coupled-oscillator system 
in this limit.   
 
Key Mathematics:  We again utilize the Taylor-series expansion. 
 
I.  Derivation of the Wave Equation 
A.  The Long Wavelength Limit (LWL) 
So why look at the coupled-oscillator system at long wave lengths?  Perhaps the main 
motivation comes from the fact that we are often interested in waves in systems 
where the wavelength is much longer than the distance between the coupled objects.  
For example, let's consider audible ( =ν  20 to 20,000 Hz) sound waves in a solid.  In a 
typical solid the speed of sound c  is ~2000 m/s, so audible frequencies correspond to 
wavelengths ( νλ c= ) between approximately 0.1 and 100 m.  These wavelengths are 
obviously much greater that the typical interatomic spacing d  of 2 × 10-10 m.  As we 
will see, one benefit of the long wavelength limit is that we will no longer need to 
refer to the displacement of each interacting object:  the index j  will be "traded in" 
for the continuous position variable x , so that we will be considering displacements 
as a function of x  and t . 
 
Let's consider the equation of motion for the j th oscillator (which can be any 
oscillator in the N coupled-oscillator system), 
  

 
( ) ( ) ( ) ( )[ ]tqtqtq

dt
tqd

jjj
j

11
2

2

2

2~
−+ +−=ω . (1) 

 
Let 's go ahead and trade in the discrete object index j  for the continuous position 
variable x  via jdx = , where d  is the equilibrium distance between objects in the 
chain.  Then we can rewrite Eq (1) as 
 

 ( ) ( ) ( ) ( )[ ]tdxqtxqtdxq
t
txq ,,2,~, 2

2

2

−+−+=
∂

∂ ω . (2) 

 
Notice that the time derivative is now a partial derivative because we are now thinking 
of the displacement q  as a function of two continuous variables, x  and t .   
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Now because d  is a small parameter,1 let's Taylor series expand the two functions 
( )tdxq ,+  and ( )tdxq ,−  in a Taylor series in d  and d− , respectively, about the point 
x  [so in doing this expansion we are thinking about x  as some fixed point along the 
chain and ( )tdxq ,±  as a function of d± ].  The two Taylor series are 
 

 ( ) ( ) ( ) ( )
K+

∂
∂

+
∂

∂
+=+ 2

2

2 ,
2
1,,, d

x
txqd

x
txqtxqtdxq  (3a) 

 
and 
 

 ( ) ( ) ( ) ( ) ( ) ( ) K+−
∂

∂
+−

∂
∂

+=− 2
2

2 ,
2
1,,, d

x
txqd

x
txqtxqtdxq  (3b) 

 
Keeping all terms up to order 2d  (we consider the validity of this approximation at 
the end of Sec. II) and substituting Eq. (3) into Eq. (2) gives us 
 

 ( ) ( )
2

2
22

2

2 ,~,
x
txqd

t
txq

∂
∂

=
∂

∂ ω  (4) 

 
This is the wave equation, which as you can see is a homogeneous, linear, second-
order, partial differential equation.  There is one more thing we need to do, 
however, in order to make Eq (4) more universally applicable.  The term 
 

 222~ d
m
kd s=ω  (5) 

 
on the rhs of Eq. (5) is a combination of the fundamental parameters sk , m , and d  of 
the coupled-oscillator problem.  Let's define another constant ( ) 22 dmkc s=  so that we 
can more generically write the wave equation as 
 

 ( ) ( )
2

2
2

2

2 ,,
x
txqc

t
txq

∂
∂

=
∂

∂ . (6) 

 

                                                 
1 Technically, the small parameter in the long wave length limit is the ratio λd .  Generally, a parameter can 
only be large or small if it is unitless.  Otherwise, whether it is small or large (or somewhere in between) will 
depend upon the system of units being used.   
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B.  General Applicability of the Wave Equation 
The is the standard form of the wave equation that we will use in this class.  As we 
shall see in further study of the wave equation, c  is the propagation speed of waves 
described by Eq. (6).   
 
Now if Eq. (6) were only useful for studying the long wavelength motion of the 
coupled-oscillator system, it really wouldn't be that interesting.  Fortunately, it is 
applicable in a wide variety of situations, including sound waves in fluids and solids, 
transverse waves on a string, and electromagnetic waves in vacuum (or other 
nondispersive media).  In each situation the constant 2c  can be related to the 
underlying physics.  For example, for transverse waves on a string, µτ=2c , where τ  
is the tension in the string and µ  is the mass per unit length of the string.   
 
II.  LWL of Coupled Oscillator Solutions 
A.  Normal Modes 
Let's now look at the coupled-oscillator normal modes in the LWL.  As we discussed 
in Lecture 6, we can write the normal-mode solutions (indexed by n ) as a function of 
x  and t  as 
 
 ( )( ) ( ) ( ) ( )( )tki

n
tki

nnn
nn eBeAxktxq ωω −+= sin,  (7) 

 
where the wave vector is given by 
 

 
dN

nkn
1

1+
=

π , (8) 

 
and the dispersion relation is 
 

 ( ) 





= nn kdk

2
sin~2ωω . (9) 

 
As written, Eqs. (8) and (9) are expressed in terms of the fundamental (or microscopic) 
parameters d ,ω~ , and N of the coupled-oscillator problem.  Let's see if we can re-
express them in terms of c  and other more generic (or macroscopic) parameters.  
Well, the first thing to notice is that the length L  of the system (a more generic, 
macroscopic parameter) can be written in terms of the fundamental parameters N  
and d  as ( )dNL 1+= .  The wave vector can thus be simply expressed as 
 

 
L
nkn
π

= . (10) 
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Well, what about Eq. (9), the dispersion relation?  It is not yet clear what to do with ω~  
in order to obtain a more generic description.  This is where the long wavelength limit 
comes into play again.  Recall that the wave vector is related to the wavelength via 
 

 
n

nk λ
π2

= . (11) 

 
This allows us to write Eq. (9) as 
 

 ( ) 







=

n
n

d
λ

πωλω sin~2 . (12) 

 
Now, the long wavelength limit is exactly the limit 1<<λd .  Thus, in this limit we can 
replace the sine function by its (very small) argument, so that Eq. (12) can be 
expressed as 
 

 ( )
n

n d
λ
πωλω 2~= . (13) 

 
And now, using cd =ω~  and Eq (11), we have the long-wavelength-limit dispersion 
relation 
 
 ( ) nn ckk =ω . (14) 
 
Or, in a more general form that is applicable to any harmonic wave described by the 
wave equation (not just the normal modes for the coupled-oscillator system where 

nkk =  is discrete), 
 
 ( ) ckk =ω . (15) 
 
So we see that, because c  is constant, the dispersion relation for waves described by 
the wave equation is linear vs k .  Looking back at the dispersion curves for the 
coupled-oscillator system that are plotted in the Lecture 6 notes, you should notice 
that for small Nn kk  (which is equivalent to small nd λ ) that the dispersion curves are 
indeed linear vs nk .  (The small wave vector limit is thus the same as the long 
wavelength limit.) 
 
Putting all of this together, we can write the normal modes [Eq. (7)] for long 
wavelengths as 
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 ( ) ( ) ( ) ( )( )tLnic
n

tLnic
nn eBeAx

L
ntxq πππ −+






= sin,  (16) 

 
A remark about the normal modes should be made at this point. The function 

( )Lxnπsin  in Eq. (16) came about because of the boundary conditions, which we can 
now express as ( ) 0,0 =tq  and ( ) 0, =tLq  [You can check that these boundary 
conditions are indeed satisfied by ( )Lxnπsin ].  For other boundary conditions we 
would generally get some linear combination of ( )xknsin  and ( )xkncos , and perhaps 
also different allowed wave vectors nk  (or equivalently, allowed wavelengths nλ ).2   
 
B.  Neglect of Higher Order Terms in Equation of Motion in the LWL 
Now that we have an expression for the normal modes in the LWL, we can check to 
see that it is OK to neglect the terms in Eq. (3) that are of order higher than 2d .  The 
first thing to notice is that all the odd terms in Eqs. (3a) and (3b) cancel each other 
when inserted into Eq. (2).  Thus we need only consider the even terms.  The second 
thing to notice is that for even m  
 

 ( )( ) ( ) ( )( )txq
x

txq
n

m

n

m
m

n
m

,21
, 2









−=

∂
∂

λ
π . (17) 

 
{This is obtainable using Eq. (16) in Eq. (3) [in Eq. (2)]}.  Therefore, for example, the 
ratio of the 4th order term to the 2nd order term, neglecting numerical factors, is given 
by 22 λd , which is much smaller than 1.  Thus, we are justified in neglecting this term 
(and other higher order terms, which have an even smaller ratio) in Eq. (3), the Taylor 
series expansion of the equations of motion.   
 
III.  The Continuum Limit vs the Long Wavelength Limit 
Recall that for N  oscillators that there are N  normal modes.  Well, we have been 
clever and gotten rid of N  in all of our expressions.  So what do we do?  It depends 
upon the situation that is being described by the wave equation.  As a long wavelength 
limit of a truly discrete system, one must simply make sure that the waves being 
described have wavelengths that are much longer that the appropriate interparticle 
spacing.  However, there are times when the wave equation is used, such as in 
electromagnetism, where there are no underlying oscillators and thus no underlying 
spacing d  to be compared with the wavelength.  In those cases, where the wave 
equation is believed to describe all waves, the long wavelength limit is replaced by a 
more mathematically technical limit, known as the continuum limit.  In this limit one 

                                                 
2 Think about the normal modes for sound waves in a pipe that is open on both ends vs a pipe with one end 
open and one end closed.  This is explored in Exercise 7.4. 
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actually takes the limit 0→d .  The result is that the terms in Eq. (3) of order greater 
than 2d  can be neglected exactly.  Furthermore, in the limit 0→d  (for fixed L ), we 
see that because ( )dNL 1+= , this limit is equivalent to ∞→N .  That is, in the 
continuum limit the number of normal modes becomes infinite.  From here on out, 
when working with normal modes of the wave equation we will assume that there are, 
indeed, an infinite number of normal modes.  (More details on the continuum limit 
can be found in Dr. Torre’s text, FWP.) 
 
Exercises 
 
**7.1  The wave equation for NN and NNN coupled oscillators 
(a)  Analogous to Eq, (2), write down the equation of motion for the coupled-
oscillator system that has both NN and NNN springs (see the Lecture 6 notes).   
(b)  Similar to what was done here for the NN system, take the long wavelength limit 
of this equation of motion and derive the wave equation. 
(c)  For this system, what is the constant 2c  in terms of the fundamental parameters 
ω~ , ω′~ , and d ?   
 
*7.2  The long wavelength limit 
(a)  Derive Eq. (17), which follows from Eq. (16), the expression for the normal 
mode solutions ( )( )txq n , .   
(b)  Given your result in (a), Show that the ratio of the 4d  to 2d  terms in the Taylor 
series expansion of ( ) ( ) ( )[ ]tdxqtxqtdxq ,,2, −+−+ , which appears on the rhs of the 
equation of motion as expressed in Eq. (2), is equal to ( ) ( )22

12
1 2 nd λπ− . 

(c)  Thus argue that, compared to the 2d  term, the 4d  term can be neglected in the 
equation of motion in the LWL.   
 
*7.3  Referring to the Lecture 6 notes, show for large N  that the ratio Nn kk  is equal 
to nd λ2 , thus proving that the long-wavelength and small-wave-vector limits are 
equivalent.   
 
**7.4  Normal modes for an open-closed pipe 
Consider the following general form for a 1D standing wave, 
 

( ) ( ) ( )[ ] ( )φω ++= tkxbkxatxqS sincossin, . 
 
(a)  Show that this is a solution to the wave equation only if ω  and k  are related by 
the dispersion relation ck±=ω .   
(b)  Let's assume that the normal modes for sound waves in a pipe are of the form 

( )txqS ,  given above.  For a pipe that is open on one end (at 0=x ) and closed on the 
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other (at Lx = ) the appropriate boundary conditions are ( ) 0,0
=

∂
∂
x
tq and ( ) 0, =tLq .  

Starting with the above general form  of the standing wave solutions ( )txqS , , use the 
0=x  boundary condition to show that the normal modes of this system have the 

more specific form 
 

( ) ( ) ( )φ+= cktkxbtxq sincos, . 
 

(c)  Further, using the Lx =  boundary condition, show that the wave vector k  can 
only take on the discrete values ( )Lnkn 2π=  (where K,5,3,1=n ). [Notice that these 
wave vectors are not the same as the normal-mode wave vectors for the coupled 
oscillator problem, given by Eq. (10)].  Thus show that the normal modes of the 
open-closed pipe can be written as 
 

( ) 





 +






= φππ t

L
cnx

L
nbtxq

2
sin

2
cos,  

 
(d)  Thus show that the wavelengths of the normal modes of the open-closed pipe are 

nLn 4=λ .   
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1D Wave Equation – General Solution / Gaussian Function 
 
Overview and Motivation:  Last time we derived the partial differential equation 
known as the (one dimensional) wave equation.  Today we look at the general 
solution to that equation.  As a specific example of a localized function that can be 
useful when studying waves, we introduce the Gaussian function. 
 
Key Mathematics:  We reacquaint ourselves with the chain rule (for taking 
derivatives) and look at the Gaussian function and the integral of the Gaussian 
function, which is known as the error function. 
 
I.  Solutions to the Wave Equation  
A.  General Form of the Solution 
Last time we derived the wave equation 
 

 ( ) ( )
2

2
2

2

2 ,,
x
txqc

t
txq

∂
∂

=
∂

∂  (1) 

 
from the long wave length limit of the coupled oscillator problem.  Recall that 2c  is a 
(constant) parameter that depends upon the underlying physics of whatever system is 
being described by the wave equation.   
 
Now it may surprise you, but the solution to Eq. (1) can, quite generally, be written in 
very succinct form as 
 
 ( ) ( ) ( )ctxgctxftxq −++=, , (2) 
 
where f  and g  are any "well-behaved" functions.  We won't worry about the details 
of what well-behaved means, but certainly we certainly want their second derivatives 
to exist.  As we previously discussed, ( )ctxf +  travels in the x−  direction at the speed 
c  and ( )ctxg −  travels in the x+  direction at the same speed.  To see that Eq. (2) is a 
solution to Eq. (1) let's calculate the second x  and t  derivatives of ( )ctxf +  and 
( )ctxg − .  To do this we need the chain rule, which can be written for the case at hand 

as 
 

 ( )[ ]
x
kh

x
k

dk
dh

x
txkh

∂
∂′=

∂
∂

=
∂

∂ , . (3) 

 
Applying this rule to ( )ctxf + , for example, we have 
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 ( ) ( ) ( ) ( )ctxf
x
ctxctxf

x
ctxf

+′=
∂
+∂

+′=
∂
+∂ , (4) 

 
where ( )ctxf +′  is the derivative of ( )ctxf +  with respect to its argument.  Applying 
the chain rule again to calculate the second derivative of ( )ctxf +  with respect to x  
give us 
 

 ( ) ( ) ( ) ( ) ( )ctxf
x
ctxctxf

x
ctxf

x
ctxf

+′′=
∂
+∂

+′′=
∂
+′∂

=
∂

+∂
2

2

. (5) 

 
Similarly, we have for the t  derivatives 
 

 ( ) ( ) ( ) ( )ctxfc
t
ctxctxf

t
ctxf

+′=
∂
+∂

+′=
∂
+∂  (6) 

 
and 
 

 ( ) ( ) ( ) ( ) ( )ctxfc
t
ctxctxfc

t
ctxfc

t
ctxf

+′′=
∂
+∂

+′′=
∂
+′∂

=
∂
+∂ 2

2

2

. (7) 

 
From Eqs. (5) and (7) we see that 
 

 ( ) ( )
2

2
2

2

2

x
ctxfc

t
ctxf

∂
+∂

=
∂
+∂  (8) 

 
and so ( )ctxf +  indeed solves the wave equation.  Proof that ( )ctxg −  also satisfies Eq. 
(1) follows from an essentially identical calculation. 
 
B.  More Specific Solutions 
So the (totally unknown) functions ( )ctxf +  and ( )ctxg −  are solutions, but only in a 
very general sense.  As we shall see, any solution has the form of Eq. (2), but how do 
we know what the solution will be in any given situation?  Well, as with earlier 
problems that we have looked at in this class, the situation can be specified by initial 
conditions and the boundary conditions.  Recall, for the coupled oscillator problem 
the initial conditions were specified by values for ( )0jq  and ( )0jq& .  Now, however, the 
spatial variable is not the discrete index j  but the continuous variable x .  The 
corresponding initial conditions can thus be written as 
 
 ( ) ( )xaxq =0,  (9a) 
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and 
 

 ( ) ( )xbx
t
q

=
∂
∂ 0, , (9b) 

 
where ( )xa  and ( )xb  are assumed to be known functions.  We could have just stuck 

with ( )0,xq  and ( )0,x
t
q
∂
∂ , but in the long run we save a bit of notational 

cumbersomeness by using ( )xa  and ( )xb  instead.  For the coupled-oscillator system 
the boundary conditions are ( ) 00 =tq  and ( ) 01 =+ tqN .  There will be similar instances 
for the wave equation where we will be interested in waves on a finite sized system.  
In such cases we will need to specify the condition on ( )txq ,  at the system boundaries.  
Indeed, you have already seen an example of this in Exercise 7.4 from the last lecture 
notes.   
 
II.  Initial Value Problem (IVP) for an Infinite System 
Here we write the most general solution to the wave equation, given the initial 
conditions ( )xa  and ( )xb .  To keep things simple at this point we will assume that the 
ends of the (1D) system where these waves exist are at ∞−  and ∞+ .  In this way we 
do not have to deal with any boundary conditions.  (We will deal with bc's in the next 
lecture!)  From Eq. (2) 
 
 ( ) ( ) ( )ctxgctxftxq −++=, , (2) 
 
we have for 0=t  
 
 ( ) ( ) ( )xgxfxa += . (10) 
 
That is simple enough.  What about the other initial condition.  Well, taking the t  
derivative of Eq. (2) and setting it equal to ( )xb  at 0=t  gives us 
 
 ( ) ( ) ( )[ ]xgxfcxb ′−′= . (11) 
 
Now Eq. (11) can be formally integrated, which gives us 
 

 ( ) ( ) ( )xgxfxdxb
c

x

x

−=′′∫
0

1  (12) 
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where 0x  can have any (constant) value.  If we now take the sum and difference of 
Eqs. (10) and (12) we obtain 
 

 ( ) ( ) ( )















′′+= ∫

x

x

xdxb
c

xaxf

0

1
2
1  (13a) 

 
and 
 

 ( ) ( ) ( )















′′−= ∫

x

x

xdxb
c

xaxg

0

1
2
1  (13b) 

 
Using Eq. (13) in Eq. (2) finally gives us the general solution to the initial-value 
problem 
 

 ( ) ( ) ( ) ( )











′′+−++= ∫

+

−

ctx

ctx

xdxb
c

ctxactxatxq 1
2
1, . (14) 

 
Notice that the undetermined constant 0x  has disappeared.  Eq. (14) is remarkably 
simple.   
 
II.  The Gaussian Function and Two Initial-Value-Problem Examples 
A.  Gaussian Function 
A very useful function in physics is the Gaussian, which is defined as 
 
 ( ) 22 σ

σ
xexG −= . (15) 

 
As shown in the picture on the top of the following page, the Gaussian is peaked at 

0=x  and has a width that is proportional to the parameter σ .  In fact, the full width 
at half maximum (FWHM), which is the width of the peak at half its maximum 
height, is equal to ( )σ2ln2  ≈ σ665.1 .   
 
B.  IVP Solution with Gaussian Initial Position 
Let's see what the solution ( )txq ,  looks like with the initial conditions ( ) ( )xGAxa σ= , 
( A  is just some arbitrary amplitude) and ( ) 0=xb .  (Physically, how would you describe 
this set of initial conditions?)  Using Eq. (14) we rather trivially obtain 
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 ( ) ( ) ( )[ ]ctxGctxGAtxq −++= σσ2
, , (16) 

 
or more explicitly, 

 

 ( ) ( ) ( )[ ]22

2
, σσ ctxctx eeAtxq −−+− += , (17) 

 
So the solution consists of two Gaussian functions, one moving in the x−  direction 
and one in the x+  direction, both at the speed c .  The amplitude of each function is 
½ the amplitude of the initial Gaussian displacement.  The following picture illustrates 
this solution as a function of x  for several times t .  For simplicity we have set 1=A , 

1=σ , and 1=c .   
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B.  IVP Solution with Gaussian Initial Velocity / Error Function 
Let's look at another example using the Gaussian function.  This time let's have the 
initial displacement of the system be zero so that ( ) 0=xa , but let's have a Gaussian 
initial-velocity function so that ( ) ( )xGBxb σ= , where B  is some arbitrary velocity 
amplitude.  In this case we get from Eq. (14) 
 

 ( ) ( )∫
+

−

′− ′=
ctx

ctx

x xde
c
Btxq 2

2
, σ . (18) 

 
So what is the integral of a Gaussian function?  Well, it is known as the error function.  
Specifically, the error function is defined as 
 

 ( ) ∫ ′= ′−

x
x xdexerf

0

22
π

. (19) 

 
The following figure shows a plot of ( )xerf  vs x .  As the graph indicates, ( )xerf  is 
defined such that ( ) 1−=−∞→xerf , ( ) 1=∞→xerf , and ( ) 00 =erf . 
 

All this is fine and well, but what do we do about the σ  in Eq. (18), which does not 
appear in Eq. (19)?  We must do a little math (!) and change variables in Eq. (18).  
Let's define a new integration variable σxy ′= , σxddy ′= .  Then Eq. (18) becomes 
 

 ( )
( )

( )

∫
+

−

−=
σ

σ

σ
ctx

ctx

y dye
c
Btxq 2

2
, . (20) 
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We can now use Eq. (19), the definition of the error function, to write 
 

 ( ) ( )[ ] ( )[ ]{ }σσσπ ctxerfctxerf
c
Btxq −−+=

4
, . (21) 

 
Notice that again we have the sum of two functions, each traveling in opposite 
directions at the speed c .   The following picture plots the solution vs x  for several 
values of t  (with B , σ , and c  all set to 1).   
 
 

 
Exercises 
 
*8.1  The chain rule.  Let ( ) 22, yxyxyxh ++= . 
(a)  Directly calculate xh ∂∂  and yh ∂∂ .   
(b)  Now define two new independent variables ( ) 2yxu +=  and ( ) 2yxu −=  
(c)   Rewrite ( )yxh ,  in terms of u  and v .  That is, find ( )vuh , .1 
(d)  Now starting with ( )vuh ,  and thinking of it as ( ) ( )( )txvtxuh ,,, , calculate xh ∂∂  

using the chain rule.  That is, calculate this derivative using 
x
v

v
h

x
u

u
h

x
h

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ .  Does 

this agree with your answer in (a)? 
(e)  Follow a procedure analogous to that in (d) to calculate yh ∂∂ .  Again, does this 
agree with your answer in (a)? 
 

                                                 
1 Technically speaking, we should give the function ( )vuh ,  another name [ ( )vuh , , say ], but being 
physicists, we are rather lazy and typically still call the new function h .   
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*8.2  Verify for 0=t  that Eq. (14) and its time derivative reduce to the initial 

conditions ( ) ( )xaxq =0,  and ( ) ( )xbx
t
q

=
∂
∂ 0, , respectively.   

 
*8.3  If the initial displacement is zero, then Eq. (14), the solution to the initial value 

problem, can be written as ( ) ( )∫
+

−

′′=

ctx

ctx

xdxb
c

txq
2
1, . By calculating second derivatives in x  

and t , directly demonstrate that this function solves Eq. (1), the wave equation.   
 
**8.4  The error function.   
(a)  Using an appropriate change of integration variable in the equation 

( ) ∫ ′= ′−

x
x xdexerf

0

22
π

, show that ( ) ( )∫ ′= ′−
x

x xdexerf
0

22 σ

σπ
σ . 

(b)  Using a computer mathematic package, plot ( )σxerf  over an appropriate range 
of x  for σ  = 1, 3, and 5.   
 
**8.5  The initial value problem. 
Consider Eq. (14), the general solution to the initial value problem. 
(a)  Explain why Eq. (14)  in not a function of the variable x′ .  (This is a basic feature 
of the definite integral.  Consult a calculus book if necessary.)   
(b)  What are c , ( )xa , and ( )xb  in Eq. (14)? 
(c)  Consider the specific case where ( ) 0=xa  and ( ) ( )412 xcxxb += .  Using a 
computer mathematics package and letting 1=c , plot ( )xb  over an appropriate range 
of x . 
(d)  Using the initial conditions given in (c), solve Eq. (14). (Do not set c  to zero!) 
The integral can be done either with a change of variable, a computer mathematics 
package, or can be looked up in a table of integrals (such as found in the CRC 
Handbook of Chemistry and Physics).   
(e)  Show that your solution can be written in the form ( ) ( ) ( )ctxgctxftxq −++=, .  
Thus identify ( )xf  and ( )xg .   
(f)  Again, using a computer mathematics package and letting 1=c , plot ( )txq ,  as a 
function of x  for t  = 0, 10, 20, and 30.  Be careful to let your graph include all 
interesting parts of the solution! 
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General Solution with Boundary Conditions 
 
Overview and Motivation:  Last time we wrote down the general form of the 
solution to the 1D wave equation.  We then solved the initial-value problem for an 
infinitely long system.  Today we use the same form of the solution and solve the 
initial-value problem for a finite system with boundary conditions.   
 
Key Mathematics:  We again use chain rule for taking derivatives and utilize the 
Gaussian function. 
 
I.  Review of the Initial Value Problem (for an Infinite System) 
Last time we considered waves on a one-dimensional system of infinite extent.  We 
wrote down the solution to the wave equation 
 

 ( ) ( )
2

2
2

2

2 ,,
x
txqc

t
txq

∂
∂

=
∂

∂  (1) 

 
as 
 
 ( ) ( ) ( )ctxgctxftxq −++=, , (2) 
 
where f  and g  are any well-behaved functions.  In terms of the initial conditions 
( ) ( )xaxq =0,  and ( ) ( )xbtxq =∂∂ 0,  the functions f  and g  can be written as 

 

 ( ) ( ) ( )















′′+= ∫

x

x

xdxb
c

xaxf

0

1
2
1  (3a) 

 
and 
 

 ( ) ( ) ( )















′′−= ∫

x

x

xdxb
c

xaxg

0

1
2
1  (3b) 

 
which results in the solution to the initial-value problem 
 

 ( ) ( ) ( ) ( )











′′+−++= ∫

+

−

ctx

ctx

xdxb
c

ctxactxatxq 1
2
1, . (4) 
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We then looked at two examples where the initial conditions were related to the 
Gaussian function. 
 
Today we are going to again consider the initial-value problem, but this time on a 
system of finite extent, where we will impose some boundary conditions.  As we shall 
see, the bc's impose constraints on the functions ( )ctxf +  and ( )ctxg − , with one 
result being that the motion of the system is periodic. 
 
II.  Imposing the Boundary Conditions 
Let's assume that the extent of the physical system is from 0=x  to Lx = .  We 
consider bc's equivalent to those for the coupled oscillator system 
 
 ( ) 0,0 =tq  (5a) 
 
and 
 
 ( ) 0, =tLq . (5b) 
 
These bc's are also appropriate for transverse waves on a string where the end 
supports are fixed or for sound waves that travel along the axis of a pipe that is closed 
at both ends.  For a pipe these bc's are often referred to as closed-closed bc's. 
 
Applying the first bc ( ) 0,0 =tq  to the form of ( )txq ,  expressed in Eq. (2) gives us 
 
 ( ) ( )ctgctf −−= . (6) 
 
So what does this equation tell us?  Well, because this bc applies for all times t , Eq. (6) 
is valid for any value of ct , and so we can introduce another variable ctz =  and re-
express Eq. (6) as 
 
 ( ) ( )zgzf −−= , (7) 
 
which must hold for all z .  So irrespective of anything else (like the initial conditions), 
we see that the functions f  and g  are intimately related.  The following picture 
illustrates the relationship expressed by Eq. (7).  The solid curve is (some arbitrary) 
( )xg .  The dashed curve is ( )zf  corresponding to ( )zg  consistent with Eq. (7).    
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Let's now consider the second bc ( ) 0, =tLq .  When applied to Eq. (2) this bc gives  
 
 ( ) ( )ctLgctLf −−=+ . (8) 
 
Now, again, because this equation is valid for any value of t , it is valid for any value of 
ct , so this time let's let zctL =+ .  Then Eq. (8) can be re-expressed as 
 
 ( ) ( )zLgzf −−= 2 . (9) 
 
And using Eq. (7) to replace ( )zf  in Eq. (9) gives us 
 
 ( ) ( )zLgzg −=− 2 , (10) 
 
which is valid for all values of z , so let's replace z  by z− , which results in 
 
 ( ) ( )zgLzg =+ 2 . (11) 
 
Now this is very interesting.  It says that ( )zg  is periodic with period L2 .  Of course, 
because ( ) ( )zgzf −−= , ( )zf  is also periodic with period L2 .  Thus we also have 
 
 ( ) ( )zfLzf =+ 2 . (12) 
 
Summarizing, the two bc's ( ) 0,0 =tq  and ( ) 0, =tLq  have imposed the constraints given 
by Eqs. (7), (11), and (12) on the functions f  and g .  So our previous illustration of 
f  and g  must be modified, as shown in the following picture (where we have set 

1=L ). 
 

1 0 1
2

1

0

1

2

g z( )

f z( )

z
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OK, so something like the following may be bothering you:  if f  and g  are periodic 
with period L2  then, for 0=t , for example, ( ) ( )xfctxf =+  and ( ) ( )xgctxg =+  are 
defined outside the physical boundaries of the system, which lies between 0  and L .  
That is indeed true, but so what?  There is no problem in defining f  and g  as 
functions of infinite extent; in fact they must be defined over an infinite domain 
because ( )ctxf +  and ( )ctxg +  must be defined for all times t .  We just need to 
remember that they only describe the physical system via ( ) ( ) ( )ctxgctxftxq −++=,  
for x  between 0  and L .   
 
III.  An Initial Value Problem 
Let's now look at an initial-value problem with the boundary conditions discussed 
above.  As we did in the last lecture, let's see what happens with an initial Gaussian 
displacement and no initial velocity, which we write as 
 

 ( ) ( ) ( )





























−−


















 −

−=
22 2exp2exp

σσ
LLxAxa  (13a) 

 
and  
 
 ( ) 0=xb . (13b) 
 
If you compare Eq. (13a) to the similar initial condition that we discussed in Lecture 9, 
you will notice that it is slightly more complicated.  First, the Gaussian function is 
centered at 2Lx =  rather than 0=x .  Second, we have subtracted off a constant from 
the Gaussian:  this insures that the two bc's are satisfied by the initial condition.  This 
particular initial condition is illustrated in the next picture for three values of σ , 
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z
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05.0=σ , 2.0=σ , and 5.0=σ .  ( 1=A  and 1=L  for both initial conditions).  We must 
also keep in mind that outside the interval 10 << x , ( )xa  and ( )xb  are not defined. 
 
 

 
 
Let's see what this initial condition tells us about the functions f  and g .  Referring to 
Eq. (3) we see that 
 

 ( ) ( )xaxgxf
2
1)( == , (14) 

 
but because ( )xa  is only defined on the interval Lx ≤≤0 , this equation is only valid in 
that domain.  We must use Eqs. (7), (11), and (12) to define ( )xf  and ( )xg  outside 
this domain.  Using Eq. (7) we can define both functions for 0<≤− xL .  Eq. (7) and 
Eq. (14) together imply 
 
 ( ) ( )xfxf −=− , (15a) 
 
and  
 
 ( ) ( )xgxg −=− . (15b) 
 
That is, ( )xf  and ( )xg  are both odd about 0=x .  We now know what ( )xf  and ( )xg  
are for LxL <≤− .  We can use Eqs. (11) and (12), which tell us that both functions 
are periodic with period L2 , to define ( )xf  and ( )xg  outside this interval.  Putting all 
of this together, we can formally write the functions ( )xf  and ( )xg  as 
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0.5

1 sigma = 0.05
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 ( ) ( ) ( ) ( )[ ]∑
∞

−∞=

+−−−==
m

mLxamLxaxgxf 22
2
1 , (16) 

 
but we must remember that ( )xa  is only defined on the interval Lx <<0 .   
For the initial condition described by Eq. (13) with 05.00 =a , the following figure 
plots ( ) )(xgxf = .   
 

 
So now that we know ( )xf  and ( )xg  for all values of their arguments, we have the 
solution to the initial value problem via Eq. (2).  Instead of a picture to illustrate the 
time-dependent motion, go check out Video 1 for Lecture 9 on the class web site.1  
Notice that ( )xf  and ( )xg  are indeed constructed so that the bc's are satisfied.  Also 
notice that the effect of the bc's is to make the Gaussian pulses flip over when they 
reflect from the boundaries.  Further, notice that the motion is indeed periodic in time.  
Can you figure out what the period is?   
 

                                                 
1 In the video the functions f  and g  have been displaced vertically for clarity. 
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Let’s also look at the case of the initial condition with 5.0=σ , illustrated on p. 5?  The 
picture at the bottom of the preceding page plots ( ) )(xgxf =  for this case.  These 
functions look similar to harmonic functions, but they are not – they too are 
described by Eq. (13).  As you can see in Video 2 for Lecture 9, the resulting motion 
is similar to an harmonic standing wave.   
 
Summarizing, we have seen that in a finite system with boundary condition, the 
solution to the wave equation can again be written in the form of Eq. (2), the sum of 
waves traveling at speed c and propagating in the x−  and x+  directions.  The 
boundary conditions, however, put constraints on the traveling-wave functions f  and 
g .  These constraints, in turn, make the motion of the system periodic.   
 
Exercises 
 
*9.1  Show that Eq. (13a) satisfies the bc's [Eq. (5a) and (5b)] for the problem 
discussed in the notes. 
 
*9.2  For the problem discussed in the notes (waves on a string located between 0=x  
and Lx = ) find the temporal period of the motion in terms of the parameters c  and 
L .   
 
**9.3  Because ( ) ( ) 22, σctxAetxq −−=  is a function of ctx − , it is a solution to the wave 
equation (on an infinite domain). 
(a)  What are the initial conditions [ ( )xa  and ( )xb ] that give rise to this form of ( )txq , ? 
(b)  If ( )xf  is constant, then Eq. (2) shows that solution is only a function of ctx − .  
For the condition that ( )xf  is constant find ( )xb  in terms of ( )xa .  [Hint:  consider Eq. 
(3a).] 
(c)  Show that the initial conditions you found in part (a) satisfy the relationship that 
you found in part (b). 
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General Solution using Normal Modes 
 
Overview and Motivation:  Last time we solved the initial-value problem (IVP) for 
the 1D wave equation on a finite domain with "closed-closed" bc's using the general 
form of the solution ( ) ( ) ( )ctxgctxftxq −++=, .  Today we solve the same problem 
using the normal mode solutions for this system. 
 
Key Mathematics:  We utilize some integrations involving harmonic functions.   
 
I.  The Problem Defined 
We are looking for the general solution to the wave equation 
 

 ( ) ( )
2

2
2

2

2 ,,
x
txqc

t
txq

∂
∂

=
∂

∂  (1) 

 
on the finite domain Lx ≤≤0  subject to the initial conditions 
 

 ( ) ( )xaxq =0,  and ( ) ( )xbx
t
q

=
∂
∂ 0,  (2a), (2b) 

 
and the boundary conditions  
 
 ( ) 0,0 =tq  and ( ) 0, =tLq . (3a), (3b) 
 
This time we write the solution ( )txq ,  as linear combination1 of the normal-mode 
solutions ( )txqn ,  
 

 ( ) ( ) ( )∑
∞

=

=
1

,,
n

n txqtxq , (4) 

 
where the normal modes can be expressed as 
 
 ( )( ) ( )( )ti

n
ti

nnn
nn eBeAxktxq ωω −+= sin, . (5) 

 
Here Lnkn π=  is the wave vector and nn ck=ω  is the angular frequency.  As before, 
let's make the normal-mode solutions explicitly real by setting *

nn AB = .  Then Eq. (5) 
can be written as 
                                                 
1 As written, Eq. (4) looks like a simple sum, not a linear combination, but as Eq. (5) shows, we have kept 
undetermined amplitudes as part of our normal modes, so Eq. (4) may be justifiably thought of as a linear 
combination of normal modes.   
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 ( )( ) ( ) ( ) ( ) ( ) ( )[ ]tataxktxq nnnnnn ωω sinImcosResin, −= , (6) 
 
where we have defined a new amplitude 2nn Aa = .  Using Eq. (6) we may thus 
express the general solution [via Eq. (4)] as 
 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]∑
∞

=

−=
1

sinImcosResin,
n

nnnnn tataxktxq ωω , (7) 

 
As we shall shortly see, the amplitudes na  are determined by the initial conditions.  
Recall, however, that normal modes already satisfy the bc's, and so the general 
solution as expressed by Eq. (7) automatically satisfies those bc's.  We thus need not 
consider the bc's any further. 
 
II.  The Initial Value Problem (Yet Again!) 
Let's now apply the initial conditions and see what we get.  From Eq. (7) we obtain 
for the initial displacement 
 

 ( ) ( ) ( )∑
∞

=

=
1

Resin
n

nL
n axxa π , (8) 

 
and for the initial velocity, we obtain after differentiating Eq. (7) 
 

 ( ) ( ) ( )∑
∞

=

−=
1

Imsin
n

nL
n

n axxb πω . (9) 

 
In Eqs. (8) and (9) we have used Lnkn π= .  So what do we have here?  Well, perhaps 
not surprisingly, we have two equations for the amplitudes na  in terms of the initial 
conditions.  However, unlike the (finite) N-oscillator case, the rhs's of Eqs. (8) and (9) 
have an infinite number of amplitudes because the wave equation has an infinite 
number of normal modes!   
 
Aside:  The N -oscillator problem 
This looks pretty grim, but perhaps a look back at the N-oscillator case will give us 
some insight into the current problem.  For the N  oscillator problem the equation 
equivalent to Eq. (8) is the extension of Eq. (19) from the Lecture (6) notes to N  
oscillators, which we can write as 
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, (10) 

 
where we have again made the assignment 2nn Aa = .  Now recall what we did there.  
To find any particular amplitude ( )maRe  (which we label by m ) we take the m th 
eigenvector expressed as a row vector and multiply Eq. (10) by that vector.  We can 
write this multiplication as 
 

( ) ( ) ( ) ( )( )
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1111 Re
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Now recall what happens in that case:  when the rhs is multiplied by the m th 
eigenvector, the only term in the sum that survives in the sum is the on with the same 
eigenvector.  That is, only the mn =  term survives, which transforms Eq. (11) into  
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Notice that this equation only has one coefficient ( )maRe on the rhs and so it can now 
be solved for that coefficient, 
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The key point here is that multiplying Eq. (10) by the m th eigenvector allows us to 
find ( )maRe  in terms of the initial condition on the displacement of the system.  
Notice that Eq. (10) is an equation for the initial displacement of the system in terms 
of the set of coefficients ( )naRe , while Eq. (13) is an equation for any coefficient 

( )maRe  (labeled by m ) in terms of the initial displacement of the system.  We can thus 
think of Eq. (13) as the inversion of Eq. (10).   
 
Now the notation used in Eqs. (10) – (13) is rather cumbersome.  Fortunately there is 
a more succinct way to express these equations.  Looking at Eq. (10) we first note that 
the j th element of that equation can be written as 
 

 ( ) ( ) ( )∑
−

+=
N

n
nN

n
j ajq

1
1 Resin0 π . (14) 

 
We now notice that if we multiply this equation by ( )jN

m
1sin +
π  and them sum the 

equation on j ,  
 

 ( ) ( ) ( ) ( ) ( )n
N

j

N

n
N
n

N
m

N

j
jN

m ajjqj Resinsin0sin
1 1

11
1

1 ∑ ∑∑
= =

++
=

+ = πππ , (15) 

 
then this is indeed multiplication of Eq. (10) by the transpose of the m th eigenvector!  
That is, Eq. (15) is the same equation as Eq. (11), only in a much more succinct form.  
We now switch the order of the sums on the rhs  
 

 ( ) ( ) ( ) ( ) ( )∑ ∑∑
= =

++
=

+ =
N

n

N

j
N
n

N
m

n

N

j
jN

m jjaqj
1 1

11
1

1 sinsinRe0sin πππ  (16) 
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and notice that the sum on j  on the rhs is simply the product of the (transpose of) 
m th eigenvector with the n th eigenvector, which is nonzero only if they are the same 
eigenvector.  That is, the sum on j  on the rhs is nonzero only if mn = .  Thus Eq. (16) 
simplifies to 
 

 ( ) ( ) ( ) ( )∑∑
=

+

=

+ =
N

j

N
m

m

N

j

jN
m jaqj

1

1
2

1

1 sinRe0sin ππ . (17) 

 
This is equivalent to Eq. (12), only in much more elegant notation.  As with Eq. (12) 
we now only have one amplitude, ( )maRe , on the rhs.  We can thus solve Eq. (12) for 
this amplitude, obtaining 
 

 ( )
( ) ( )
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[which is equivalent to Eq. (13)].   
 
Back to the wave-equation IVP 
So how does this apply to the current problem?  Well, the main difference between 
the two problems is that x  is a continuous variable while j  is discrete.  But if we 
remember a bit of calculus, we should recall that an integral is really just a sum over a 
continuous variable.  We thus might expect the sums over j  in Eq. (15) to be 
replaced by integrals over x .  Let's try it and wee what happens.  Multiplying Eq. (8) 
by ( )xL

mπsin  and integrating on x  from 0 to L  gives us  
 

 ( ) ( ) ( ) ( ) ( )∫ ∑∫
∞

=

=
L

n
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n
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m dxaxxdxxax

0 10

Resinsinsin πππ , (19) 

 
and switching the order of integration and summation on the rhs produces 
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1 00
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the continuous-variable analog to Eq. (16).  Further, analogous to what happened 
with the sum on j  on the rhs of Eq (16), the integral on the rhs of Eq. (20) is 
nonzero only if mn = .  Thus Eq. (20) simplifies to 
 

 ( ) ( ) ( ) ( )∫∫ =

L

L
m

m

L

L
m dxxadxxax

0

2

0

sinResin ππ , (21) 

 
and so, as above, we can solve for ( )maRe  
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( )∫

∫
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L
m

L
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m

dxx

dxxax

a

0

2

0

sin

sin

Re
π

π

, (22) 

 
Notice the striking similarity between Eqs. (22) and (18) [especially when you recall 
that ( ) ( )0,xqxa = ].  Now, we can simplify Eq. (22) even a bit more.  Using the fact that 
 

 ( )
2

sin
0

2 Ldxx
L

L
m =∫ π  (23) 

 
we have the result 
 

 ( ) ( ) ( )∫=
L

L
m

m dxxax
L

a
0

sin2Re π . (24) 

 
So we now have ( )maRe  expressed in terms of the initial displacement ( )xa .  Similarly, 
the imaginary part of ma  can be expressed in terms of the initial velocity ( )xb  as 
 

 ( ) ( ) ( )∫−=
L

L
m

m
m dxxbx

L
a

0

sin2Im π

ω
, (25) 

 
As mentioned above when discussing the N -oscillator problem, you should think of 
Eqs. (24) and (25) as the inversions of Eqs. (8) and (9), respectively.  Also note, there 
is nothing special about the index m  in these last two equations. We could used any 
variable.  In particular, when thought of as the inversion of Eqs. (8) and (9) we 
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normally use the variable n  to label the amplitudes and write these last two equations 
as 
 

 ( ) ( ) ( )∫=
L

L
n

n dxxax
L

a
0

sin2Re π . (26) 

 
and  
 

 ( ) ( ) ( )∫−=
L

L
n

n
n dxxbx

L
a

0

sin2Im π

ω
. (27) 

 
Summarizing, Eq. (7), which can be written as 
 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]∑
∞

=

−=
1

sinImcosResin,
n

L
n

nL
n

nL
n tcatcaxtxq πππ , (28) 

 
along with Eqs. (26) and (27) are the complete solution to the initial value problem on 
the finite domain Lx ≤≤0  for the bc's ( ) 0,0 =tq  and ( ) 0, =tLq . 
 
III.  An Example Revisited 
Let's consider the problem that we solved in the Lecture 9 Notes.  Looking at this 
problem again will give us a good comparison of the two methods of solving the 
initial value problem.   
 
The problem in the Lecture 9 notes has the initial conditions2  
 

 ( ) ( ) ( )





























−−


















 −

−=
22 2exp2exp

σσ
LLxAxa  (29a) 

 
and  
 
 ( ) 0=xb . (29b) 
 

                                                 
2 OK, so we now have another amplitude A , but it is not the same as the amplitudes nA  ( ...,2,1=n ) used 
earlier in Eq. (5).   



Lecture 10  Phys 3750 

D M Riffe -8- 2/1/2013 

Recall that ( )xa  is a Gaussian peak that is (vertically) shifted so that the bc's are 
satisfied.  The following figure plots ( )xa  for the same values of the width parameter 
σ  that we investigated in Lecture 9:  05.0=σ , 2.0=σ , and 5.0=σ .   
 

 
The easy part of this particular problem is solving for ( )naIm .  Using Eq. (27) we 
immediately see that ( ) 0Im =na .  Similarly (but not as simply!), using Eq. (26) we see 
that ( )naRe  is given by 
 

 ( ) ( ) ( )( ) ( )∫ 











−−



−= −

L
LLx

L
n

n dxx
L
Aa

0

2222 expexpsin2Re σσ
π . (30) 

 
Unfortunately, the integral in Eq. (30) has no analytic solution. 3   Fortunately, a 
program such as Mathcad can numerically solve the integral.  Unfortunately, as Eq. 
(28) indicates, we need an infinite number of na 's!  Fortunately, in most cases we only 
need to use a finite number of the na 's in order to get a very good approximation to 
the exact solution.  That is, in practice we typically use a truncated version of Eq. (28), 
which we can write as 
 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]∑
=

−=
M

n
L
n

nL
n

nL
n

M tcatcaxtxq
1

sinImcosResin, πππ , (31) 

 
where ( )Mtxq ,  is the M-term approximation to ( )txq , .  For the example at hand 

( ) 0Im =na  so we have 

                                                 
3 At least as far as I know!  Actually, it is not too difficult to show that 0=na  if n  is even.  But that still 
leaves the odd values of n  to deal with. 

0 0.2 0.4 0.6 0.8

0

0.5
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sigma = 0.2
sigma = 0.5

sigma = 0.05
sigma = 0.2
sigma = 0.5

x

a(
x)
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 ( ) ( ) ( ) ( )∑
=

=
M

n
L
n

nL
n

M tcaxtxq
1

cosResin, ππ , (32) 

 
So how many terms do we need to use?  The answer, of course depends upon the 
accuracy that we require.  But we can get a pretty good idea of the number of terms 

needed by plotting the absolute value of na  vs n , as shown in the graph on the 
previous page.  The three curves correspond to the three values of σ  used in the 
previous graph.  Note that the y-axis values have been normalized by 1a .  Also, 
because 0=na  for even n , we have only plotted na  for odd values of n .   
 
Now this graph is very interesting:  it shows that the more compact or sharper the 
wave (as indicated, in this case by a smaller value of σ ), the more normal modes one 
must use to accurately describe the wave. From the above graph we see that for 

05.0=σ , we need to use 29≈M  to well-represent the wave, for 2.0=σ  we need 
5≈M , and for 5.0=σ  we need 3≈M .   

 
We can also ascertain the number of normal modes needed by comparing the initial 
condition ( )xa  with the approximation ( )Mtxq ,  at 0=t .  At 0=t  Eq. (32) becomes 
 

 ( ) ( ) ( )∑
=

=
M

n
nL

n
M axxa

1

Resin π , (33) 

 

0 10 20 30
0

0.5

1
sigma = 0.05
sigma = 0.2
sigma = 0.5

sigma = 0.05
sigma = 0.2
sigma = 0.5

n = 1, 3, 5, ...

n

| a
n/

a1
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where we have defined ( ) ( )MM xqxa 0,= .  That 29≈M  does a good job for 05.0=σ  is 
illustrated in the following figure, which plots ( )Mx xa  for several values of M .  Notice 
that as M increases ( )Mx xa  more faithfully represents the function ( )xa . 
 

 
The next 2 figures show the same sort of thing for 2.0=σ  and 5.0=σ , but in a more 
direct fashion.  This figures on the left plots the difference ( ) ( )5xaxa −  for 2.0=σ , 
while the figure on the right plots ( ) ( )3xaxa −  for 5.00 =a .  In both cases, the error is 

06.0<  for all values of x .  Given the overall size of ( )xa , these also seems like 
reasonable approximations.   
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The following two graphs are also somewhat illuminating.  They plot the initial 
condition ( )xa  along with the individual terms on the rhs of Eq. (27), ( ) ( )nL

n ax Resin π , 
for Mn ,...,1= .  From the graph for 5.0=σ  it is not hard to imagine that only the 1=n  
and 3=n  are needed to accurately describe ( )xa .   

 
OK, so what about the time dependence?  Now that we know how many normal 
modes we need, we can simply use Eq. (26) [where ( )naRe  is calculated with Eq. (24)]  
with the appropriate value of M .  On the class web site there are videos of the 
resulting wave motion for all three values of σ  discussed here.  Both the 2.0=σ  and 

5.0=σ  videos also show the motion of the individual normal modes that are used to 
produce the approximation ( )Mtxq , .   
 
Exercises 
 
*10.1  Show that ( ) ( ) ( ) ( )tata nnnn ωω sinImcosRe −  can be expressed more succinctly as 

( )ti
n

nea ωRe .  Thus Eq. (6) can be alternatively expressed as ( )( ) ( ) ( )ti
nnn

neaxktxq ωResin, = .   
 

*10.2  In the notes it is stated that ( ) ( )∫
L

L
n

L
m dxxx

0

sinsin ππ  is nonzero only if nm =  

(where m  and n  are both integers).  Using the trig identities for ( )yx +cos  and 
( )yx −cos , do this integral and show that this statement is indeed true.   
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*10.3  An initial value problem. Here we solve an initial value problem with the 
initial conditions 
 

( ) 





=
L
xxa π2sin3 ,     ( ) 0=xb  

 
(a)  Graph ( )xa . Does it satisfy Eq. (3), the boundary conditions? 
(b)  Find analytic solutions for ( )naRe  and ( )naIm  for this problem.   
(c)  Thus write down the solution ( )txq ,  for this problem.  What is special about this 
solution? 
 
**10.4  Another initial value problem.  Here we solve an initial value problem with 
the initial conditions 
 

( )
( )









≤≤−

<≤
=

LxLxL
L
h

Lxx
L
h

xa
4

3
4

404

,     ( ) 0=xb  

 
(a)  Carefully graph ( )xa  (either by hand or using a computer program). Does it satisfy 
Eq. (3), the boundary conditions? 

(b)  Show that ( )naIm  = 0 and ( ) ( )
22

4sin
3

32Re
π
π

n
nhan =  (Either do the integrals by hand, 

consult an integral table, or use a program like Mathcad, and then simplify.) 
(c)  Thus write down the solution ( )txq ,  for this initial-value problem.   
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Introduction to Fourier Series 
 
Overview and Motivation:  Fourier series is based on the idea that many functions 
of interest can be represented as a linear combination of harmonic functions.  Is this 
cool, or what? 
 
Key Mathematics:  Fourier Series!  And some facts about integrals of odd and even 
functions.   
 
I.  An Observation  
We have already been treading in Fourier-series territory.  You should recall in the last 
lecture that we wrote the general solution ( )txq ,  to the wave equation as a linear 
combination of normal-mode solutions.  Well, these normal mode solutions are 
harmonic (in both space and time).  To write another function as a linear combination 
of harmonic functions is the basic idea of Fourier series. 
 
As a fairly simple example from last time, let's consider Eq. (8) from those lecture 
notes, which can be written as 
 

 ( ) ( ) ( )∑
∞

=

=
1

sinRe
n

L
n

n xaxa π . (1) 

 
This is a profound equation.  It says that we can write the function ( )xa , which is 
fairly arbitrary, as a linear combination of the harmonic functions ( )xL

nπsin .  The price 
we must pay is that we need an infinite number of these functions to describe ( )xa .  
However, as we discussed in the last lecture notes, we often need only a few of these 
functions to accurately describe the function ( )xa . 
 
You should also recall that last time we found an equation for the coefficient ( )naRe  
of each harmonic function.  Without such an equation Eq. (1) might be theoretically 
interesting, but it would not be of much use.  That equation is 
 

 ( ) ( ) ( )∫=
L

L
n

n dxxax
L

a
0

sin2Re π . (2) 

 
As we shall see below, equations such as Eqs. (1) and (2) are the essence of Fourier 
Series theory. 
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Our formal discussion of Fourier series will be limited to one independent variable, 
which we call x .  The variable x  does not necessarily represent a spatial position, 
however.  There are many cases when one is interested in using Fourier series to 
represent what is happening in time.   
 
II.  Fourier Series Equations  
The theory of Fourier series starts by considering a function, which we will call ( )xf , 
on the symmetric interval LxL ≤≤− .  If ( )xf  is a "good" function1 then we can 
represent ( )xf  as a linear combination of harmonic functions, 
 

 ( ) ( ) ( )[ ]∑
∞

=

++=
1

0 sincos
n

L
n

nL
n

n xxxf ππ βαα . (3) 

 
The amplitudes nα  and nβ  are known as the Fourier coefficients of the function ( )xf .  
There are a several things to point out here.  The first is that the harmonic functions 
in the series have a period (or wavelength) of nL2 .  Thus each harmonic function has 
the periodicity L2  of the interval.  In fact, the sum in Eq. (3) includes all linearly 
independent harmonic functions with periodicity L2 .  Second, the average value of an 
harmonic function over an interval of periodicity is zero.  Thus, the coefficient 0α  is 
needed to represent functions whose average value is not zero.  Indeed, as we shall 
see, 0α  is the average value of the function ( )xf . 
 
As mentioned above, the representation of a function by a linear combination of 
harmonic functions isn't that useful unless we know how to calculate the coefficients 

0α , nα , and nβ .  Fortunately, expressions for the coefficients are fairly simple and are 
given by 
 

 ( )∫
−

=
L

L

dxxf
L2

1
0α , (4a) 

 

 ( ) ( )∫
−

=
L

L
L
n

n dxxxf
L

πα cos1 , (4b) 

 

 ( ) ( )∫
−

=
L

L
L
n

n dxxxf
L

πβ sin1 . (4c) 

 
                                                 
1 In typical physicist fashion we will dodge the question of what exactly makes a function "good".  If you are 
interested, there are plenty of text books that discuss this point, including Dr. Torre’s text FWP. 
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Now you may be wondering where these equations came from, but you have seen the 
derivation of formulae equivalent to Eq. (4) several times before.  The last time was in 
the last lecture notes when we obtained Eq. (2) from Eq. (1).  The key is to multiply Eq. 
(3) by one of the harmonic functions and integrate over the proper interval.   
 
As an example, let's derive Eq. (4b).  Starting with Eq. (3), we multiply it by ( )L

xmπcos  
(notice the m ) and integrate from L−  to L , which gives us 
 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫∫∫∫
∞

= −−−− 










++=

1
0 cossincoscoscoscos

n

L

L
L
m

L
n

n

L

L
L
m

L
n

n

L

L
L
m

L

L
L
m dxxxdxxxdxxdxxxf ππππππ βαα

 
 
  (5) 
 
For 1≥m  there is only one nonzero integral on the rhs of this equation,  
 

 ( ) ( ) Ldxxx
L

L
L
m

L
m =∫

−

ππ coscos . (6) 

 
Equation (5) thus greatly simplifies to 
 

 ( ) ( ) Ldxxxf m

L

L
L
m απ =∫

−

cos , (7) 

 
which can be solved for mα , resulting in Eq. (4b) (after replacing m  by n ).   
 
III.  Some Examples 
A.  Triangle Function 
Let's first look at the function, 
 

 ( )




≤≤+−

<≤−+
=

LxAx
xLAx

xf
L
A

L
A

0
0

1 , (8) 

 
which is plotted in the figure on the top of the next page.   
 
To use the Fourier-series representation of this function we must first calculate the 
Fourier coefficients using Eq. (4).  Before we go ahead and try to calculate the 
integrals, let's notice a few things that will make the calculations simpler.  First, Eq. 
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(4a) tells us that 0α  is simply the average of the function ( )xf  on the interval L−  to 
L .  From the graph we see that this is 2A , so without doing any math we have 
 

 
20
A

=α . (9) 

 
Second, notice that ( )xf  is an even function.  [An even function has the property 

( ) ( )xfxf eveneven =− .]  Now Eq. (4c) is the integral of the product of this even function 
with the odd function ( )xL

nπsin .  [An odd function is defined via ( ) ( )xfxf oddodd −=− .]  
Now the product of an odd function and an even function is an odd function, and the 
integral of an odd function over a symmetric interval about zero (such as L−  to L ) is 
zero.  Thus, again without explicitly calculating the integral in Eq. (4c) we have for 
this example 
 
 0=nβ  (10) 
 
We are left with determining the coefficients nα .  Even here things are simpler than at 
first glance:  we can use a simplifying fact about integrals of even functions over a 
symmetric interval about 0=x .  The simplification is that the integral of an even 
function over a symmetric interval is equal to twice the integral of the function over 
the positive (or negative) portion of the interval.  Now ( )xL

mπcos  is an even function, 
and the product of two even functions is an even function.  With the simplifying fact 
and Eqs. (4b) and (8) we have 
 

 ( ) ( )∫ +−=
L

L
n

L
A

n dxxAx
L 0

cos2 πα . (11) 

 

1 0.5 0 0.5 1

0

0.5

1

f1 x( )

A

x

L
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Using Mathcad, for example, the integral is easily evaluated, resulting in 
 

 ( )[ ]π
π

α n
n
A

n cos12
22 −= . (12) 

 
Using Eqs. (9), (10), and (12) in Eq. (3) produces the Fourier representation of ( )xf1 , 
 

 ( ) ( ) ( )∑
∞

=




 −

+=
1

221 coscos12
2 n

L
n x

n
nAAxf π

π
π . (13) 

 
As discussed in the last lecture, in practice we use a truncated version of an infinite-
series representation such as that in Eq. (13).  Following that lecture, we write the 
truncated version of Eq. (13) as 
 

 ( ) ( ) ( )∑
=





 −

+=
M

n
L
n

M x
n

nAAxf
1

221 coscos12
2

π

π
π . (14) 

 
So where should we cut off the series?  To get some idea, let's graphically look at Eq. 
(14) for several values of M .  As shown in the following figure, the series with =M 9, 
19, and 29 all do a reasonable job of representing the original function, with the major 
difference being the sharpness of the peak at 0=x , which is clearly visible in the rhs 
graph.2  That the function near this point is hard to represent with an harmonic series 
isn't surprising.  Because ( )xf1  has a kink at 0=x , its first derivative is undefined there.  

                                                 
2 Although hard to see in the lhs graph, there is also some rounding of the function at the ends of the interval. 
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Conversely, the harmonic functions that make up the Fourier series are differentiable 
at that point; thus for any finite value of M ,  ( )Mxf1  is also be differentiable at 0=x .   
 
B.  Sawtooth Function 
Let's finish up this introduction to Fourier series with another example.  This time we 
look at the function 
 

 ( )




≤≤−

<≤−+
=

LxAx
xLAx

xf
L
A
L
A

0
0

2

2

2 , (15) 

 
which is plotted in the next figure.  Notice that the function is discontinuous at 0=x .  
Because the harmonic functions are all continuous, you might expect some difficulty 
in representing this function with a Fourier series.  Indeed, there is a major problem, 
as we shall shortly see.   
 

 
Again we use Eq. (4) to calculate the Fourier coefficients.  As before, the function 
( )xf2  has enough symmetry to make some of the calculations trivial.  We first note 

from the graph that the average value of ( )xf2  is zero, so 00 =α .  Notice also that 
( )xf2  is odd, which means ( ) ( )xxf L

nπcos2  is odd, and so this time 0=nα .  Similarly, 
( ) ( )xxf L

nπsin2  is even, so we can the equation for nβ  simplifies to 
 

 ( ) ( )∫ −=
L

L
n

L
A

n dxxAx
L 0

2 sin2 πβ . (16) 

 
Again, Mathcad can do the integral, and it gives us 
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 ( )[ ]π
π

β n
n
A

n cos12
+−= , (17) 

 
So the truncated Fourier representation of the function ( )xf 2  can be written as 
 

 ( ) ( ) ( )∑
=





 +

−=
M

n
L
n

M x
n
nAxf

1
2 sincos12 π

π
π . (18) 

 
This function is plotted in the next figure for several values of M .  Notice that using 
even a large number of terms does not do justice to the original function.  The 
problem is due to the discontinuity, as was alluded to above.   
 

 
 
In fact, something quite pathological happens near the discontinuity, as illustrated in 
the next figure, where we zoom in on a section of the above graph.  As the figure 
clearly illustrates, there is an overshoot of the truncated Fourier series, and the size of 
the overshoot does not decrease as the number of terms increases.  This overshoot, 
which is known as the Gibbs phenomenon, happens whenever we try to represent a 
discontinuous function with a (truncated) Fourier series.  Notice that the Gibbs 
phenomenon also occurs for this function at the two ends of the interval.  This is 
because ( ) ( )LfLf −≠ 22 , whereas, the harmonic functions in the Fourier series all have 
the same value at L−  and L .   
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Summarizing, we have seen how to represent a function on a symmetric interval as a 
linear combination of harmonic functions that have the periodicity of that interval.  If 
the function is continuous, the representation works well.  If the function has a 
discontinuity, then the representation it not without its difficulties.   
 
Exercises 
 
*11.1   Obtain Eq. (4a), the expression for 0α , from Eq. (3). 
 
*11.2  An integral involving harmonic functions.  In deriving Eq. (6) from Eq. (5) 

we used the fact that ( ) ( ) 0cossin =∫
−

L

L
L
m

L
n dxxx ππ  for all integers n  and m .  Using the trig 

identities for ( )yx +sin  and ( )yx −sin , do this integral and show that this equation is 
indeed true.   
 
*11.3  Odd and even functions.  Using the basic definitions of even and odd 
function, ( ) ( )xfxf eveneven =−  and ( ) ( )xfxf oddodd −=− , show that the following statements 
are true. 
(a)  The product of two even functions is even. 
(b)  The product of two odd functions is even. 
(c)  The product of an odd function and an even function is odd. 
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*11.4  Integrals of odd and even functions.   

(a)  If ( )xf  is an odd function, show that ( ) 0=∫
−

L

L

dxxf .   

(b)  If ( )xf  is an even function, show that ( ) ( )∫∫ =
−

LL

L

dxxfdxxf
0

2 .   

 
*11.5  Starting with Eq. (11) and using integration by parts (where appropriate) derive 
Eq. 12). 
 
**11.6  A Fourier series example.  Consider the function 
 

 ( )








≤≤
≤≤−
−<≤−

=
LxL
LxLA
LxL

xf
20

22
20

3 , (15) 

 
(a)  Carefully graph this function. 
(b)  Find the Fourier coefficients of this function. 
(c)  Plot ( )xf3  and the truncated Fourier expansions of ( )xf3  for =M 1, 5, and 10. 
(d)  Identify all places where the Gibbs phenomenon occurs. 
 
*11.7  Identify whether the following functions are odd, even, or neither.  3x , 2xe− , 

( )xerf , )cosh(x , ( )xsinh . 
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Complex Fourier Series 
 
Overview and Motivation:  We continue with our discussion of Fourier series, 
which is all about representing a function as a linear combination of harmonic 
functions.  The new wrinkle is that we now use complex forms of the harmonic 
functions.   
 
Key Mathematics:  More Fourier Series!  And a cute trick that often comes in handy 
when calculating integrals.   
 
I.  The Complex Fourier Series  
Last time we introduced Fourier Series and discussed writing a function ( )xf  defined 
on the interval LxL ≤≤−  as  
 

 ( ) ( ) ( )[ ]∑
∞

=

++=
1

0 sincos
n

L
xn

nL
xn

nxf ππ βαα , (1) 

 
where the Fourier coefficients are given as 
 

 ( )∫
−

=
L

L

dxxf
L2

1
0α , (2a) 

 

 ( ) ( )∫
−

=
L

L

L
xn

n dxxf
L

πα cos1 , (2b) 

 

 ( ) ( )∫
−

=
L

L

L
xn

n dxxf
L

πβ sin1 . (2c) 

 
While there is nothing wrong with this description of Fourier Series, it is often 
advantageous to use the complex representations of the sine and cosine functions, 
 

 ( ) ( )LxniLxni
L
xn ee πππ −+=

2
1cos , (3a) 

 

 ( ) ( )LxniLxni
L
xn ee

i
πππ −−=

2
1sin . (3a) 

 
If we insert these expressions into Eq. (1) we obtain 
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 ( ) ( ) ( )[ ]∑
∞

=

−− −−++=
1

0 2
1

n

LxniLxni
n

LxniLxni
n eeieexf ππππ βαα , (4) 

 
which can be rearranged as 
 

 ( ) ( ) ( )[ ]∑
∞

=

−++−+=
1

0 2
1

n

Lxni
nn

Lxni
nn eieixf ππ βαβαα . (5) 

 
This doesn't look any simpler, but notice what happens if we define a new set of 
coefficients (which are simply linear combinations of the of the current coefficients 
na  and nβ ), 

 
 00 α=c  (6a) 
 
 ( )nnn ic βα −= 2

1  (6b) 
 
 ( )nnn ic βα +=− 2

1  (6c) 
 
Then we can write Eq. (5) as 
 

 ( ) [ ]∑
∞

=

−
−++=

1

0

n

Lxni
n

Lxni
n ececcxf ππ , (7) 

 
or even more simply as 
 

 ( ) ∑
∞

−∞=

=
n

Lxni
necxf π . (8) 

 
Using Eq. (2) it is not hard to show that the coefficients nc  in Eq. (6) are given by 
 

 ( )∫
−

−=

L

L

Lxin
n dxexf

L
c π

2
1 . (9) 

 
Equations (8) and (9) are known as the complex Fourier series representation of the 
function ( )xf .  Notice that with the complex representation there is only one 
expression needed for all of the Fourier coefficients.    
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There is another way to obtain Eq. (9), which is to use the same trick that we have 
used several times before to find coefficients of the harmonic functions:  multiply Eq. 
(8) by the proper function and integrate!  Let's say we want to find the mth coefficient 
mc .  We then multiply Eq. (8) by Lxmie π−  (notice the minus sign in the exponent!) and 

integrate on x  from L−  to L , which produces 
 

 ( ) ( )∑ ∫∫
∞

−∞= −

−

−

− =
n

L

L

Lxmni
n

L

L

Lxmi dxecdxexf ππ . (10) 

 
Now, as before, only one integral on the rhs is nonzero. That is the integral with 

mn = , and its value is L2 .  Eq. (10) thus simplifies to  
 

 ( ) Lcdxexf m

L

L

Lxmi 2=∫
−

− π , (11) 

 
which is equivalent to Eq. (9).  That is pretty much it for the setup of the complex 
Fourier series. 
 
II.  An Example Revisited 
Let's look at an example that we looked at last time, the triangle function 
 

 ( )




≤≤+−

<≤−+
=

LxAx
xLAx

xf
L
A

L
A

0
0

1 , (12) 

 
which is plotted on the top of the next page.   
 
Let's use Mathcad to evaluate the nc 's.  Inserting Eq. (12) into Eq. (9) 
 

 ( ) ( )












+−++= ∫∫ −

−

−

L

Lxin
L
A

L

Lxin
L
A

n dxeAxdxeAx
L

c
0

0

2
1 ππ  (13) 

 
and asking Mathcad to evaluate this expression results in 
 

 ( )
22

cos1
π

π
n

nAcn
−

= . (14) 
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Not this is OK, as long as we do not use it for more than it is worth:  for any nonzero 
value of n  Eq. (14) is perfectly fine.  But what about the case of 0=n ?  Then this 
expression is undefined.  What this means is that we must explicitly set 0=n  in Eq. 
(13) and reevaluate it.  But for 0=n , we see from Eq. (9) that 0c  is just the average 
value of the function, which is 2A .  Putting this all together we can represent the 
function ( )xf1  as  
 

 ( ) ( )

( )

∑
∞

≠
−∞=

−
+=

0

221
cos1

2
n
n

Lxnie
n

nAAxf π

π
π  (15) 

 
Now this is a valid representation of the function ( )xf1 , but you may be wondering 
about something.  We know that the function ( )xf1  is real, but the rhs of Eq. (15) 
appears to have an imaginary part, because ( ) ( )L

xn
L
xnLxni ie πππ sincos += .  So what is the 

deal?  Well, it is not too difficult to see that the imaginary part of each positive-n  term 
is exactly cancelled by the imaginary part of the corresponding negative-n  term.  So, 
Eq. (15) is indeed real.   
 
III. The Gaussian Function 
Let's take another look at the Gaussian function and think a bit about representing it 
as a Fourier Series.  You should recall that the Gaussian function is defined as 
 
 ( ) 22 σ

σ
xexG −= , (16) 

 
where σ  is known as the width parameter.  Let's assume in this example that σ>>L .  
Then we have something like the following picture, where we have set 2.0=σ  and 

2=L .   

1 0.5 0 0.5 1

0

0.5

1

f1 x( )

A

x

L
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2 1 0 1 2

0

0.5

1

GaussianGaussian

x

G
(x

)

 
 
Let's calculate the coefficients nc .  Using Eq. (9) we have 
 

 ∫
−

−−=
L

L

Lxinx
n dxee

L
c πσ 22

2
1 . (17) 

 
Now this integral can be expressed in terms of the error function, which is the integral 
of the Gaussian function, but the expression is pretty messy.  However, there is an 
approximate solution to the integral in Eq. (17) that is quite simple and very accurate, 
as we now show.  For the conditions that we assumed, namely σ>>L , the Gaussian 
function is nearly zero for Lx ≥ .  Because of this we can extend the limits of 
integration in Eq. (17) to ∞m , and with very little loss of accuracy we can write 
 

 ∫
∞

∞−

−−= dxee
L

c Lxinx
n

πσ 22

2
1 , (18) 

 
We can also take advantage of the properties of integrals of odd and even functions if 
we write ( ) ( )LxniLxne Lxin πππ sincos −=− , which turns Eq. (18) into 
 

 ( ) ( )[ ]∫
∞

∞−

− −= dxLxniLxne
L

c x
n ππσ sincos

2
1 22 . (19) 

 
Now the Gaussian function is even, so the integral of ( )[ ]Lxnie x πσ sin22 −−  is zero, and 
so we are left with  
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 ( )[ ]∫
∞

∞−

−= dxLxne
L

c x
n πσ cos

2
1 22 . (19) 

 
It so happens that this integral has a nice analytic solution.  Using the (fairly well-
known) result (which you can find in any table of integrals) 
 

 ( ) 42222

cos σβσ σπβ −
∞

∞−

− =∫ edxxe x , (20) 

 
we can identify Lnπ  in Eq. (19) as β  in Eq. (20), so we have for the coefficients 
 

 ( )22 2

2
σπσπ Ln

n e
L

c −= . (21) 

 
Now this is pretty cool:  as a function of n , nc  is also a Gaussian, and its width 
parameter is ( )σπL2 .  Notice that this width parameter is inversely proportional to 
the width parameter σ  of the original Gaussian function ( ) 22 σ

σ
xexG −= .1   

 
We can now use Eq. (21) in Eq. (8) and represent a Gaussian function (on the interval 

LxL ≤≤− ) as 
 

 ( ) ( )∑
∞

−∞=

−=
n

LxniLn ee
L

xG πσπ
σ

σπ 22 2

2
. (22) 

 
Let's look at the original Gaussian function ( )xGσ  and its (truncated) Fourier 
representation,  
 

 ( ) ( )∑
−=

−=
M

Mn

LxniLn
M ee

L
xG πσπ

σ
σπ 22 2

2
. (23) 

 
So how many terms do we need; that is, how large does M  need to be in Eq. (23)?  
We can get some idea by considering what happens to the coefficients nc  [see Eq. (21)] 
as n  gets larger.  For a Gaussian function, if the argument is several times larger than 
the width parameter, then the Gaussian function is very close to zero.  Thus, we need 
to choose M  such that it is a few times larger than the width parameter ( )σπL2 .  
This is illustrated in the next figure, where we have used 20=M , which is 

                                                 
1 We will see later that this observation is essentially the uncertainty principle of quantum mechanics! 
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approximately 3× ( )σπL2 .  On the scale of this graph, the truncated Fourier series 
certainly does a good job of representing the Gaussian function.  (As above, we have 
again set 2.0=σ  and 2=L ). 
 

2 1 0 1 2

0

0.5

1

Gaussian
Fourier Representation
Gaussian
Fourier Representation

x

G
(x

), 
Fo

ur
. R

ep
.

 
 
However, there is an inherent limitation to using Fourier series to represent a 
nonperiodic function such as a Gaussian.  That limitation is illustrated in the next 
figure, which plots the Gaussian and its Fourier series over an interval larger than 

LxL ≤≤− .  Within the interval the match is very good (as we saw in the last graph), 
but outside the interval the match is pretty lousy.  Why?  Well, that is because the 
harmonic functions that make up the Fourier series all repeat on any interval with 
length L2 .  Thus, the Fourier representation of the Gaussian function has periodicity 
L2 .   

 
 
Well, you might say that there is no problem here.  I'll just pick a value of L  that is 

10 6 2 2 6 10

0

0.5

1

Gaussian
Fourier Representation
Gaussian
Fourier Representation

x

G
(x

), 
Fo

ur
. R

ep
.

L− L
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larger than any value of x  where I might want to evaluate the original function.  That 
might work in practice, but we might also ask the question:  is there a Fourier-series 
representation that will work for all x ?  The answer is yes, and we will discuss that in 
a few lectures after this one.   
 
Right now I just want to point out that getting to such a representation is not at all 
trivial.  Consider the following.  We have represented the Gaussian as a linear 
combination of harmonic functions Lxnie π .  If we want to use a Fourier representation 
for all x , then somehow we must take the limit where ∞→L .  What does that mean 
for the harmonic functions?  It looks like all of the harmonic functions will simply 
become equal to 1 (which seems pretty bad!).  There is a resolution to this dilemma, 
but this illustrates that taking the ∞→L  limit of the Fourier-series representation is 
somewhat nontrivial. 
 
Exercises 
 
*12.1  Calculate the integral on the rhs of Eq. (10) and show that it is nonzero only if 

mn = .   
 
*12.2  Consider the result for the coefficient for the triangle function, 

( )
22

cos1
π

π
n

nAcn
−

= , which is undefined for 0=n .  Use l'Hôspital's rule to show that as 

0→n , 2Acn → , the result for 0c .   
 
*12.3  Using Eq. (2) in Eq. (6b), show that nc  is given by Eq. (9).   
 

**12.4  Fourier series example.  Consider the function ( )






>

≤
=

− 0
0

xe
xe

xf
x

x

. 

(a)  Plot this function.  Explain why this function is even? 
(b)  Find a real analytic expression for the Fourier coefficients nc  for this function.  
(Hint:  You can use the fact that ( )xf  is even to simplify your determination of the 
coefficients.) 
(c)  Let =L 5.  Plot the function and its truncated Fourier representation for several 
values of M .  What is the minimum reasonable value for M  necessary to represent 
( )xf  on this interval?  
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Vector Spaces / Real Space 
 
Overview and Motivation:  We review the properties of a vector space.  As we shall 
see in the next lecture, the mathematics of normal modes and Fourier series is 
intimately related to the mathematics of a vector space.    
 
Key Mathematics:  The concept and properties of a vector space, including addition, 
scalar multiplication, linear independence and basis, inner product, and orthogonality. 
 
I.  Basic Properties of a Vector Space  
You are already familiar with several different vector spaces.  For example, the set of 
all real numbers forms a vector space, as does the set of all complex numbers.  The 
set of all position vectors (defined from some origin) is also a vector space.  You may 
not be familiar with the concept of functions as vectors in a vector space.  We will talk 
about that in the next lecture.  Here we review the concept of a vector space and 
discuss the properties of a vector space that make it useful.   
 
A.  Vector Addition. 
A vector space is a set (of some kind of quantity) that has the operation of addition 
( + ) defined on it, whereby two elements v  and u  of the set can be added to give 
another element w  of the set, 1 
 
 vuw += . (1) 
 
There is also an additive identity included in the set; this additive identity in known 
as the zero vector 0, such that for any vector v  in the space  
 
 v0v =+ . (2) 
 
The addition rule has both commutative 
 
 uvvu +=+  (3) 
 
and associative 
 
 ( ) ( )wvuwvu ++=++  (4) 
 
properties. 
 
                                                 
1 We denote vector quantities by boldface type and scalars in standard italic type.  This is standard practice in 
most physics journals.   
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B.  Scalar Multiplication 
The vector spaces that we are interested in also have another operation defined on 
them known as scalar multiplication, in which a vector u  in the space can be 
multiplied by either a real or complex number a , producing another vector in the 
space uv a= .  If we are interested in multiplying the elements of the space by only 
real numbers it is known as a real vector space; if we wish to multiply the elements 
of the space by complex numbers, then the space is known as a complex vector 
space.   
 
Scalar multiplication must satisfy the following properties for scalars a  and b  and 
vectors u  and v , 
 
 ( ) uuu baba +=+ , (5a) 
 
 ( ) ( )uu abba = , (5b) 
 
 ( ) vuvu aaa +=+ , (5c) 
 
 uu =1 , (5d) 
 
 0u =0 . (5e) 
 
None of these properties should be much of a surprise (I hope!) 
 
C.  Linear Independence and Basis 
The span of a subset of m  vectors is the set of all vectors that can be written as a 
linear combination of the  m  vectors, 
 
 mmaaa uuu +++ K2211 . (6) 
 
The subset of m  vectors is linearly independent if none of the subset can be written 
as a linear combination of the other members of the subset.  If the subset is linearly 
dependent then we can write at least one of the members as a linear combination of 
the others, for example 
 
 112211 −−+++= mmm aaa uuuu K . (7) 
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For a given vector space if there is a maximum number of linearly independent 
vectors possible, then that number defines the dimension N  of the vector space. 2   
That means if we have identified N  linearly independent vectors then those N  
vectors span the entire vector space.  This means that any vector in the space can be 
written as a linear combination of the set of N  independent vectors as  
 
 NNvvv uuuv +++= K2211 , (8) 
 
or in more compact notation as 
 

 ∑
=

=
N

n
nnv

1
uv . (9) 

 
Furthermore the coefficients3 nv  in Eq. (9) are unique.  The vectors nu  in Eq. (9) are 
said to form a basis for the space.  Now Eq. (9) should look strangely familiar.  We 
have some quantity on the lhs that is written as a linear combination of quantities on 
the rhs.  Hum… And you might even ask, assuming that I know the vectors nu  in Eq. 
(7), how do I find the coefficients nv ?   
 
D.  Inner Product 
This last question is most easily answered after we define one more operation on the 
vector space, known as the inner product of two vectors, which we denote ( )vu, .  
The inner product returns a scalar, which is a real number for a real vector space or a 
complex number for a complex vector space.  The inner product can be defined in 
any manner as long as it satisfies the following relationships 
 
 ( ) ( )∗= uvvu ,,  (10a) 
 
 ( ) ( ) ( )uwvwuvw ,,, baba +=+  (10b) 
 
Note the complex-conjugate symbol in Eq. (10a).  If we are dealing with a real vector 
space, then we can just ignore the complex-conjugate symbol.  Also note that Eq. (10a) 
implies that the inner product of a vector u  with itself is a real number.  It can be 
shown that Eqs. (10a) and (10b) imply that 

                                                 
2 If there is not a maximum number of linearly independent vectors, then the space is said to have infinite 
dimension. 
3 The coefficients nv  are also known as the scalar components of v  in the basis { }Nuu ,,1 K .   
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 ( ) ( ) ( )wuwvwuv ,,, ** baba +=+  (10c) 
 
 ( ) ( )uvuv ,ba,ba *=  (10d) 
 
In physics we are usually interested in vector spaces where 
 
 ( ) 0≥uu, , ( ) 0=uu,  iff  0u = . (10e) 
 
Such vector spaces are said to have a positive semi-definite norm (the norm is 
defined below). 
 
With these properties of the inner product denoted, we can define the concept of 
orthogonality.  Two nonzero vectors u  and v  are said to be orthogonal if their inner 
product vanishes, i.e., if ( ) 0=vu, .   
 
Note that if two vectors are orthogonal, then they are linearly independent.  This is 
easy to see, as follows.  Assume the converse, that they are linearly dependent.  Then 
their (assumed) linear dependence means that vu a= , where a  is some scalar [see Eq. 
(7)].  Then the scalar product ( ) ( ) ( )vvvvuv ,,, aa ==  cannot be zero because v  is not 
zero [see Eq. (10e)].  Thus they must be linearly independent.   
 
The converse is not true, two linearly independent vectors need not be orthogonal.  
The proof is given as one of the exercises.    
 
One last thing regarding the inner product.  The quantity ( )uuu ,=  is generally 
known as the norm (or size) of the vector u .  Often we are interested in vectors 
whose norm is 1 .  We can "normalize" any vector u  with scalar multiplication by 
calculating  
 

 
( )uu
uu
,

=ˆ . (11) 

 
The "hat" over a vector indicates that the vector's norm is 1.   
 
E.  Orthogonal Basis 
Most of the time that we deal with a basis, the vectors in that basis are orthogonal.  
That is, their inner products with each other vanish.  In this case it is a simple matter  
to find the components nv  in Eq. (9).  Let's say that we want to find the mth 
component mv .  Then we take the inner product of Eq. (9) with mu , and we get 
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 ( ) ( )∑∑
==

=







=

N

n
nmn

N

n
nnmm vv

11
,,, uuuuvu  (12) 

 
[This last equality follows from Eq. (10b).]  So what happens?  Well, there will only be 
one nonzero inner product on the rhs, ( )mm uu , , and so Eq. (12) becomes 
 
 ( ) ( )mmmm v uuvu ,, = , (13) 
 
and we can now solve for mv  as 
 

 ( )
( )mm

m
mv

uu
vu

,
,

= . (14) 

 
All of this should now look even more strangely familiar.  We will get to why that is in 
the next lecture, but right now we will review a vector space with which you should 
have some familiarity. 
 
 
II.  1D Displacement Space 
Let's look at a simple example to start.  Assume that we have a line drawn somewhere, 
and on that line we have identified an origin O , as illustrated in the picture below.  
The vector space that we are interested in consists of all the arrows that start at O  and 
end someplace on the line.  The picture also illustrates two of these vectors, one 
denoted u  and one denoted v .4   
 
 

 

                                                 
4 Note, this vector space is not a vector field.  A vector field is the assignment of a vector to each point in 
space.   

. 
O 

u 
v 
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So let's talk about some of the math introduced above with respect to this vector 
space.  We first have to define vector addition, which must satisfy Eqs. (1) – (4).  Let's 
go with the standard physics definition of vector addition, whereby we add vectors by 
the tip-to-tail method, where the one of the arrows is translated (without any rotation) 
and its tail is placed at the tip of the other arrow, as illustrated in the picture below.  
Clearly this produces another arrow whose tails is at the origin and head is on the line 
(and is thus a vector in the space).  Eq. (1) is thus satisfied.  It should also be clear that 
we could have translated v  rather than u  in this example, and so this definition 
satisfies Eq. (3), the commutative property of vector addition.  We will not illustrate it 
here, but you should convince yourself that Eq. (4), the associative property is 
satisfied by the sum of three arrows.  What about the zero vector?  Well, if Eq. (2) is 
to be satisfied, it must have no length, and so it must be the arrow that begins and 
ends at the origin.   
 
 

 
 
What about scalar multiplication?  Again, we go with the standard definition, whereby 
scalar multiplication by a positive number a  results in an arrow that points in the 
same direction and is a  times longer than the original arrow.  Multiplication by a 
negative scalar b  results in an arrow that points in the opposite direction and is b  
times longer than the original arrow.  It should be clear that this definition satisfies all 
parts of Eq. (5).   
 
What about linear independence and dimension?  Pick an arrow, any arrow.  Now ask 
yourself the following question:  can I find another arrow that is not a multiple of my 
first arrow.  If the answer is no (which it is), then the vector space has one dimension, 
and you can use any arrow as the basis for the space.  For example, let's say you pick 
the arrow u  in the above drawing as your basis.  Then the space is one dimensional 
because you can write any other arrow v  as 
 
 uv a= , (15) 
 

. 
O 

u 

v 
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where a  is some scalar.  Although we have not yet defined what the inner product is, 
notice that if we take the inner product of Eq. (15) with v  we get 
 
 ( ) ( ) ( )uuuuvv ,,, 2aaa == , (16) 
 
so that 
 

 ( )
( ) u

v

uu
vv

±=±=
,
,

a , (17) 

 
with the sign depending upon the sign of a .  Now scalar multiplication was defined as 
multiplying an arrow's length by the multiplying scalar.  Thus a  is also the + or – ratio 
of the two vector's lengths.  Therefore, for this space the norm must be proportional 
to the length of the arrow.   
 
So what about the inner product?  Also notice the following.  Because this is a one 
dimensional space, this basis { u } is trivially orthogonal, and we can use Eq. (14)  
(where here a  takes the place of mv ) to express the coefficient a  in Eq. (15) as 
 

 ( )
( )uu

vu
,
,

=a . (18) 

 
Together Eqs. (17) and (18) imply  
 
 ( ) ( ) ( ) vuvvuuvu ±=±= ,,, . (19) 
 
So which sign do we use?  As we now show, it depends upon the relative directions of 
the two arrows.  Let's first consider the case where u  and v  are in the same direction.  
Then we can write uv a= , where 0>a .  The we have the following  
 
 ( ) ( ) ( )uuuuvu ,,, aa ==  (20) 
 
Because ( )uu, >0, ( )vu, >0, and we must use the positive sign if u  and v  are in the 
same direction.  Similarly, if u  and v  are in opposite directions then 0<a , and we 
must use the negative sign.   
 
One last comment:  notice that nothing we have done here makes us chose the norm 
to be exactly equal the length of the arrows; it must only be proportional to the length 
of the arrows.  For this space, however, the standard definition of the vector norm is 
simply the arrow length.   
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III.  Real Space ( 3R ) 
What is real space?  It is the extension of this 1D displacement space that we have 
been discussing to 3 dimensions.  That is, it is simply the set of all displacement 
vectors r  defined with respect to some fixed origin.   
 
Our discussion here will center on the more practical, at least from a physics point of 
view.  The picture below illustrates the following discussion.  In dealing with this 
space, we typically define a set of three mutually perpendicular axes that pass through 
the origin, which we label x , y , and z .  We also denote three special vectors in this 
space, the three unit-norm vectors x̂ , ŷ , and ẑ , which are three arrows that point 
along the three axes, respectively.  The relative orientations of these three unit vectors 
are defined by the right-hand-rule (i.e., cross product) through the equation yxz ˆˆˆ ×= .  
You should convince yourself that these three vectors are linearly independent (given 
our definitions of vector addition and scalar multiplication discussed in the last 
section).  It is also true that these three vectors are a basis for our vector space, so this 
vector space is three dimensional.  Thus we can write any vector in the space as a 
linear combination of these three vectors as 
 
 zyxr ˆˆˆ zyx rrr ++=  (21) 

 
So now we are back to the ever occurring problem of determining the coefficients of 
some quantity of interest that is expressed as a linear combination of some other 
quantities.  To do this we can again use the inner product, once it is defined.  We use 
the standard definition of the inner product of two vectors in this space 

x 

y 

z 

r 

x̂ ŷ

ẑ
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 ( ) ( )θcosvuvu =,  (22) 
 
where θ  is the angle between the directions of the two arrows.  Notice that this 
definition reduces to the definition that we came up with for two vectors in our 1D 
space above, ( ) vuvu ±=, , where the sign depends upon the relative directions of 
the two vectors. 
 
With Eq. (22) it is easy to see that the unit vectors x̂ , ŷ , and ẑ  satisfy the following 
relationships, 
 
 ( ) ( ) ( ) 1ˆˆˆˆˆˆ === zzyyxx ,,,  (23a) 
 
 ( ) ( ) ( ) 0ˆˆˆˆˆˆ === zxzyyx ,,, . (23b) 
 
Eq. (23) defines an orthonormal basis for a three dimensional space.  That is, the 
basis is made up of unit vectors [Eq. (23a)] that are all mutually orthogonal [Eq. (23b)].   
 
Using Eq. (23) we can now express the coefficients in Eq. (21) as 
 

 ( )
( ) ( )rx

xx
rx ,

,
,rx ˆ
ˆˆ

ˆ
== ,  ( )

( ) ( )ry
yy
ry ,

,
,ry ˆ
ˆˆ

ˆ
== ,  ( )

( ) ( )rz
zz
rz ,
,
,rx ˆ
ˆˆ

ˆ
== . (24a) – (24c) 

 
which enables us to rewrite Eq. (21) as 
 
 ( ) ( ) ( )zrzyryxrxr ˆ,ˆˆ,ˆˆ,ˆ ++= . (25) 
 
Note that Eq. (24) is the specific form of Eq. (14) for the case at hand.  Notice also 
that because the basis vectors have unit norms, the coefficients have an especially 
simple form:  each coefficient is simply the inner product of the respective basis 
vector with the particular vector of interest.   
 
Lastly, we remark that the inner product between two vectors r  and s  can be simply 
written in terms of the components of those vectors in an orthonormal basis.  Let's 
assume that r  is given by Eq. (21) and s  by an analogous equation.  Then we can 
write  
 
 ( ) ( )zyxzyxsr ˆˆˆ,ˆˆˆ, zyxzyx sssrrr ++++= . (26) 
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Now it can be shown that the definition of the inner product [Eq. (22)] satisfies Eq. 
(10) and so Eq. (26) simplifies to  
 
 ( ) zzyyxx srsrsr ++=sr, . (27) 
 
That is, the inner product of two vectors can be simply expressed as the sum of the  
products of corresponding components of the two vectors.   
 
Lastly, we remark that when working with vectors in real space we often use a more 
notationally compact form than that in Eq. (20):  we often simply express the vector r  
as its triplet of components 
 
 ( )zyx rrr ,,=r , (28) 
 
leaving the basis vectors x̂ , ŷ , and ẑ  as implied.  But, when using this notation one 
must keep in mind that lurking in the background is an implied set of basis vectors.   
 
 
Exercises 
 
*13.1  The inner product 
(a)  Show that Eq. (10a) implies that the inner product of a vector u  with itself is a 
real number. 
(b)  Using Eqs. (10a) and (10b) show that Eq. (10c) follows.   
(c)  Using Eqs. (10a) and (10b) show that Eq. (10d) follows  
 
*13.2  Projection.  The projection of a vector v  onto the direction of another vector 

u is defined as ( ) ( )
( )uuu

vuuvp
,
,, = .  Consider an orthogonal (but not necessarily normal) 

basis 1u , 2u , 3u .  Using this basis any vector v  can be written as 332211 uuuv vvv ++= .  
Determine expressions for 1v , 2v , and 3v  and thus show that v  can be written as 

( ) ( ) ( )321 ,,, uvpuvpuvpv ++= .  That is, the vector v  is simply the sum of its projections 
onto the orthogonal basis set.  In physics we often call these projections the vector 
components of v  in the 1u , 2u , 3u  basis.   
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*13.3  Consider two linearly independent vectors u  and v  and the vector 
( )
( )u

uu
vuvw

,
,

−=  made from these two vectors.  Assume that the vector space is 

complex.  In this problem you are going to do two separate calculations, both of 
which show that w  is orthogonal to u .  You may find Eqs. (10a) – (10d) useful here.   
(a)  Easy way:  Calculate the inner product ( )wu,  to show that w  is orthogonal to u . 
(b)  Slightly harder way:  Calculate the inner product ( )uw,  to show that w  is 
orthogonal to u . 
(This important result can be used to create an orthogonal basis out of any basis.)   
 
*13.4  Show that two linearly independent vectors need not be orthogonal. (Hint:  you 
may find the result of Exercise 13.3 to be helpful here.) 
 
*13.5  Assuming that Eq. (10) applies, show that Eq. (27) follows from Eq. (26).   
 
*13.6  Use Eq. (27) to find the norm of the vector zyxr ˆˆˆ zyx rrr ++= .  Does your result 
look familiar?   
 
**13.7  Real space.  A vector r  in real space has components ( )10,1,4 −  in one 
orthonormal basis.  In this same basis a set of vectors is given by ( )0,,ˆ

2
1

2
1

1 =u , 
( )0,,ˆ

2
1

2
1

2 −=u , ( )1,0,0ˆ 3 −=u . 
(a)  Show that this set of vectors is orthonormal (and is thus another orthonormal 
basis).   
(b)  Find the components of r  in this new basis. 
(c)  From the components given in the statement of the problem, find r . 
(d)  From the components determined in part (b), find r .  Is r  the same as 
calculated in part (c)? 
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Linear Operators / Functions as Vectors 
 
Overview and Motivation:  We first introduce the concept of linear operators on a 
vector space. We then look at some more vector-space examples, including a space 
where the vectors are functions. 
 
Key Mathematics:  More vector-space math! 
 
I.  Linear Operators 
A. Definition and Examples 
The essential nature of a linear operator is contained in its name.  The operator part  
of the name means that a linear operator A  operates on any vector u  (in the space of 
interest) and produces another vector v  in the space.  That is, if u  is a vector, then 
 
 uv A=  (1) 
 
is also vector.  The linear part of linear operator means that 
 
 ( ) vuvu AbAabaA +=+  (2) 
 
is satisfied for all scalars a  and b  and all vectors u  and v  in the space.   
 
Linear operators come in many different forms.  The ones of interest for any given 
vector space depend upon the problem being solved.  When dealing with a vector 
space of finite dimension, we can always use standard linear-algebra notation to 
represent the vectors as column matrices of length N  and the linear operators as  
square matrices of size NN × .  For 3=N , for example, Eq. (1) can be written as 
 

 































=

















3

2

1

333231

232221

131211

3

2

1

u
u
u

AAA
AAA
AAA

v
v
v

, (3) 

 
where iv , iu , and ijA  are the (scalar) components of v , u , and A , respectively, in 
some particular orthonormal basis. 1   
 
As we shall see below, sometimes we are interested in a vector space where the 
vectors are functions.  In that case the linear operators of interest may be linear 

                                                 
1 For example, if dealing with vectors in real space, the elements in a column vector are often the scalar 
components (also known as Cartesian coordinates) of that vector in the x̂ , ŷ , ẑ  basis.   
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differential operators.  An example of a linear differential operator on a vector 
space of functions of x  is dxd .  In this case Eq. (1) looks like 
 

 ( ) ( )xf
dx
dxg = , (4) 

 
where ( )xf  and ( )xg  are vectors in the space and dxd  is the linear operator. 
 
B. Eigenvalue Problems 
An important vector-space problem is the eigenvalue problem.  We already have some 
experience with this problem as part of the process of finding the normal modes of 
the coupled oscillators.  Simply stated, the eigenvalue problem is this:  for a given 
linear operator A , what are the vectors u  and scalars λ  such that 
 
 uu λ=A  (5) 
 
is satisfied?  These vectors u  and scalars λ  are obviously special to the operator:  
when operated on by A , these vectors only change by the scale factor λ .  These 
special vectors u  are known as eigenvectors and the values of λ  are known as 
eigenvalues.  Each eigenvector u  has associated with it a particular eigenvalue λ .   
 
For a vector space of N  dimensions (where we are using standard linear algebra 
notation) the eigenvalues are solutions of the characteristic equation 
 
 ( ) 0det =− IA λ , (8) 
 
where I  is the identity matrix.  As we did when solving the 2=N  and 3=N  
(homework) coupled oscillator problems, substituting the eigenvalues (one at a time!) 
back into Eq. (5) allows us to find the eigenvectors u .   
 
If the (finite dimension) vector space is complex then Eq. (8) always has solutions.2  
Now here is the cool thing.  If the operator is self-adjoint (also know as Hermitian), 
which means that its matrix elements satisfy *

ijji AA = , then  
 (i)  its eigenvalues are real, 
 (ii) its eigenvectors span the space, and 
 (iii) the eigenvectors with distinct eigenvalues are orthogonal. 
Thus, if the operator A  is self-adjoint and all eigenvalues are distinct, then those 
eigenvectors form an orthogonal basis for the space.  If the eigenvalues are not 

                                                 
2 This result is known as the fundamental theorem of algebra. 
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distinct, an orthogonal basis can still be formed from the eigenvectors. (it just takes a 
little bit of work.) 
 
Often, however, the eigenvalue problem of interest is on a real vector space.  In this 
case, if A  is symmetric (that is, the matrix elements of A  satisfy jiij AA = ), then Eq. 
(8) will have N  real solutions and, again, the associated eigenvectors u  can be used to 
form a basis for the vector space.   
 
A famous eigenvalue problem from quantum mechanics is none other than the time-
independent Schrödinger equation  
 
 ψψ EH = , (6) 
 
which is an eigenvalue problem on a vector space of functions.  Here the vectors are 
the functions ( )zyx ,,ψ ; the operator is the differential operator 
 

 ( )zyxV
zyxm

H ,,
2 2

2

2

2

2

22

+







∂
∂

+
∂
∂

+
∂
∂

−=
h ; (7) 

 
and the eigenvalues are specific values of E .3  This is perhaps the most important 
equation in quantum mechanics because the (normalized) eigenvectors describe the 
(spatial part of the) states of the system with a definite value of energy, and the 
eigenvalues E  are the energies of those states. 
 
II.  The Coupled Oscillator Problem Redux 
Let's revisit the coupled oscillator problem to see how that problem fits into our 
discussion of vector spaces.  We first review the associated eigenvalue problem that 
we solved when finding the normal modes, and then we make some remarks about 
the initial-value problem. 
 
A. The Eigenvalue Problem 
Recall, in that problem we started with N  equations of motion (one for each object) 
 
 ( ) 02~

11
2 =+−− +− jjjj qqqq ω&& , (9) 

 
( Nj ,,1K= ), where ( )tq j  is the time-dependent displacement of the j th oscillator.  
We then looked for normal-mode solutions 
 

                                                 
3 The function ( )zyxV ,,  is the classical potential energy a particle of mass m .   
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 ( ) ti
jj eqtq Ω= ,0 , (10) 

 
where all N objects oscillate at the same frequency Ω .  By assuming that the solutions 
had the form of Eq. (10), the N  coupled ordinary differential equations became the 
N  coupled algebraic equations 
 
 ( ) 02~

1,0,01,0
2

,0
2 =+−+Ω +− jjjj qqqq ω , (11) 

 
which we rewrote as 
 

 






















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




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

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

















−
−−

−−
−

NN q

q
q
q

q

q
q
q

,0

3,0

2,0

1,0

2

,0

3,0

2,0

1,0

22

222

222

22

~2~00

~~2~0
0~~2~
00~~2

MM

M

L

ωω
ωωω

ωωω
ωω

 (12) 

 
Notice that this is exactly of the form of Eq. (5) (the eigenvalue problem) where the 
vectors are −N row column matrices, the linear operator A  is an NN ×  matrix, and 
the eigenvalues λ  are the squared frequencies 2Ω .   
 
As we previously discovered in solving that problem there are N  eigenvectors,  
 

 

( )
( )
( )

( )



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















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


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





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




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+

+

Nq

q
q
q

N
n

N
n
N
n
N
n

nN 1

1

1

1

,0

3,0

2,0

1,0

sin

3sin
2sin
1sin

π

π

π

π

MM

 (13) 

 
( Nn ,,1K= ), and the nth eigenvector has the eigenvalue 
 

 ( )






+

=Ω
12

sin~4 222

N
n

n
πω . (14) 

 
Notice that the eigenvalues are real, as they should be for a symmetric operator.  Also, 
because the eigenvalues are distinct, the eigenvectors from an orthogonal basis for the 
space. 
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B. The Initial Value Problem 
As part of solving the initial-value problem for this system, we ended up with the 
equation4 
 

 

( )
( )
( )

( )

( )

( )
( )
( )

( )

∑
=

+

+

+
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
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N
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n
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q
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q
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1
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1

3
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3sin
2sin
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Re

0

0
0
0

π

π

π

π

MM

, (15) 

 
which we needed to solve for the coefficients ( )naRe .  Let's now place the previous 
solution of Eq. (15) for the coefficients ( )naRe  within the context of the current 
discussion of vector spaces.5  As we talked about in the last lecture, if we write a 
vector v  as a linear combination of orthogonal vectors nu  
 

 ∑
=

=
N

n
nnv

1
uv , (16) 

 
then the coefficients nv  in are given by 
 

 ( )
( )nn

n
nv uu

vu
,
,

= . (17) 

 
For the example at hand, Eq. (15) is equivalent to Eq. (16), but in order apply Eq. (17) 
to find the coefficients ( )naRe  in Eq. (15), we need the definition of the inner product 
of two vectors for this vector space.  For any N  dimensional vector space the inner 
product between two vectors w  and v  can be written as (See Exercise 14.5)  
 

 ( ) ( )


















=

N

N

v

v
v

www
M

K 2

1

**
2

*
1, vw , (18) 

 
where nw  and nv  are the components of the vectors w  and v  in the same basis.  
Notice that the elements of the row matrix in Eq. (18) are the complex conjugates of 
                                                 
4 This is Eq. (10) of the Lecture 10 notes.   
5 Note that Eq. (15) says, at its most basic level, that the eigenvectors [Eq. (13)] form a basis for the space of 
initial displacements of the objects (which can be any set of N real numbers). 
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the elements of u .  Of course, if we are dealing with real vector, then the complex 
conjugate is simply the element itself.  Note that Eq. (18) can be written in more 
compact form as 
 

 ( ) ∑
=

=
N

j
jj vw

1

*, vw . (19) 

 
Using the form of the inner product in Eq. (19), the application of Eq. (17) to the 
coupled oscillator problem is thus6 
 

 ( )
( ) ( )

( )∑

∑

=
+

=
+

= N

j
N
n

N

j
jN

n

n

j

qj
a

1
1

2

1
1

sin

0sin
Re

π

π

. (20) 

 
III.  Vectors Spaces and Fourier Series 
The last vector-space example is Fourier Series.  Recall, the complex Fourier-series 
representation of a function ( )xf  defined on the interval L−  to L  is 
 

 ( ) ∑
∞

−∞=

=
n

Lxni
necxf π , (21a) 

 
where the coefficients nc  are given by 
 

 ( )∫
−

−=

L

L

Lxin
n dxexf

L
c π

2
1 . (21b) 

 
If you have been paying attention to this point (i.e, if you are still awake), then you 
should be thinking "Ah ha! Equation (21) says that we can write the function ( )xf  as 
a linear combination of the (basis!) functions Lxnie π  with coefficients nc .  Looks like a 
vector space to me!  And ah ha, again!  It seems that somehow Eq. (21b) is the 
equivalent of Eq. (17), where the coefficients are expressed in terms of inner products 
on this space."  But likely you are now asleep and thinking about other things.   
 
But if you were awake, you would be entirely correct.  Let's see that this is the case.  
The vectors in this space are indeed functions on the interval L−  to L , and one set of 

                                                 
6 Equation (20) is Eq. (18) of the Lecture 10 notes. 
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basis vectors nu  is indeed the set of functions ( ) Lxni
n exu π= , ∞<<∞− n .  So what is 

the inner product on this space that makes these basis vectors orthogonal?  You 
actually saw the inner product back in Lecture 12 before you knew it was an inner 
product, so let me remind you.  Denoting, for example, a function ( )xf  as the vector 
f ,  we define the inner product ( )fg,  in this space as  
 

 ( ) ( ) ( )dxxfxg
L

L
∫
−

= *,fg . (22) 

 
Again, note the complex conjugate in the definition.  Also notice the similarity of Eqs. 
(19) and (22).  Using Eq. (22), Eq. (21) can be written in vector-space notation as 
 

 ∑
∞

−∞=

=
n

nnc uf , (23a) 

 

 ( )
( )nn

n
nc uu

fu
,
,

= . (23b) 

 
Lastly, let's revisit the idea of an orthonormal basis within the context of Fourier 
series.  Recall, a normalized (or unit) vector û  is defined by ( ) 1ˆ,ˆˆ == uuu , and we 
can normalize any vector u  via 
 

 
( )uu
uu
,

=ˆ . (25) 

 
Let's find the normalized version of the basis functions ( ) Lxni

n exu π= .  Calculating 
( )nn uu ,  we have  
 

 ( ) Ldxee
L

L

LxniLxni
nn 2, == ∫

−

− ππuu . (26) 

 
We can thus turn our orthogonal basis into an orthonormal basis by using the normalized 
vectors 
 

 
L

e Lxni

n 2
ˆ

π

=u . (27) 
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If we now write a vector in this space as a linear combination of these normalized 
basis vectors, 
 

  ∑
∞

−∞=

=
n

nnc uf ˆ , (28a) 

 
 ( )fu ,ˆ nnc =  (28b) 
 
then the functional expression of Eq. (28) results in the Fourier series being written as 

 

 ( ) ∑
∞

−∞=

=
n

Lxni
necL

xf π

2
1 , (29a) 

  
 

 ( )∫
−

−=
L

L

Lxni
n dxexf

L
c π

2
1 . (29b) 

 
To some, the Fourier Series written as Eq. (29) is more appealing because it has a 
certain symmetry that Eq. (21) lacks.   
 
Exercises 
 

*14.1  Consider the operator 







=

lk
ji

A  on a two dimensional vector space.  Show 

that for any two scalars a  and b  and any two vectors 







=

2

1

u
u

u  and 







=

2

1

v
v

v  that this 

operator is linear, i.e., that it satisfies Eq. (2).   
 
*14.2  Show that for any two scalars a  and b  and any two functions ( )xf  and ( )xg , 

that the differential operator 
dx
di  is linear, i.e., that it satisfies Eq. (2). 

 
*14.3  In solving the 3=N  coupled oscillator problem, we found the three 
eigenvectors to the associated eigenvalue problem, which can be written as 
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














=

1
2

1

1u , 
















−
=

1
0
1

2u , and 















−=

1
2

1

1u .  Find the normalized versions 1û , 2û , and 

3û  of each of these vectors.   
 
**14.4  Consider the time independent Schrödinger equation eigenvalue problem 

ψψ EH = , where H  is the operator 2
2

22

2
1

2
kx

xm
+

∂
∂

−
h .  This is the (1D) quantum 

mechanical harmonic-oscillator problem.  The solutions (eigenvectors and eigenvalues) 
of this problem can be written as ( K,2,1,0=n ) 
 

 ( ) 22ax
n

n eax
dx
dx −






 −=ψ , where 2hmka =  and 

 

 ωω ~
2

~
h

h nEn += , where mk=ω~  

 
(a)  For 0=n  (the ground state), show that ( )x0ψ  is a solution to ψψ EH =  with the 
appropriate eigenvalue.   
(b)  For this vector space, the inner product of two vectors ψ  and φ  is defined as 

( ) ( ) ( )dxxx ψϕ∫
∞

∞−

= *,ψφ .  Show that the 0=n  and 1=n  states are orthogonal. 

(c)  Find the norm of the 0=n  state.  Thus construct the normalized eigenvector 
corresponding to this state.   
(d)  Given that 000 ψψ EH =  and 111 ψψ EH = , find ϕH , where 1100 ψψϕ CC +=  (Here 

00 ≠C  and 01 ≠C  are two  constants.)  Thus argue that the wave function ϕ  is not an 
eigenvector of H  (for any value of E ).   
 
*14.5  Inner product.  Consider two vectors written in terms of some orthonormal 
basis,  

∑
=

=
N

n

nnv
1

uv , ∑
=

=
N

m

mmw
1

uw . 

 
(a)  Using Eq. (10) of the Lecture 13 notes, show that the inner product ( )vw,  can be 

expressed in terms of the components of the two vectors as ( ) ∑
=

=
N

n

nnvw
1

*, vw . 

(b)  What is the norm of the vector v  expressed in  terms of its components? 
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*14.6  Inner Product and Fourier Series.  Consider two functions expressed as their 
normalized Fourier Series representations,  
 

( ) ∑
∞

−∞=

=
n

Lxni
necL

xf π

2
1 , ( ) ∑

∞

−∞=

=
m

Lxmi
nedL

xg π

2
1 . 

 

(a)  Starting with these expressions, show that the inner product ( ) ( ) ( )dxxfxg
L

L
∫
−

= *,fg  

can be expressed in terms of the Fourier coefficients nc  and nd  as  ( ) ∑
∞

−∞=

=
n

nn cd
*,fg .   

(b)  What is the norm of ( )xf  in terms of its Fourier coefficients? 
 
Notice the similarity of these results and those of Exercise 14.5.  Cool, eh? 
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The Dirac Delta Function 
 
Overview and Motivation:  The Dirac delta function is a concept that is useful 
throughout physics.  For example, the charge density associated with a point charge 
can be represented using the delta function.  As we will see when we discuss Fourier 
transforms (next lecture), the delta function naturally arises in that setting.   
 
Key Mathematics:  The Dirac delta function! 
 
I.  Introduction   
The basic equation associated with the Dirac delta function ( )xδ  is  
 

 ( ) ( ) ( )0fdxxfx =∫
∞

∞−

δ , (1) 

 
where ( )xf  is any function that is continuous at 0=x .  Equation (1) should seem 
strange:  we have an integral that only depends upon the value of the function ( )xf  at 

0=x .  Because an integral is "the area under the curve," we expect its value to not 
depend only upon one particular value of x .  Indeed, there is no function ( )xδ  that 
satisfies Eq. (1).  However, there is another kind of mathematical object, known as a 
generalized function (or distribution), that can be defined that satisfies Eq. (1).   
 
A generalized function can be defined as the limit of a sequence of functions.  Let's 
see how this works in the case of ( )xδ .  Let's start with the normalized Gaussian 
functions 
 

 ( ) 2nx
n enxg −=

π
. (2) 

 
Here 21 σ=n , where σ  is the standard Gaussian width parameter.  These functions 
are normalized in the sense that their integrals equal 1, 
 

 ( ) 1=∫
∞

∞−

dxxgn  (3) 

 
for any value of n  (>0).  Let's now consider the sequence of functions for 

K,3,2,1=n  , 
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 ( ) 21
1

xexg −=
π

, ( ) 22
2

2 xexg −=
π

, … , ( ) 2100
100

100 xexg −=
π

, … (4) 

 
What does this sequence of functions look like?  We can summarize this sequence as 
follows.  As n  increases 
 
 (a)  ( )0ng  becomes larger; 
 (b)  ( )0≠xgn  eventually becomes smaller; 
 (c)  the width of the center peak becomes smaller; 

 (d)  but ( ) 1=∫
∞

∞−

dxxgn  remains constant.   

 
The following figure plots some of the functions in this sequence. 
 

2 1 0 1 2
0

5

10

15

20
n = 1
n = 4
n = 16
n = 64
n = 256

n = 1
n = 4
n = 16
n = 64
n = 256

x

gn
(x

)

 
 
Let's now ask ourselves, what does the ∞=n  limit of this sequence look like?  Based 
on (a) through (d) above we would (perhaps simplistically) say 
 
 (a)  ( ) ∞=∞ 0g ; 
 (b)  ( ) 00 =≠xgn ; 
 (c)  the width of the center peak equals zero; 
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 (d)  but ( ) 1=∫
∞

∞−

∞ dxxg .   

 
Note that (a) and (b) are not compatible with (d) if )(xg∞ is a function in the standard 
sense, because for a function (a) and (b) would imply that the integral of )(xg∞  is zero. 
 
So how should we think of this sequence of functions, then?  Well, the sequence is 
only really useful if it appears as part of an integral, as in, for example, 
 

 ( ) ( ) ( )∫∫
∞

∞−

−

∞→

∞

∞−
∞→

= dxxfedxxfxg nxn
nnn

2

limlim π . (5) 

 
Let's calculate the integral, and then the limit in Eq. (5).  The following figure should 
help with the calculation. 
 

2 1 0 1 2

0

5

10

15
g256(x)
f(x)
g256(x)
f(x)

x

gn
(x

), 
f(

x)

 
 
As n  get large, ( ) 2nxn

n exg −= π  becomes narrower such that it only has weight very 
close to 0=x .  Thus, as far as the integral is concerned, for large enough n  only ( )xf  
at 0=x  is important.  We can thus replace ( )xf  by ( )0f  in the integral, which gives us 
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 ( ) ( ) ( ) ( )01lim0lim0lim 22 ffdxefdxxfe
n

nxn
n

nxn
n

===
∞→

∞

∞−

−

∞→

∞

∞−

−

∞→ ∫∫ ππ  (6) 

 
Thus, the integral on the lhs of Eq. (1) is really shorthand for the integral on the lhs of 
Eq. (6), That is, the Dirac delta function is defined via the equation 
 

 ( ) ( ) ( )∫∫
∞

∞−

−

∞→

∞

∞−

= dxxfedxxfx nxn
n

2lim πδ  (7) 

 
Now often (as physicists) we often get lazy and write 
 
 ( ) 2lim nxn

n
ex −

∞→
= πδ , (8) 

 
but this is simply shorthand for Eq. (7).  Eq. (8) really has no meaning unless the 
function 2nxn e−π  appears inside an integral and the limit 

∞→n
lim  appears outside the same 

integral.  However, after you get used to working with the delta function, you will 
rarely need to even think about the limit that is used to define it.   
 
One other thing to note.  This particular sequence of functions ( ) 2nxn

n exg −= π  that we 
have used here is not unique.  There are infinitely many sequences that can be used to 
define the delta function.  For example, we could also have defined ( )xδ  via 
 

 ( ) ( )
x
nxx

n

sin1lim
π

δ
∞→

= . (9) 

 
The sequence of functions ( ) ( )xnx πsin  is illustrated in the figure at the top of the 
next page. 
 
Notice that the key features of both of these two difference sequences are expressed 
by (a) – (d) at the top of page 5.   
 
II.  Delta Function Properties   
There are a number of properties of the delta function that are worth committing to 
memory.  They include the following, 
 

 ( ) ( ) ( )xfdxxfxx ′=′−∫
∞

∞−

δ , (10) 
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 ( ) ( ) ( )0fdxxfx ′−=′∫
∞

∞−

δ  (11) 

 
 ( ) ( )xaax δδ =  (12) 
 
The proof of Eq. (10) is relatively straightforward.  Let's change the integration 
variable to xxy ′−= , dxdy = , which gives 
 

 ( ) ( ) ( ) ( )∫∫
∞

∞−

∞

∞−

′+=′− dyxyfydxxfxx δδ . (13) 

 
Then using Eq. (1), we see that Eq. (10) is simply equal to ( )xf ′ .  QED. 
 
Let's also prove Eq. (12).  We do this in two steps, for 0>a  and then for 0<a .   
(i)  First, we assume that 0>a .  Then 
 

4 2 0 2 4

0

5

10

15

20

25

n = 1
n = 4
n = 8
n = 16
n = 32

n = 1
n = 4
n = 8
n = 16
n = 32

x

si
n(

nx
)/(

pi
*x

)
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 ( ) ( )∫∫
∞

∞−

∞

∞−

= dxaxdxax δδ  (14) 

 
Changing integration variable axy = , adxdy = , this last equation becomes 
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

= dyyadxax δδ  (15) 

 
and changing variables back to x  via yx = , dydx =  gives 
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

= dxxadxax δδ  (16) 

 
and so for 0>a  we have ( ) ( )xaax δδ = . 
 
(ii)  We now assume 0<a .  Then we have  
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

−= dxaxdxax δδ  (17) 

 
Changing integration variable axy −= , adxdy −= , this last equation becomes 
 

 

( ) ( )

( )

( )∫

∫

∫∫

∞

∞−

∞

∞−

−∞

∞

∞

∞−

=

=

−=

dxxa

dyya

dyyadxax

δ

δ

δδ

 (18) 

 
and so for 0<a  we also have ( ) ( )xaax δδ = . QED.   
 
We leave the proof of Eq. (11) as an exercise. 
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III.  Fourier Series and the Delta Function   
Recall the complex Fourier series representation of a function ( )xf  defined on 

LxL ≤≤− , 
 

 ( ) ∑
∞

−∞=

=
n

Lxni
n ecxf π , (19a) 

 

 ( )∫
−

−=
L

L

Lxin
n dxexf

L
c π

2
1 . (19b) 

 
Let's now substitute nc  from Eq. (19b) into Eq. (19a).  Before we do this we must 
change the variable x  in either Eq. (19a) or (19b) to something else because the 
variable x  in Eq. (19b) is just a (dummy) integration variable.  Changing x  to x′  in Eq. 
(19a) and doing the substitution we end up with 
 

 ( ) ( )∑ ∫
∞

−∞=

′

−

−










=′
n

Lxni
L

L

Lxin edxexf
L

xf ππ

2
1  (20) 

 
Let's now switch the integration and summation (assuming that this is OK to do).  
This produces 
 

 ( ) ( ) ( )∫ ∑
−

∞

−∞=

−′












=′

L

L n

Lxxni dxxfe
L

xf π

2
1  (21) 

 
If we now compare Eq. (21) to Eq. (10), we see that we can identify another 
representation of the delta function 
 

 ( ) ( )∑
∞

−∞=

−′=′−
n

Lxxnie
L

xx πδ
2
1  (22) 

 
or setting 0=′x  we have 
 

 ( ) ∑
∞

−∞=

−=
n

Lxnie
L

x πδ
2
1  (23) 

 
So how is this equation related to the delta function being defined as the limit of a 
sequence of functions? Well, we can re-express Eq. (23) as a sequence of functions via 
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 ( ) ∑
−=

−

∞→
=

m

mn

Lxni

m
e

L
x πδ

2
1lim . (24) 

 

The following figure plots ∑
−=

−
m

mn

Lxnie
L

π

2
1  for several values of m  (for 2=L ).  Notice 

that these functions are quite similar to the function ( ) ( )xmx πsin  plotted above. 1 
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m = 32
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n*

pi
*x

/l)
]

 
 
However, there is one important difference between these two sequences of functions.  
Because the functions Lxnie π−  that appear in the sum in Eqs. (23) and (24) all repeat 
with on an interval of length L2 , Eq. (24) is actually a series of delta functions, 
centered at K,6,4,2,0 LLLx ±±±=  .  This is illustrated in the next figure, where we 
have expanded the x  axis beyond the limits of L−  to L .  Thus, the equality expressed 
by Eq. (23) or (24) is only valid on the interval LxL ≤≤− .   
 

                                                 
1 We have changed the n  to m  in the ( ) ( )xnx πsin  functions because we are now using m  to label the 
functions in the sequence.    
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Exercises 
 

*15.1  Equation (11), ( ) ( ) ( )0fdxxfx ′−=′∫
∞

∞−

δ , can be taken as the definition of the 

derivative of the delta function.  Treating the delta function as a normal function, 
show that Eq. (11) is true.  (Hint:  use integration by parts.)   
 

*15.2  Show that the equation ( ) ∑
−=

−

∞→
=

m

mn

Lxni

m
e

L
x πδ

2
1lim  can be re-expressed as 

( ) ∑
−=

∞→






=

m

mn
m L

xn
L

x πδ cos
2
1lim .  This is perhaps more appealing because the delta function 

is a real function and the rhs is now explicitly real.   
 
*15.3  Find another sequence of functions, not based on either the Gaussian or 

( ) xxsin  functions, that has as its limit the delta function.   
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Introduction to Fourier Transforms 
 
Overview and Motivation:  Fourier transform theory is the extension of Fourier 
series theory to functions that are defined for all values of x .  Thus, we will be able to 
represent a function defined for ∞≤≤∞− x  as a linear combination of harmonic 
functions.   
 
Key Mathematics:  Fourier transforms and more vector-space theory. 
 
I.  Fourier Series vs the Fourier Transform   
By now you should be intimately familiar with the Fourier series representation of a 
function ( )xf  on the interval LxL ≤≤− .  A representation that uses the normalized 
harmonic functions Lxni

L
e π

2
1  (introduced in Lecture 14) is 

 

 ( ) ∑
∞

−∞=

=
n

Lxni
necL

xf π

2
1 , (1a) 

 

 ( )∫
−

−=

L

L

Lxin
n dxexf

L
c π

2
1 . (1b) 

 
As we know the Fourier series representation is useful for any function that we only 
need to define within the bounds LxL ≤≤− .  Outside that interval, the 
representation is periodic with period L2  because the rhs of Eq. (1a) has a period of 
L2 . 

 
There are many times, however, when we wish to represent a (nonperiodic) function 
on the entire real line as a linear combination of harmonic functions.  To do this we 
can take the ∞→L  limit of Eq. (1).  This limit (which we will not go through, but is 
well defined) yields the following pair of relationships 
 

 ( ) ( )∫
∞

∞−

= dkekhxf ikx

π2
1 , (2a) 

 

 ( ) ( )∫
∞

∞−

−= dxexfkh ikx

π2
1 , (2b) 

 



Lecture 16  Phys 3750 

D M Riffe -2- 2/20/2009 

There are several things to notice about Eq. (2).  First, we have traded in the discrete 
index n  in Eq. (1) for the continuous variable ( ) ( )λππ 2== Lnk , which is already 
familiar as the wave vector.  Second, if we compare Eqs. (1) and (2), we might 
conclude that ikxe

π2
1  are now our normalized harmonic functions.  That is correct, as 

we discuss in further detail below.  With that, we can then interpret the function ( )kh  
as the coefficient (or component) of the harmonic function ikxe

π2
1 .  This function 

( )kh  has a special name:  it is known  as the Fourier transform of the function ( )xf .  
The Fourier transform ( )kh  is thus analogous to the Fourier coefficients nc  that 
appear in the Fourier series.  The other feature of Eq. (2) that you undoubtedly 
noticed is that ( )xf  is expressed as a continuous sum (integral) over basis functions 
rather than a discrete sum over basis functions.  This is a necessary consequence of 
the ∞→L  limit.   
 
Because of the resultant symmetry in the two relationships in Eq. (2), the function 
( )xf  is also known as the inverse Fourier transform of ( )kh .  In fact, because ( )xf  

and ( )kh  are obtainable from each other, they each contain the same information, just 
in a different form.1   
 
We remark that there are technical criteria that the function )(xf  must meet for Eq. 
(2) to be valid.  A sufficient condition is that ( )xf  be square integrable, 
 

 ( ) ∞<∫
∞

∞−

dxxf 2 . (3) 

 
If Eq. (3) is true, then ( )kh  is also square integrable and it can be shown that 
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

= dkkhdxxf 22  (4) 

 
The proof of Eq. (4) is left as an exercise.   
 
II.  The Fourier Transform and Vector Space Theory   
As we also discussed in Lecture 14, the Fourier series [Eq. (1)] can be thought of as a 
pair of vector-space relationships 

                                                 
1 Of course, the same is true about the function ( )xf  and the coefficients nc  in the Fourier series.  

Knowing the nc 's is equivalent to knowing the function ( )xf  itself.   
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  ∑
∞

−∞=

=
n

nnc uf ˆ , (5a) 

 
 ( )fu ,ˆ nnc =  (5b) 
 
where the vector f  is the function ( )xf , Lxni

Ln e π
2
1ˆ =u  is an orthonormal basis vector, 

nc  is the corresponding component of f , and the inner product is defined as 
 

 ( ) ( ) ( )dxxfxg
L

L
∫
−

= *,fg . (6) 

 
Further, because the basis functions are orthonormal, we have the relationship for 
their inner product 
 
 ( ) mnnm δ=uu ˆ,ˆ , (7) 
 
where mnδ , known as the Kronecker delta, equals 1 if nm =  and equals 0  otherwise.  
Eq. (7) is the standard way of expressing the orthonormality of the basis vectors.   
 
We now want to put Fourier-transform theory on the same vector-space footing as 
Fourier series.  This is actually fairly straightforward, except that there is a bit of 
subtlety needed in defining the inner product, as we shall see.  First, if we identify the 
basis vectors as the harmonic functions2 
 
  ( ) ikxexku

π2
1,ˆ = , (8) 

 
then Eq. (2) can be written as  
 

 ( ) ( )∫
∞

∞−

= dkxkukhxf ,ˆ)( , (9a) 

 

 ( ) ( )∫
∞

∞−

= dxxfxkukh )(,ˆ*  (9b) 

 
                                                 
2 To keep the notation as simple as possible, we drop the formal vector notation and just use the functional 
form of the vectors for this space.   



Lecture 16  Phys 3750 

D M Riffe -4- 2/20/2009 

A comparison of  Eqs. (5) and (9) then suggests that we define the inner product on 
this vector space as 
 

 ( ) ( )( ) ( ) ( )dxxfxgxfxg ∫
∞

∞−

= *,  (10) 

 
Let's see what this gives us if we calculate ( ) ( )( )xkuxku ,ˆ,,ˆ ′  for this vector space.  If life 
is good then we expect to get ( ) ( )( ) kkxkuxku ′=′ δ,ˆ,,ˆ , similar to Eq. (7).  Let's see what 
happens.  Using Eq. (10) we have 
 

 ( ) ( )( ) ( )∫
∞

∞−

′−=′ dxexkuxku xkki

π2
1,ˆ,,ˆ  (11) 

 
We consider two cases separately, kk ′=  and kk ′≠ .   
(i)  If kk ′= , then Eq. (11) integrates to 
 

 ( ) ( )( ) ∞

∞−
= xxkuxku

π2
1,ˆ,,ˆ , (12a) 

 
which is undefined.  Hum… Not too good.  Let's look at the other case. 
(ii)  If kk ′≠ , then Eq. (11) integrates to 
 

 ( ) ( )( ) ( )
( )

∞

∞−

′−

′−
= xkkie

kki
xkuxku 1

2
1,ˆ,,ˆ
π

 (12b) 

 
Unfortunately, this is not defined either!  So it looks like either the basis functions or 
the inner product is unsuitable.   
 
As it turns out, we can fix this dilemma by defining the inner product slightly 
differently as 
 

 ( ) ( )( ) ( ) ( )dxxfxgexfxg nx
n ∫

∞

∞−

−

∞→
= *2lim, . (13) 
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Notice what the function nxe 2−  does for us.  For any finite n  this Gaussian function 
cuts off the integrand fast enough to make the integral converge.  Furthermore in the 
limit ∞→n  the function itself simply approaches 1.3   
 
Let's see what happens with this definition of the inner product.  We now have 
 

 ( ) ( )( ) ( )∫
∞

∞−

′−−

∞→
=′ dxeexkuxku xkkinx

n

2lim
2
1,ˆ,,ˆ
π

. (14) 

 
To take advantage of the symmetry of the Gaussian we rewrite this as 
 

 ( ) ( )( ) ( )[ ] ( )[ ]{ }∫
∞

∞−

−

∞→
′−+′−=′ dxxkkixkkexkuxku nx

n
sincoslim

2
1,ˆ,,ˆ 2

π
. (15) 

 
Because nxe 2−  is even, the integral involving the sine function is zero, so this simplifies 
to 
 

 ( ) ( )( ) ( )[ ]∫
∞

∞−

−

∞→
′−=′ dxxkkexkuxku nx

n
coslim

2
1,ˆ,,ˆ 2

π
. (15) 

 
We have seen this integral before (see Lecture 12).  Calculating the integral, Eq. (15) 
becomes 
 

 ( ) ( )( ) ( )22lim
2
1,ˆ,,ˆ kknn
n

exkuxku ′−−

∞→
=′ π  (16) 

 
Now you may remember from the last lecture that the limit of a similar sequence of 
Gaussian functions is the Dirac delta function.  If you closely compare Eq. (16) with 
Eq. (8) from the Lecture 15 notes, you will see that Eq. (16) can be expressed as 
 

 ( ) ( )( ) 





 ′−

=′
22

1,ˆ,,ˆ kkxkuxku δ  (17) 

 
And using the relationship ( ) ( )xaax δδ = , this simplifies to 
 

                                                 
3 In fact, nx

n
e 2lim −

∞→
 is one definition of the unit distribution. 
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 ( ) ( )( ) ( )kkxkuxku ′−=′ δ,ˆ,,ˆ  (18) 
 
This, then, is the orthogonality relationship for the basis functions ( ) ikxexku

π2
1,ˆ = .  

Notice that it is similar to Eq. (7) for the Fourier series basis functions, but instead of 
the Krocecker delta, we have the Dirac delta function.  That the orthogonality 
relationship is a distribution rather than a simple function is a result of the variable k  
being continuous rather than discrete.   
 
You will often see written 
 

 ( ) ( )∫
∞

∞−

′−=′− dxekk xkki

π
δ

2
1 , (19) 

 
but this is really shorthand for the limiting procedure that we did above.  That is, it is 
really shorthand for 
 

 ( ) ( )∫
∞

∞−

′−−

∞→
=′− dxeekk xkkinx

n

2lim
2
1
π

δ . (20) 

 
Note that Eq. (20) is a definition of the delta function as the limit of a sequence of 
functions (which is exactly equivalent to our original definition using the sequence of 
Gaussian functions).   
 
Now that we have the inner product suitably defined, let go back to the Fourier 
transform equation and see that ( )kh  is indeed equal to the inner product ( ) ( )( )xfxku ,,ˆ .  
So using Eq. (13) we calculate the inner product of ( )xku ,ˆ  with Eq. (2a)4 
 

 ( ) ( )( ) ( ) dxkdekheexfxku xkiikxnx
n ∫ ∫

∞

∞−

∞

∞−

′−−

∞→ 












′′=

ππ 2
1

2
12lim,,ˆ  (21) 

 
If we switch the order of integration in this equation we get something that should 
look familiar, 
 

                                                 
4 Notice that we have renamed the integration variable on the rhs of Eq. (2a) because we have another variable k  in 
this equation.   
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 ( ) ( )( ) ( ) ( ) kdkhdxeexfxku xkkinx
n

′′













= ∫ ∫

∞

∞−

∞

∞−

−′−

∞→

2lim
2
1,,ˆ
π

 (22) 

 
But from Eq. (20) we see that Eq. (22) is simply 
 

 ( ) ( )( ) ( ) ( ) kdkhkkxfxku ′′−′= ∫
∞

∞−

δ,,ˆ , (23) 

 
which gives us the result that we want, 
 
 ( ) ( )( ) ( )khxfxku =,,ˆ . (24) 
 
Thus, as with the nc 's in the Fourier series representation of a function, the Fourier 
transform ( )kh  can be though of as the inner product of the normalized basis 
function with the original function ( )xf .   
 
Exercises 
 

*16.1  Show that Eq. (4), ( ) ( )∫∫
∞

∞−

∞

∞−

= dkkhdxxf 22 , is true. 

 
*16.2  Calculate the Fourier transform of the function ( ) xexf −= .  Plot the resulting 
function vs k .   
 
**16.3  As the notes discuss, the original attempt at defining the inner product as 

( ) ( )( ) ( ) ( )dxxfxgxfxg ∫
∞

∞−

= *,  needs to be slightly modified.  We chose one particular way 

that this can be done.  Another choice that we could have made is 

( ) ( )( ) ( ) ( )dxxfxgxfxg
n

n

n ∫
−

∞→
= *lim, .  Show that this definition of the inner product also 

gives the result ( ) ( )( ) ( )kkxkuxku ′−=′ δ,ˆ,,ˆ  for the inner product of two basis functions.  
{Hint:  you will need to use the second definition of the delta function from Lecture 
15 [Eq. (9) on p. 4]}.   
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Fourier Transforms and the Wave Equation 
 
Overview and Motivation:  We first discuss a few features of the Fourier transform 
(FT), and then we solve the initial-value problem for the wave equation using the 
Fourier transform.   
 
Key Mathematics:  More Fourier transform theory, especially as applied to solving 
the wave equation. 
 
I.  FT Change of Notation 
In the last lecture we introduced the FT of a function ( )xf  through the two equations 
 

 ( ) ( )∫
∞

∞−

= dkekfxf ikxˆ
2
1
π

, (1a) 

 

 ( ) ( )∫
∞

∞−

−= dxexfkf ikx

π2
1ˆ . (1b) 

 
Note that we have changed notation compared to the last lecture.  Hereafter we 
designate the FT of any function by the same symbol, but with an overhead caret 
included.  That is, the FT of ( )xf  we now write as ( )kf̂ .  As we shall see, this is useful 
when dealing with equations that include FTs of several functions. 1 
 
 
II.  Some Properties of the Fourier Transform   
We now discuss several useful properties of the Fourier transform. 
 
A. Translation 
The first property has to do with translation of the function ( )xf .  Let's say we are 
interested in ( )0xxf − , which corresponds to translation of ( )xf  by 0x .  Then, using 
Eq. (1a) we can write 
 

 
( ) ( ) ( )

( )[ ]∫

∫
∞

∞−

−

∞

∞−

−

=

=−

dkeekf

dkekfxxf

ikxikx

xxik

0

0

ˆ
2
1

ˆ
2
1

0

π

π
 (2) 

                                                 
1 This notation is fairly common practice.  At some point you may even see the FT of ( )xf  written as ( )kf .  
At least we won't be doing that here!   
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Thus, we see that the FT of ( )0xxf −  is ( ) 0ˆ ikxekf − .  In other words, translation of ( )xf  
by 0x  corresponds to multiplying the FT ( )kf̂  by 0ikxe− .   
 
 
B. Differentiation 
The second property has to do with the FT of ( )xf ′ , the derivative of ( )xf .  Again, 
using Eq. (1a) we have  
 

 ( ) ( )[ ]∫
∞

∞−

=′ dkekfikxf ikxˆ
2
1
π

. (3) 

 
So we see that FT of ( )xf ′  is ( )kfik ˆ .  That is, differentiation of ( )xf  corresponds to 
multiplying ( )kf̂  by ik .   
 
 
C. Integration 
Let's consider the definite integral of ( )xf , 
 

 ( ) ( )∫ ∫∫











=

∞

∞−

2

1

2

1

ˆ
2
1 x

x

ikx
x

x

ekfdkdxxfdx
π

. (4) 

 
Switching the order of integration on the rhs produces 
 

 
( ) ( )

( ) ( )∫

∫ ∫∫
∞

∞−

∞

∞−

−=












=

12

2

1

2

1

ˆ

2
1

ˆ
2
1

ikxikx

x

x

ikx
x

x

ee
ik
kfdk

edxkfdkxfdx

π

π
. (5) 

 
So if we define ( )xIf  to be the indefinite integral of ( )xf , we can rewrite Eq. (5) as 
 

 ( ) ( ) ( ) ( )∫
∞

∞−

−=− 12
ˆ

2
1

12
ikxikx ee

ik
kfdkxIfxIf

π
 (6) 
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So integration of ( )xf  essentially corresponds to dividing the Fourier transform ( )kf̂  
by ik .2   
 
 
D. Convolution 
The last property concerning the a function and its FT has to do with convolution.  
Because you may not be familiar with convolution, let's first define it.  Simply put, the 
convolution of two functions ( )xf  and ( )xg , which we denote ( )( )xgf * , is defined as 
 

 ( )( ) ( ) ( )∫
∞

∞−

′′′−= xdxgxxfxgf *  (7) 

 
Perhaps the most common place that convolution arises is in spectroscopy, where 
( )xg  is some intrinsic spectrum that is being measured, and ( )xf  is the resolution 

function of the spectrometer that is being used to measure the spectrum.3   The 
convolution ( )( )xgf *  is the spectrum that is then measured.   
 
Note that ( )( )xgf *  is indeed a function of x , and so we can calculate its FT, which 
we denote ( )kgf )*̂( .  Using Eq. (1b) we can write 
 

 ( ) ( ) ( )∫ ∫
∞

∞−

−
∞

∞− 










′′−′= ikxexgxxfxddxkgf

π2
1)*̂( , (8) 

 
which can be rearranged as 
 

 ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

−












′−′′′= ikxexxfxdxgxdkgf

π2
1)*̂( . (9) 

 
Now the quantity in brackets is the FT of ( )xf  translated by x′ .  From Sec. II.B 
above we know that this is ( ) xikekf ′−ˆ  , and so Eq. (9) can be expressed as 
 

                                                 

2 You might think that Eq. (6) could be simplified to ( ) ( )
∫
∞

∞−

= ikxe
ik
kfdkxIf

ˆ

2
1
π

, but this cannot be done 

because indefinite integration produces an undetermined integration constant.  The constant does not appear 
in Eq. (6) because it is an equation for the difference of ( )2xIf  and ( )1xIf .   
3 The resolution function is often quite close to a Gaussian of a particular, fixed width. 
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 ( ) ( ) ( )∫
∞

∞−

′−′′= xikexgxdkfkgf ˆ)*̂( . (10) 

 
Recognizing the integral as ( )kĝ2π  we finally have 
 
 ( ) ( ) ( )kgkfkgf ˆˆ2)*̂( π= . (11) 
 
So we see that the FT of the convolution is the product of the FT's of the individual 
functions (along with a factor of π2 ).  One way you may hear this result expressed 
is that convolution in real space ( x ) corresponds to multiplication in k  space.  
Equation (11) is known as the convolution theorem.   
 
III.  Solution to the Wave Equation Initial Value Problem 
Way back in Lecture 8 we discussed the initial value problem for the wave equation 
 

 ( ) ( )
2

2
2

2

2 ,,
x
txqc

t
txq

∂
∂

=
∂

∂  (12) 

 
on the interval ∞<<∞− x .  For the initial conditions 
 
 ( ) ( )xaxq =0, , (13a) 
 

 ( ) ( )xbx
t
q

=
∂
∂ 0, , (13b) 

 
we found that the solution to Eq. (12) can be written as 
 

 ( ) ( ) ( ) ( )











′′+−++= ∫

+

−

ctx

ctx

xdxb
c

ctxactxatxq 1
2
1, . (14) 

 
With the help of the Fourier transform we are now going to rederive this solution, 
and along the way we will learn something very interesting about the FT of ( )txq , .   
 
We start by defining the (spatial) FT of ( )txq ,  as 
 

 ( ) ( )∫
∞

∞−

−= dxetxqtkq ikx,
2
1,ˆ
π

, (15a) 
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so that we also have 
 

  ( ) ( )∫
∞

∞−

= dketkqtxq ikx,ˆ
2
1,
π

. (15b) 

 
We also define the FT of Eq. (13), the initial conditions, 
 
 ( ) ( )kakq ˆ0,ˆ = , (16a) 
 

 ( ) ( )kbk
t
q ˆ0,
ˆ

=
∂
∂ . (16b) 

 
Now each side of the Eq. (12) is a function of x  and t , so we can calculate the FT of 
both sides of Eq (12), 
 

 ( ) ( )∫∫
∞

∞−

−

∞

∞−

−

∂
∂

=
∂

∂ dxe
x
txqcdxe

t
txq ikxikx

2

2
2

2

2 ,,  (17) 

 
On the lhs of this equation we can pull the time derivative outside the integral.  The 
lhs is then just the second time derivative of ( )tkq ,ˆ .  The rhs can be simplified by 
remembering that the FT of the ( x ) derivative of a function is ik  times the FT of the 
original function.  Thus the FT of ( ) 22 , xtxq ∂∂  is just 2k−  times ( )tkq ,ˆ , the FT of 
( )txq , .  Thus we can rewrite Eq. (17) as 

 

 ( ) ( )tkqck
t
tkq ,ˆ,ˆ 22

2

2

−=
∂

∂  (18) 

 
This equation should look very familiar to you.  What equation is it?  None other than 
the harmonic oscillator equation!  What does this tell us about ( )tkq ,ˆ ?  It tells us that 
( )tkq ,ˆ  (for a fixed value of k ) oscillates harmonically at the frequency kc=ω .  Thus 

we can interpret the function ( )tkq ,ˆ  as the set of normal modes coordinates for this 
problem.  This further means that the FT has decoupled the equations of motion for 
this system [as represented by Eq. (12), the wave equation.]  Notice also that the 
dispersion relation kc=ω  has also fallen into our lap by considering the FT of Eq. 
(12).   
 
As we should know by this point, the solution to Eq. (18) can be written as  
 
 ( ) ( ) ( ) ikctikct ekBekAtkq −+=,ˆ , (19) 
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where ( )kA  and ( )kB  are functions of k .  And as you should suspect, these two 
functions are determined by the initial conditions, as follows.  First, setting 0=t  in Eq. 
(19) and using Eq. (16a) produces 
 
 ( ) ( ) ( )kBkAka +=ˆ , (20a) 
 
and calculating the time derivative of Eq. (19), setting 0=t , and using Eq. (16b) gives 
us 
 

 ( ) ( ) ( )kBkA
ikc
kb

−=
ˆ

 (20b) 

 
We can solve Eqs. (20a) and (20b) for ( )kA  and ( )kB  by taking their sum and 
difference, which yields 
 

 ( ) ( ) ( )








+=
ikc
kbkakA

ˆ
ˆ

2
1 , (21a) 

 

 ( ) ( ) ( )








−=
ikc
kbkakB

ˆ
ˆ

2
1 , (21b) 

 
which gives us the solution for ( )tkq ,ˆ  in terms of the initial conditions 
 

 ( ) ( ) ( ) ( ) ( ) ikctikct e
ikc
kbkae

ikc
kbkatkq −









−+








+=

ˆ
ˆ

2
1ˆ

ˆ
2
1,ˆ  (22) 

 
We are essentially done.  We have now expressed the FT of ( )txq ,  in terms of the 
FT's of the initial conditions for the problem.  The solution ( )txq ,  is just the inverse 
FT of Eq. (22) [see Eq. (15b)], 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) dke
ikc
kbkae

ikc
kbkatxq ctxikctxik∫

∞

∞−

−+
























−+












+=

ˆ
ˆ

ˆ
ˆ

2
1

2
1,
π

. (23) 

 
This is the initial-value-problem solution.4  We can make it look exactly like Eq. (14) 
with a little bit more manipulation.  To see this let's first rewrite Eq. (23) as 

                                                 
4 Notice that ( )txq ,  as expressed in Eq. (23) is the sum of two functions, ( )ctxf +  and ( )ctxg − ! 
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 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )( ) dkee
ik
kb

c
ekaekatxq ctxikctxikctxikctxik∫

∞

∞−

−+−+
























−++=

ˆ1ˆˆ
2
1

2
1,
π

. (24) 

 
The first two terms we recognize as ( ) ( ) ( )[ ]ctxactxa −++21 , while we can use Eq. (5) 
to recognize the second half of the rhs of Eq. (24) as ( ) ( )∫

+

−
′′

ctx

ctx
xdxbc21 .  Thus Eq. (24) 

can be re-expressed as 
 

 ( ) ( ) ( ) ( )











′′+−++= ∫

+

−

ctx

ctx

xdxb
c

ctxactxatxq 1
2
1, , (25) 

 
which is identical to Eq. (14).   
 
 
Exercises 
 
*17.1  FT Properties.  If the FT of ( )xf  is ( )kh , 
(a)  show that the FT of ( )[ ]xfe xik0  is ( )0kkh − ; 
(b)  show that the FT of ( )[ ]xfx  is ( )khi ′ ; 
(c)  show that the FT of ( )[ ]xfx2  is ( )kh ′′− . 
 
*17.2  Show that ( )( ) ( )( )xfgxgf ** =  by 
(a)  directly by manipulating Eq. (7), the definition of convolution; 
(b)  by using Eq. (11), the result for the FT of ( )( )xgf * .   
 
*17.3  Convolution and the Gaussian.  The function that has the same form as its 
Fourier transform is the Gaussian.  Specifically if ( ) 22 σxexf −= , its FT is given by 

( ) ( )422

2
σσ kekh −= .  Using this fact, show that the convolution ( )( )xff 21 * of two 

Gaussian functions ( ) 2
1

2

1
σxexf −=  and ( ) 2

2
2

2
σxexf −=  is proportional to the Gaussian 

function ( )2
2

2
1

2 σσ +−xe .  [Hint:  you need not calculate any integrals to do this problem.] 
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**17.4  The Rectangular Pulse. 
Here you will explore the convolution theorem as it applies to a rectangular pulse and 
its convolution, a triangular pulse.  We start with the function ( )xf , a rectangular 
pulse of height H  and width L2  centered at .0=x   Elsewhere the function is zero. 
(a)  Graph ( )xf  
(b)  Calculate Find ( )kf̂ , the FT of ( )xf .  (This is a real function; express it as such.) 
(c)  Graph ( )kf̂ . 
(d)  The function ( )( )xff * , the convolution of ( )xf  with itself, is a triangle function 
of height 22LH  and base L4  centered at zero.  It is zero elsewhere.  Graph this 
function. 
(e)  Write down the mathematical expression for ( )( )xff *  [that you graphed in (d)].  
Then directly calculate ( )( )kff *̂  using your functional form for ( )( )xff * .  (Do not set 
H  and L  to specific values.  Again, this is a real function; express it as such.)   
(f)  Graph your calculated transform ( )( )kff *̂ .   
(g)  Lastly, use ( )kf̂ and the convolution theorem to find ( )( )kff *̂ .  Show that this is 
equal to the result in part (e).   
 
**17.5  FT Solution to the 1D Wave Equation.  Eq. (23), 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) dke
ikc
kbkae

ikc
kbkatxq ctxikctxik∫

∞

∞−

−+
























−+












+=

ˆ
ˆ

ˆ
ˆ

2
1

2
1,
π

, (23) 

 
is the formal solution to the initial-value problem. 
(a)  What kind of waves are described by the functions ( )[ ]ctxik +exp  and 

( )[ ]ctxik −exp  ?  Be as specific as possible!   
(b)  From a vector-space point of view, the functions ( )[ ]ctxik +exp  and ( )[ ]ctxik −exp  
can be considered basis functions for the vector space that consists of solutions to the 

wave equation.  Given this, what do the terms ( ) ( )











−
kc
kbika

ˆ
ˆ

2
1  and ( ) ( )












+
kc
kbika

ˆ
ˆ

2
1  

represent? 
(c)  Given your answer in (b), how would you describe the solution ( )txq ,  as written 
above?  [Hint: the term linear combination should appear in your answer.]   

(d)  How are ( )kâ  and ( )kb̂  related to the initial conditions ( )0,xq  and ( )0,x
t
q
∂
∂ ?  That 

is, write down expressions for ( )kâ  and ( )kb̂  in terms of ( )0,xq  and ( )0,x
t
q
∂
∂ .   
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(e)  Assume that the initial conditions ( )0,xq  and ( )0,x
t
q
∂
∂  are real.  Using your answer 

to (d), show that ( ) ( )kaka −= *ˆˆ  and ( ) ( )kbkb −= *ˆˆ .   
 
(f)  Using the results from (e) you can now show that ( )txq ,  is real if the initial 
conditions ( )0,xq  and ( )0,xq&  are both real, as follows.  First, in Eq. (23) replace ( )kâ  
and ( )kb̂  by ( )ka −*ˆ  and ( )kb −*ˆ , respectively.  Then make the change of variable 

kk −→ , dkdk −→  in the integral (taking care with the limits of integration).  Then 
compare Eq. (23) with your new expression for ( )txq ,  and notice how they are related.  
From this comparison you should be able to conclude that ( )txq ,  is real.   
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3D Wave Equation and Plane Waves / 3D Differential Operators 
 
Overview and Motivation:  We now extend the wave equation to three-dimensional 
space and look at some basic solutions to the 3D wave equation, which are known as 
plane waves.  Although we will not discuss it, plane waves can be used as a basis for 
any solutions to the 3D wave equation, much as harmonic traveling waves can be 
used as a basis for solutions to the 1D wave equation.   We then look at the gradient 
and Laplacian, which are linear differential operators that act on a scalar field.  We 
also touch on the divergence, which operates on a vector field.   
 
Key Mathematics:  The 3D wave equation, plane waves, fields, and several 3D 
differential operators.   
 
I.  The 3D Wave Equation and Plane Waves 
Before we introduce the 3D wave equation, let's think a bit about the 1D wave 
equation, 
 

 
2

2
2

2

2

x
qc

t
q

∂
∂

=
∂
∂ . (1) 

 
Some of the simplest solutions to Eq. (1) are the harmonic, traveling-wave solutions 
 
 ( ) ( )tkxi

k eAtxq ω−+ =, , (2a) 
 
 ( ) ( )tkxi

k eBtxq ω+− =, , (2b) 
 
where, without loss of generality, we can assume that 0>= ckω .1  Let's think about 
these solutions as a function of the wave vector k .  First, we should remember that k  
is related to the wavelength via λπ2=k .  Let's now specifically think about the 
solution ( )txqk ,+ .  For this solution, if 0>k  then the wave propagates in the x+  
direction, and if 0<k , then the wave propagates in the x−  direction.  Thus, in either 
case, the wave propagates in the direction of k .  Similarly, for the solution ( )txqk ,−  the 
wave propagates in the direction opposite to the direction of k .   
 
We now introduce the 3D wave equation and discuss solutions that are analogous to 
those in Eq. (2) for the 1D equation.  The 3D extension of Eq. (1) can be obtained by 
adding two more spatial-derivative terms, yielding 
 

                                                 
1 If we assume 0<ω , then the two 0>ω  solutions just map into each other. 
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 







∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

2

2
2

2

2

z
q

y
q

x
qc

t
q  (3) 

 
where now ( )tzyxqq ,,,=  and x , y , and z  are standard Cartesian coordinates.  This 
equation can be used to describe, for example, the propagation of sound waves in a 
fluid.  In that case q  represents the longitudinal displacement of the fluid as the wave 
propagates through it.   
 
The 3D solutions to Eq. (3) that are analogous to the 1D solutions expressed by Eq. 
(2) can be written as 
 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eAtzyxq ω−+++ =,,,,, , (4a) 

 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eBtzyxq ω+++− =,,,,,  (4b) 

 
As you may suspect, the wave equation determines a relationship between the set 
{ xk , yk , zk } and the frequency ω .  Substituting either Eq. (4a) or (4b) into Eq. (3) 
yields 
 
 ( )22222

zyx kkkc ++=ω . (5) 
 
As above, we can assume 0>ω , which gives  
 
 222

zyx kkkc ++=ω , 
 
the dispersion relation for the Eq. (4) solutions to the 3D wave equation.   
 
The solutions in Eq. (4) can be also written in a more elegant form.  If we define the 
3D wave vector 
 
 zyxk ˆˆˆ zyx kkk ++= , (6) 
 
and use the Cartesian-coordinate form of the position vector  
 
 zyxr ˆˆˆ zyx ++= , (7) 
 
then we see that we can rewrite Eq. (4) as 
 
 ( ) ( )tieAtq ω−⋅+ = rk

k r, , (8a) 
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 ( ) ( )tieBtq ω+⋅− = rk

k r, , (8b) 
 
where zkykxk zyx ++=⋅rk  is the standard dot product of two vectors.  The dispersion 
relation can then also be written more compactly as 
 
 kc=ω . (9) 
 
It is also the case that the wavelength λ  is related to k  via λπ2=k .   
 
Analogous to the discussion about the direction of the 1D solutions, the wave in Eq. 
(8a) propagates in the k+  direction while the wave in Eq. (8b) propagates in the k−  
direction.  This is why one usually sees the form in Eq. (8a):  the wave simply 
propagates in the direction that k  points in this case.   
 
These propagating solutions in Eq. (8) are known as plane waves.  Why is that, you 
may ask?  It is because at any given time the planes perpendicular to the propagation 
direction have the same value of the displacement of q .   
 
Let's see that this is so.  Consider the following picture.   
 

 
 
Keep in mind that the wave vector k  is a fixed quantity (for a given plane wave); its 
direction is indicated in the figure.  The dotted line in the picture represents a plane 

x 

y 

z 
k 

r 

r0 
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that is perpendicular to k  and passes through the point in space defined by the vector 
r .  Now consider the dot product 
 
 ( )θcosrkrk ⋅=⋅  (10) 
 
This is simply equal to 0rk ⋅ , where 0r  is the position vector in the plane that is 
parallel to k .  Furthermore, for any position vector in the plane the dot product with 
k  has this same value.  That is, for any vector r  in the plane rk ⋅  is constant.  Thus, 
the plane-wave function ( )tiAe ω−⋅rk  has the same value for all points r  in the plane.   
 
A simple example of a plane wave is one that is propagating in the z  direction.  In 
that case the +q  plane wave is ( ) ( )tzki

k
z

z
eAtzq ω−+ =,,0,0 .  Notice that this wave does not 

depend upon x  or y .  That is, for a given value of z , the wave has the same 
displacement for all values of x  and y .  That is, it has the same displacement for any 
point on a plane with the same value of z .   
 
II.  Some 3D Linear Differential Operators   
A. The Laplacian 
The combination of spatial derivatives on the rhs of Eq. (3), 
 

 
2

2

2

2

2

2

zyx ∂
∂

+
∂
∂

+
∂
∂ , (11) 

 
is the Cartesian-coordinate version of the linear differential operator know as the 
Laplacian, generically designated as either ∆  or 2∇  (del squared).  The del-squared 
representation is often used because the Laplacian can be though of as two successive 
(although different) applications of the differential expression that is simply known as 
del , which is represented by the symbol ∇ .2   
 
In Cartesian coordinates 
 

 zyx ˆˆˆ
xyx ∂
∂

+
∂
∂

+
∂
∂

=∇ . (12) 

 
The Laplacian 2∇  can thus be written in Cartesian coordinates as  
 

                                                 
2 As we shall see below, ∇  can be used in the representation of several operators. It is thus probably best not 
to think of ∇  itself as an operator.   
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 







∂
∂

+
∂
∂

+
∂
∂

⋅







∂
∂

+
∂
∂

+
∂
∂

=∇⋅∇ zyxzyx ˆˆˆˆˆˆ
xyxxyx

. (13) 

 
We now consider the application of 2∇  to a function ( )zyxf ,, , but we do it "one del 
at a time."  That is, writing ( )zyxf ,,2∇  as ( )[ ]zyxf ,,∇⋅∇ , we first consider the piece 

( )zyxf ,,∇ .  Afterwards we look at ( )[ ]zyxf ,,∇⋅∇ , which we usually simply write as 
( )zyxf ,,∇⋅∇ .   

 
However, before we do this, let's make sure that we understand the concept of a field.  
A field is simply a mathematical quantity that has a value assigned to each point in 
space.  The function ( )zyxf ,,  is known as a scalar field, because ( )zyxf ,,  assigns a 
scalar to each point in space.  A vector field is a function that assigns a vector to each 
point in space.  An electric field is an example of a vector field.   
 
B. The Gradient 
The quantity f∇  is know as the gradient of f .  Let's take a closer look at f∇ .  
Applying Eq. (12) (the Cartesian-coordinate version of ∇ ) to ( )zyxf ,,  produces 
 

 ( ) zyx ˆˆˆ,,
z
f

y
f

x
fzyxf

∂
∂

+
∂
∂

+
∂
∂

=∇ . (14) 

 
Although not explicitly shown, each term on the rhs is a function of x , y , and z .  
Thus f∇  is a vector field because it assigns a vector to each point in space.  Simply 
put,  the gradient of a scalar field is a vector field.   
 
An important property of ( )rf∇  is that ( )rf∇  is perpendicular to the surface of 
constant f  that contains r  (where r  is any position vector).  Let's use a bit of vector 
calculus to show this.  Consider the picture below.  The surface fS  is the surface of 
constant f  that contains (the end of) 0r .  The vector Sr  is also assumed to lie on this 
surface.  So we wish to show that ( )0rf∇  is perpendicular to fS  at 0r .   
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We now assume that Sr  is close enough to 0r  that we can write the function 
( ) ( )SSSS zyxff ,,=r  as a Taylor series expanded about the point ( )0000 ,, zyx=r , 

 

 ( ) ( ) ( ) ( ) ( ) K+−
∂
∂

+−
∂
∂

+−
∂
∂

+= 000000
000

,,,, zz
z
fyy

y
fxx

x
fzyxfzyxf SSSSSS

rrr

 (15) 

 
Now this equation can be expressed in coordinate-independent form as 
 
 ( ) ( ) ( ) ( ) K+−⋅∇+= 000 rrrrr SS fff  (16) 
 
If we now assume that Sr  is close enough to 0r  so that the curvature of the surface is 
negligible, then the higher-order terms can be neglected. Then, because ( ) ( )0rr ff S =  
(both vectors are on the surface fS ), we have 
 
 ( ) ( ) 000 =−⋅∇ rrr Sf . (17) 
 
And because ( )0rr −S  lies in the surface3 we have the result that ( )0rf∇  is perpendicular 
to the surface fS  at the point 0r .  QED.   
 
A concept closely associated with the gradient is the directional derivative.  If we 
have some unit position vector dr̂ , then the directional derivative of ( )rf  in the 
direction of dr̂  is defined as 
 
 ( ) df rr ˆ⋅∇  (18) 
 

                                                 
3 The surface is essentially planar in the vicinity of Sr  and 0r because of the proximity of Sr  to 0r . 

( )0rf∇

0r

Sr  

Sf 

0rr −S

O 
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Physically, the directional derivative tells you how fast the function ( )rf  changes in 
the direction of dr̂ .  What kind of field is this quantity?  Notice that you can also think 
of the directional derivative as the scalar component of ( )rf∇  in the dr̂  direction. 
 
A straightforward application of the gradient is found in classical mechanics.  If 
( )zyxU ,,  is a potential-energy function associated with a particle, then the force on the 

particle associated with that potential energy  is given by ( ) ( )zyxUzyx ,,,, −∇=F , which 
is a vector field (a force field!).   
 
As an example, let's consider the gravitational force on a particle near the Earth's 
surface.  If we define our coordinate system such that z  points upwards and x  and y  
lie in a horizontal plane, then the gravitational potential energy of a particle with mass 
m is given by ( ) ( )0,, zzmgzyxU −= , where 0z  is an arbitrary constant and g 8.9≈  m/s2.  
The force on the particle is then given by ( ) ẑ,, mgzyxU −=∇− .   What are surfaces of 
constant ( )zyxU ,,  in this case?  These are simply horizontal planes (each one at a 
constant value of z ).  Notice that these planes are indeed perpendicular to the force  
field ẑmg− , which points downward at all points in space.   
 
C. Divergence 
Now that we have some feel for the meaning of ( )rf∇ , let's now apply the second del 
to ( )rf∇ , which gives us ( ) ( )rr ff 2∇=∇⋅∇ .  But before we do this, maybe we should 
first say a few words about ⋅∇  operating on any vector field ( )rV .  Writing ( )rV  as 

zyx ˆˆˆ zyx VVV ++  and using the Cartesian-coordinate form of ⋅∇ , we have 
 

 
( ) ( )

x
V

y
V

x
V

VVV
xyx

zyx

zyx

∂
∂

+
∂
∂

+
∂
∂

=

++⋅







∂
∂

+
∂
∂

+
∂
∂

=⋅∇ zyxzyxrV ˆˆˆˆˆˆ
. (19) 

 
The quantity ( )rV⋅∇  is called the divergence of the vector field ( )rV .  So what kind 
of object is ( )rV⋅∇ ?  Because it assigns a scalar to each point in space it is a scalar 
field.4  Thus we see that the gradient of a scalar field is a vector field, while the 
divergence of a vector field is a scalar field.   
 
If we now let ( )rV  equal ( )rf∇ , we then get [using Eq. (14)] 
 

                                                 
4 We will discuss the divergence in more detail in a later lecture.  Stay tuned! 
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( )

2

2

2

2

2

2

ˆˆˆˆˆˆ

z
f

y
f

x
f

x
f

y
f

x
f

xyx
f

∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂
⋅







∂
∂

+
∂
∂

+
∂
∂

=∇⋅∇ zyxzyxr
. (20) 

 
So we see that the Laplacian of f , f2∇ , is the divergence of the gradient of f .  Thus, 

f2∇  is a scalar field.   
 
III.  Some Final Remarks 
Using the generic form of the Laplacian, Eq. (3) can be written in coordinate-
independent form as 
 

 q
t
q

c
2

2

2

2

1
∇=

∂
∂ . (21) 

 
In the next lecture we will look at some more solutions to Eq. (21) using Eq. (3), the 
Cartesian-coordinate representation, but after that we will look at solutions to Eq. (21) 
using some different coordinate systems – cylindrical and spherical-polar.  The 
representation of Equation (21) in each coordinate system will look vastly different.  
Nonetheless, in each case we will be solving a version of Eq. (21), the 3D wave 
equation.   
 
Exercises 
 
*18.1  Plane Waves.  Consider the solution ( ) ( )tieAtq ω−⋅+ = rk

k r,  to the 3D wave 
equation.  Assume that 0>ω .   
(a)  Calculate ( )tq ,rk

+∇ .  In what direction does ( )tq ,rk
+∇  point?  Thus describe 

constant surfaces of  ( )tq ,rk
+  (for some fixed value of t ). 

(b)  In what direction does ( ) ( )tieAtq ω−⋅+ = rk
k r,  move?  What is the wavelength λ  of this 

wave?  What is the dispersion relation ( )kω  for this wave? 
(c)  Show that the sum of ( ) ( )tieAtq ω−⋅+ = rk

k r,  and ( ) ( )tieBtq ω+⋅− = rk
k r,  is a standing wave if 

AB = .  (Make sure that you write down the specific form of this standing wave.)  
What property of the wave equation allows you to combine solutions to produce 
another solution?   
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*18.2  Divergence and Gradient.  Consider the function ( )
222

321,,
zyx

zyxf ++= .   

(a)  Is it appropriate to calculate the divergence or gradient of this function?  Calculate 
whichever is appropriate. 
(b)  You should now have a new function that you calculated in part (a).  What kind 
of function is it?  Calculate either the gradient or divergence of this new function, 
whichever is appropriate. 
 
*18.3  Divergence.  Using the Cartesian-coordinate form of  the divergence, 

⋅







∂
∂

+
∂
∂

+
∂
∂

=∇⋅ zyx ˆˆˆ
xyx

, compute the following. 

(a)  ( )
3r

rrE = , where 0222 >++= zyxr .  (Coulomb electric field) 

(b)  ( ) yxrB ˆˆ
2222 yx

x
yx

y
+

+
+

−= , 022 >+ yx . (magnetic field outside a long wire) 

 
*18.4  Let f  and g  be two scalar fields.  Using the Cartesian-coordinate form of del, 
show that ( ) gfgfgf 2∇+∇⋅∇=∇⋅∇ .  What kind of field is ( )gf ∇⋅∇ ? 
 
*18.5  Using (a) Cartesian coordinates, and then (b) spherical-polar coordinates, 
calculate the divergence of  ( ) rrE =  (electric field inside a uniform ball of charge).  
For a field ( )rV that only depends upon the coordinate r , the divergence in spherical-

polar coordinates is given by ( ) ( )rFr
rr

2
2

1
∂
∂

=⋅∇ rF . 
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Separation of Variables in Cartesian Coordinates 
 
Overview and Motivation:  Today we begin a more in-depth look at the 3D wave 
equation.  We introduce a technique for finding solutions to partial differential 
equations that is known as separation of variables.  We first do this for the wave 
equation written in Cartesian coordinates.  In subsequent lectures we will do the same 
using cylindrical and spherical-polar coordinates.  The technique is applicable not only 
to the wave equation, but to a wide variety of partial differential equations that are 
important in physics.   
 
Key Mathematics:  The technique of separation of variables! 
 
I.  Separable Solutions 
Last time we introduced the 3D wave equation, which can be written in Cartesian 
coordinates as 
 

 
2

2

2

2

2

2

2

2

2

1
z
q

y
q

x
q

t
q

c ∂
∂

+
∂
∂

+
∂
∂

=
∂
∂ , (1) 

 
and we spent some time looking at the plane-wave solutions 
 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eAtzyxq ω−++++ =,,,,, , (2a) 

 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eAtzyxq ω+++−− =,,,,, , (2b) 

 
where kc=ω  is the familiar dispersion relation.  Equation (2a) describes a wave that 
travels in the zyxk ˆˆˆ zyx kkk ++=  direction with wavelength kπλ 2= , while Eq. (2b) 
describes a similar wave that travels in the k−  direction.   
 
Today we introduce separation of variables, a technique that leads to separable 
(also known as product ) solutions.  A separable solution is of the form 
 
 ( ) ( ) ( ) ( ) ( )tTzZyYxXtzyxq =,,, . (3) 
 
That is, the function ( )tzyxq ,,,  is a product of the functions ( )xX , ( )yY , )(zZ , and 
( )tT . 

 
So how do we find these solutions?  Well, let's just substitute the rhs of Eq. (3) into 
Eq. (1) and see what happens.  With this substitution Eq. (1) becomes 
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 TZXYZTYXYZTXTZYX
c

′′+′′+′′=′′
2

1 , (4) 

 
where we have suppressed the independent variables and the double prime indicates 
the second derivative of the function with respect to its argument.  Note that because 
each of these functions is a function of only one variable, all derivatives are now 
ordinary derivatives.  Equation (4)  looks kind of ugly, but notice what happens if we 
divide Eq. (4) by ( ) ( ) ( ) ( ) ( )tTzZyYxXtzyxq =,,, .  We then get 
 

 
Z
Z

Y
Y

X
X

T
T

c
′′

+
′′

+
′′

=
′′

2

1 . (5) 

 
Now here is where the magic happens.  Notice that each term is only a function of its 
associated independent variable.  So for example, if we vary t  only the term on the lhs 
of Eq. (5) can vary.  But, because none of the other terms depends upon t , the rhs 
cannot vary, which means that the lhs cannot vary, which means that TT ′′  is 
independent of t !  Following the same logic for each of the other terms means that each 
term is constant.  So we can write 
 

 α=
′′
T
T

c 2
1 ,       β=

′′
X
X ,       γ=

′′
Y
Y ,       δ=

′′
Z
Z  (6a) – (6d) 

 
where the constants α , β , γ , and δ  are known as separation constants.  However, 
only three of them are independent because Equation (5) tells us that  
 
 δγβα ++= . (7) 
 
Notice, by demanding a product solution the partial differential wave equation has 
transformed into four ordinary differential equations.  We can easily solve all of these 
equations.  Let's start with the equation for ( )tT , 
 
 ( ) ( ) 02 =−′′ tTctT α . (8) 
 
This is essentially the harmonic oscillator equation (if α is real and <0), and so it has 
the two, linearly independent solutions 
 
 ( ) tceTtT α±= 0 , (9a) 
 
where 0T  is some undetermined constant.  Similarly, the X , Y , and Z  equations have 
solutions 
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 ( ) xeXtX β±= 0 , (9b) 
 
 ( ) yeYtY γ±= 0 , (9c) 
 
 ( ) zeZtZ δ±= 0 , (9d) 
 
Putting this all together gives us a solution of the form 
 
 ( ) tczyx eeeeTZYXtzyxq αδγβ ±±±±= 0000,,, . (10) 
 
II.  Some Physics Added In 
Notice that the solution in Eq. (10) can have all sorts of behavior.  For example, if the 
constant β  is real and positive, then the x  dependent part of the solution can either 
exponentially increase or decrease with increasing x  (depending upon the sign in the 
exponent).  This points out the fact that separation-of-variables solutions often give 
you more than you really need in any given situation.  For example, if we are looking 
for solutions to the wave equation that are physically meaningful as ∞→x , we are 
(probably) not going to be interested in a solution that exponentially increases with 
increasing x .   
 
With that in mind, let's see what the constraints on the separation constants must be if 
we are only interested in purely oscillatory solutions (in all independent variables).  
Let's consider the x  dependent part of the solution.  If xe β±  is to only oscillate then 
it must be of the form xikxe± , where xk  is real.  Then, if we write a generally complex 
β  as 21 βββ i+=  we have xiki =+ 21 ββ  which implies 2

21 xki −=+ ββ .  Thus 02 =β  and 
2

1 xk−=β .  That is, β  is real and negative.  Similarly, γ  and δ  must be real and 
negative.  Eq. (7) then implies that α  is also real and negative.  So if we rename the  
constants as 
 
 2

xk−=β ,       2
yk−=γ ,       2

zk−=δ ,       22 cωα −= , (11a) – (11d) 
 
(where xk , yk , zk , and ω  are all real) then Eq. (10) can be rewritten as 
 
 ( ) tizikyikxik eeeeAtzyxq zyx ω±±±±=,,,  (12) 
 
where 0000 TZYXA =  is an arbitrary constant.  Eq. (7) can now be written as 

22222
zyx kkkc ++=ω , which is the well known dispersion relation!  Now xk , yk , and zk  
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can be positive or negative, so we don't need the ±  on the spatial-function exponents, 
and so we are left with two linearly independent solutions 
 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eAtzyxq ω−++++ =,,,,, , (13a) 

 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eAtzyxq ω+++−− =,,,,, , (13b) 

 
which are the plane-wave solutions of Eq. (2)!  So, by demanding that the separable 
solutions to the wave equation oscillate, we have ended up with the plane-wave 
solutions that we discussed in the last lecture.   
 
III.  Utility of the Separable Solutions   
Because they are product solutions, the separable solutions are pretty specialized.  
That is, there are many solutions to the wave equation that cannot be written as a 
product solution.  And so you may ask, what is the usefulness of these solutions?  
There are two parts to the answer.  The first is that sometimes these solutions have 
intrinsic interest. For example, in the case of the time-dependent Schrödinger 
equation the separable solutions (with some appropriate physics thrown in) are the 
energy eigenstates of the system.  The second, and perhaps more important, part of 
the answer is that a basis can be constructed from the set of separable solutions that 
can be used to represent any solution.   
 
Let's think about this statement with regards to the wave equation.  Let's first consider 
the 1D wave equation.  Back in the Lecture 17 notes we solved the initial-value 
problem on the interval ∞<<∞− x .  The solution to that problem can be written as 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫
∞

∞−

−+
























−+












+= tkxitkxi e

cki
kbkae

cki
kbkadktxq ωω

π

ˆ
ˆ

ˆ
ˆ

2
1

2
1, , (14) 

 
where ( )kâ  and ( )kb̂  are the Fourier transforms of the initial conditions, and kc=ω  
is the dispersion relation.  Notice that in Eq. (14) we have written the general solution 
( )txq ,  as a linear combination of the functions ( )tkxie ω+  and ( )tkxie ω− .  Although we did 

not go through the separation of variables procedure for the 1D wave equation to 
produce these solutions, by writing these functions as tiikx ee ω  and tiikx ee ω− , we readily 
see that they are indeed product solutions.   
 
Similarly, for the 3D wave equation we can write the solution to the initial value 
problem as a linear combination of the separable (plane-wave) solutions [Eq. (13)] 
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 ( )
( )

( ) ( ) ( ) ( ) ( ) ( )∫ 






















−+












+= −⋅+⋅ titi e

ci
bae

ci
bakdtq ωω

π
rkrk

k
kk

k
kkr

ˆ
ˆ

ˆ
ˆ

2
1

2
1, 3

23 , (15) 

 

where zkykxk zyx ++=⋅rk , ∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

= zyx dkdkdkkd 3 , 222
zyx kkkc ++=ω , and ( )kâ  and 

( )kb̂  are the 3D Fourier transforms of the initial conditions.   
 
In the coming lectures we will look at separable solutions in cylindrical and spherical-
polar coordinates.  While we will not do a lot with the general solution written as a 
linear combination of these solutions, we should keep in mind that, in principle, it can 
be done.   
 
 
Exercises 
 
**19.1  Heat Equation.  A partial differential equation known as the heat equation, 
which is used to describe heat or temperature flow in an object, is given by 

t
qq
∂
∂

=∇
λ
12 , where λ >0. 

(a)  If there is no y or z  dependence to the problem, write down a simplified version 
of this equation. 
(b)  Use separation of variables to find two ordinary differential equations, one in x  
and one in t .  What are the orders of these two equations?  Are they linear or 
nonlinear? 
(c)  Find the general solutions to the two ordinary differential equations.  Thus write 
down the general separable solutions to the heat equation.  [Note:  there should be two 
linearly independent solutions.] 
(d)  In solving the heat equation, you should have found that ( ) ( ) CxXxX =′′ , where 
C  is some constant.  Assume that this constant is real.  If 0>C , describe the behavior 
of the solutions vs x  and t .  In what ways are these solutions like solutions to the 
wave equation?  In what ways are they different? 
(e)  If 0<C , describe the behavior of the solutions vs x  and t .  In what ways are 
these solutions like solutions to the wave equation?  In what ways are they different? 
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**19.2  Normal Modes Inside a Rectangular Room:  Here we consider sound 
waves inside a rectangular room with one corner located at the origin and occupying 
space as indicated:  xLx <<0 , yLy <<0 , zLz <<0 .  While we could deal with 
displacement (a vector field), it is easier to think about the pressure which is also 
governed by the wave equation, but is a scalar field.  The boundary conditions on the 

pressure ( )tzyxp ,,,  are  0=
∂
∂
x
p  at 0=x  and xLx = , 0=

∂
∂
y
p  at 0=y  and yLy = , and 

0=
∂
∂
z
p  at 0=z  and zLz = .   

 
(a)  As discussed in the notes, the separable traveling-wave solutions to the wave 
equation can be written (with q  replaced by p ) as ( ) ( )tzkykxki

kkk
zyx

zyx
eAtzyxp ωm++±± =,,,,,  

where 222
zyx kkkc ++=ω .  However, we could have expressed the separable solutions 

as the standing-wave solutions 
 

 
( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ti
zzzz

yyyyxxxxkkk

ezkBzkA

ykBykAxkBxkAtzyxp
zyx

ω±

±

+×

++=

cossin

cossincossin,,,
 

 
Starting with this standing-wave form, find the specific solutions that satisfy the above 
boundary conditions.  Note, these solutions should be labeled with three integers; call 
these integers xn , yn , and zn .  Express the allowed frequencies ω  as a function of xn , 
yn , and zn  , the wave velocity c , and the dimensions of the room.   

(b)  The solutions that you found in (a) describe the normal modes for sound waves in a 
typical room where xL  and yL  are the widths and zL  is the height of the room.  
Consider a room of dimensions 10 ft × 11 ft × 8 ft.  Calculate the frequencies 
( ( ) ( ) πω 2,,,, zyxzyx nnnnnnf = ) of the 10 lowest-frequency room modes, and order 
them from lowest to highest frequency.  For the speed of sound you may use 330 m/s. 
(c)  These lowest-frequency modes often wreak havoc with sound reproduction 
because they serve to amplify, through resonance, reproduced frequencies near their 
(resonance) frequencies.  This is especially troublesome if two (or more) modes have 
frequencies that are close together (degenerate).  For example a 10' × 10' × 10' room 
would have its three lowest modes at exactly the same frequency.  Are any of the 
modes you calculated in (b) degenerate or nearly so?   
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The Wave Equation in Cylindrical Coordinates 
 
Overview and Motivation:  While Cartesian coordinates are attractive because of 
their simplicity, there are many problems whose symmetry makes it easier to use a 
different system of coordinates.  For example, there are times when a problem has 
cylindrical symmetry (the fields produced by an infinitely long, straight wire, for 
example).  In this case it is easier to use cylindrical coordinates.  So today we begin 
our discussion of the wave equation in cylindrical coordinates. 
 
Key Mathematics:  Cylindrical coordinates and the chain rule for calculating 
derivatives. 
 
I.  Transforming the Wave Equation 
As previously mentioned the (spatial) coordinate independent wave equation 
 

 q
t
q

c
2

2

2

2

1
∇=

∂
∂  (1) 

 
can take on different forms, depending upon the coordinate system in use.  In 
Cartesian coordinates the Laplacian 2∇  is expressed as 
 

 
2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇ . 

 
Our first goal is to re-express 2∇  in terms of cylindrical coordinates ( )z,,φρ , which 
are defined in terms of the Cartesian coordinates ( )zyx ,,  as 
 
 ( ) 2122 yx +=ρ , (2a) 
 

 





=
x
yarctanφ , (2b) 

 
 zz = . (2c) 
 
The following picture illustrates the relationships expressed by Eq. (2).  For the point 
given by the vector zyxr ˆˆˆ zyx ++= , the coordinate ρ  is the distance of that point 
from the z  axis, the coordinate φ  is the angle of the projection of the vector onto the 
x - y  plane from the x  axis toward the y  axis, and z  is the (signed) distance of the 
point from the x - y  plane.  Note that 0≥ρ  and we can restrict πφ 20 <≤ .   
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In order to express 2∇  in terms of these new coordinates we start with a function 
( )zf ,,φρ  and consider it to be function of x , y , and z  through the variables ρ , φ , and 
z  by writing 
 
 ( ) ( ) ( )[ ]zyxzzyxzyxff ,,,,,,,, φρ= . (3) 
 
Then, for example, using the chain rule we can write 
 

 
x
z

z
f

x
f

x
f

x
f

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ φ

φ
ρ

ρ
 (4) 

 
Notice that this equation (as well as some later equations) have two types of terms.  
The first type is a derivative of the function f , while the second type is a derivative of 
a new coordinate with respect to an old coordinate.  The goal here is to use the 
relationship between the two coordinate systems [Eq. (2)] to write the  second type of 
term as a function of the new set of coordinates ρ , φ , and z .  Then equations such 
as Eq. (4) will be entirely expressed in terms of the new coordinate system.   
 
For the particular case at hand the transformation is a bit simpler than the general 
case because [see Eq. (2)]  ( )yx,ρρ = ,  ( )yx,φφ = , and ( )zzz = .  Thus Eq. (3) simplifies 
to  
 
 ( ) ( ) ( )[ ]zzyxyxff ,,,, φρ= , (5) 
 

x 

y 

z

r

φ

z

ρ
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so that Eq. (4) reduces to 
 

 
x

f
x

f
x
f

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ φ

φ
ρ

ρ
. (6) 

 
Let's now express the first term, 22 xf ∂∂ , as a function of cylindrical coordinates.  
We do this by calculating another derivative of Eq. (6) with respect to x .   
 

 







∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

=






∂
∂

∂
∂

x
f

x
f

xx
f

x
φ

φ
ρ

ρ
. (7) 

 
Now we must be a bit careful here.  We must use the chain rule on the functions 

ρ∂∂f  and φ∂∂f  because they are functions of ρ  and φ  [as is f , see Eq. (5)].  
However, we do not need to use the chain rule on the terms x∂∂ρ  and x∂∂φ  
because they are both functions of x  and y  [as are ρ  and φ , see. Eq. (2)].  With this 
in mind Eq. (7) becomes 
 

 
2

2

2

22

2

22

2

2

2

2

x
f

xx
f

x
f

x
f

xx
f

x
f

x
f

∂
∂

∂
∂

+
∂
∂









∂
∂

∂
∂

+
∂
∂

∂∂
∂

+
∂
∂

∂
∂

+
∂
∂









∂
∂

∂∂
∂

+
∂
∂

∂
∂

=
∂
∂ φ

φ
φφ

φ
ρ

φρ
ρ

ρ
ρφ

ρφ
ρ

ρ
, (8) 

 
which expands to 
 

 
2

22

2

22

2

222

2

2

2

2

x
f

x
f

xx
f

x
f

xx
f

x
f

x
f

∂
∂

∂
∂

+






∂
∂

∂
∂

+
∂
∂

∂
∂

∂∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

∂∂
∂

+






∂
∂

∂
∂

=
∂
∂ φ

φ
φ

φ
φρ

φρ
ρ

ρ
ρφ

ρφ
ρ

ρ
. (9) 

 
You can see that this process is rather tedious!  Now to eliminate the old variables x  
and y  from Eq. (9) we must calculate the quantities 
 

 
x∂

∂ρ ,       
x∂

∂φ ,        
2

2

x∂
∂ ρ ,       

2

2

x∂
∂ φ  (10a) – (10d) 

 
and express them in terms of ρ  and φ .  Using Eq. (2a) we calculate the first of these 
terms as 
 

 ( )[ ] ( )
( ) 2122

2122
2122

2
2
1

yx
xxyx

x
yx

x +
=+=

∂
+∂

=
∂
∂ −ρ , (11) 

 
Now ( )φρ cos=x  and 222 yx +=ρ  so Eq. (11) becomes 
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 ( ) ( )φ
ρ
φρρ coscos

==
∂
∂
x

. (12) 

 
Similarly, using 
 

 ( )[ ]
x
u

ux
u

∂
∂

+
=

∂
∂

21
1arctan  (13) 

 
and Eq. (2b) we have 
 

 ( )[ ]
( ) 22221
1arctan

yx
y

x
y

xyx
xy

x +
−

=
−

+
=

∂
∂

=
∂
∂φ . (14) 

 
Using ( )φρ sin=y  and 222 yx +=ρ , we now re-express Eq. (14) in terms of the new 
coordinates as 
 

 ( ) ( )
ρ
φ

ρ
φρφ sinsin

2

−
=

−
=

∂
∂
x

. (15) 

 
In similar fashion one can express the second derivatives [Eq. (9c) and Eq. (9d)], in 
terms of  ρ  and φ  as 
 

 ( )
ρ
φρ 2

2

2 sin
=

∂
∂
x

 (16) 

 
and 
 

 ( ) ( )
22

2 sincos2
ρ

φφφ
=

∂
∂
x

. (17) 

 
If we now insert Eqs. (12), (15), (16) and (17) into Eq. (9) we obtain 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
22

2

2

22

22
2

2

2

2

2

sincos2sincossin

sincossincos

ρ
φφ

φρ
φ

φρ
φφ

φρ

ρ
φ

ρρ
φφ

ρφ
φ

ρ

∂
∂

+
∂
∂

+
∂∂

∂
−

∂
∂

+
∂∂

∂
−

∂
∂

=
∂
∂

fff

fff
x
f

. (18) 

 
So we have now expressed the first term of the Laplacian (acting on a function )f  

22 xf ∂∂ in terms of cylindrical coordinates.   
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In a manner analogous to the procedure that we have just carried out one can also 
derive the result1 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
22

2

2

22

22
2

2

2

2

2

sincos2coscossin

coscossinsin

ρ
φφ

φρ
φ

φρ
φφ

φρ

ρ
φ

ρρ
φφ

ρφ
φ

ρ

∂
∂

−
∂
∂

+
∂∂

∂
+

∂
∂

+
∂∂

∂
+

∂
∂

=
∂
∂

fff

fff
y
f

. (19) 

 
And, of course, we also trivially have 
 

 
2

2

2

2

z
f

z
f

∂
∂

=
∂
∂ . (20) 

 
Putting Eqs. (18) – (20) together then gives us the fairly simple result 
 

2

2

2

2

22

2

2

2

2

2

2

2
2

11
z
ffff

z
f

y
f

x
ff

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

=∇

φρρρρ

. (21) 

 
Thus, in cylindrical coordinates the wave equation becomes 
 

 
2

2

2

2

22

2

2

2

2

111
z
qqqq

t
q

c ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

φρρρρ
 (22) 

 
where now ( )tzqq ,,,φρ= .   
 
II.  Separation of Variables 
To look for separable solutions to the wave equation in cylindrical coordinates we 
posit a product solution 
 
 ( ) ( ) ( ) ( ) ( )tTzZRtzq φρφρ Φ=,,, . (23) 
 
Substituting this into Eq. (22) produces 
 

 TZRTZRTZRTZRTZR
c

′′Φ+Φ ′′+Φ′+Φ′′=′′Φ
22

111
ρρ

. (24) 

 

                                                 
1 Notice that Eq. (19) is the same as Eq. (18) with ( ) ( )φφ cossin →  and ( ) ( )φφ sincos −→ .   
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If, as in the case of Cartesian coordinates we now divide by q , which is now written 
as TZRΦ , this reduces to 
 

 
Z
Z

R
RR

T
T

c
′′

+
Φ
Φ ′′

+






 ′+′′=
′′

22

1111
ρρ

. (25) 

 
Next time we shall look at the four ordinary differential equations that are equivalent 
to Eq. (25).  Three of these equations will be rather simple (again, essentially 
harmonic-oscillator equations), but one of them [for ( )ρR ] will be a new equation.  Its 
solutions are known as Bessel Functions.   
 
Exercises 
 

*20.1  Derive Eqs. (16) and (17).  That is, using the chain rule show that  ( )
ρ
φρ 2

2

2 sin
=

∂
∂
x

 

and ( ) ( )
22

2 sincos2
ρ

φφφ
=

∂
∂
x

. 

 
*20.2  In these lecture notes we have derived the wave equation in cylindrical 
coordinates by thinking of a function f  as a function of x , y , and z  through the 
variables ρ , φ , and z , specifically ( ) ( ) ( )[ ]zzyxyxff ,,,, φρ= .  We can just as easily 
think of the reverse situation where ( ) ( ) ( )[ ]zzyxff ,,,, φρφρ= .  Consider such a 
function where f  is only a function of the distance from the z  axis, 22 yx +=ρ .  
That is ( ) ( )22 yxfff +== ρ .  For such a function show that 0=∂∂ φf  
(a)  directly in cylindrical coordinates ( )ρff =  and 
(b)  using the chain rule starting with ( )22 yxff += .   
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Separation of Variables in Cylindrical Coordinates 
 
Overview and Motivation:  Today we look at separable solutions to the wave 
equation in cylindrical coordinates.  Three of the resulting ordinary differential 
equations are again harmonic-oscillator equations, but the fourth equation is our first 
foray into the world of special functions, in this case Bessel functions.  We then 
graphically look at some of these separable solutions. 
 
Key Mathematics:  More separation of variables; Bessel functions. 
 
I.  Cylindrical-Coordinates Separable Solutions   
Last time we assumed a product solution ( ) ( ) ( ) ( ) ( )tTzZRtzq φρφρ Φ=,,,  to the 
cylindrical-coordinate wave equation 
 

 
2

2

2

2

22

2

2

2

2

111
z
qqqq

t
q

c ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

φρρρρ
, (1) 

 
which allowed us to transform Eq. (1) into 
 

 
Z
Z

R
RR

T
T

c
′′

+
Φ
Φ ′′

+






 ′+′′=
′′

22

1111
ρρ

. (2) 

 
We now go through a separation-of-variable procedure similar to that which we 
carried out using Cartesian coordinates in Lecture 19.  The procedure here is a bit 
more complicated than with Cartesian coordinates because the variable ρ  appears in 
the ΦΦ′′  term.  However, as we shall see, the equation is still separable.   
 
A. Dependence on Time 
As with Cartesian coordinates, we can again make the argument that the rhs of Eq. (2) 
is independent of t , and so the lhs of this equation must be constant.  Cognizant of 
the fact that we are interested in solutions that oscillate in time, we call this constant 

2k−  (where we are thinking of k  as real) and so we have 
 

 2
2

1 k
T
T

c
−=

′′ , (3) 

 
which can be rearranged as 
 
 022 =+′′ TkcT . (4) 
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By now we should recognize this as the harmonic oscillator equation, which has two 
linearly independent solutions, 
 
 ( ) ikct

k eTtT ±± = 0 . (5) 
 
And so again we have harmonic time dependence to the separable solution.1  For the 
present case it is simplest to assume that k  can be positive or negative; thus we really 
only need one of these solutions.  So we simply go with 
 
 ( ) ikct

k eTtT 0= . (6) 
 
B. Dependence on z  
Using Eq. (3), the lhs of Eq. (2) can replaced with 2k− , which gives, after a small bit 
of rearranging, 
 

 
Φ
Φ ′′

+






 ′+′′=
′′

−−
2

2 111
ρρ R

RR
Z
Zk . (7) 

 
Notice that the rhs of Eq. (7) is independent of z .  Thus the lhs is constant, which we 
call 2a− .2  We thus have 
 

 22 a
Z
Zk −=
′′

−− , (8) 

 
which can be rearranged as 
 
 ( ) 022 =−+′′ ZakZ , (9) 
 
which, yet again, is the harmonic oscillator equation!  The solutions are 
 
 zaki

ak eZZ 22

0,
−±± = . (10) 

 
Although k  and a  can be any complex numbers, let's consider the case where both 

2k  and 2a  are real and positive.  Then these solutions oscillate if 22 ak > , 
exponentially grow and decay if 22 ak < , and are constant if 22 ak = .  Note that here, 
because the square root is always taken as positive, we need to keep both the positive-
sign and negative-sign solutions.  We can, however, assume that 0≥a .   
 
                                                 
1 It should perhaps be obvious that this will always be the case for separable solutions to the wave equation. 
2 Why not?  We can call the constant anything we want.  It just so happens that 2a−  is convenient.   
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C. Dependence on φ  
Using Eq. (8), the lhs of Eq. (7) can be replaced with 2a− , which gives us 
 

 
Φ
Φ′′

+






 ′+′′=−
2

2 111
ρρ R

RRa . (11) 

 
To separate the ρ  and φ  dependence this equation can be rearranged as 
 

 22
21 a
R

RR ρρ
ρ

+






 ′+′′=
Φ
Φ ′′

− . (12) 

 
Because each side only depends on one independent variable, both sides of this 
equation must be constant.  This gives us our third separation constant, which we call 

2n .  The equation for Φ  we can then write as 
 
 02 =Φ+Φ ′′ n , (13) 
 
which is again the harmonic oscillator equation.  The solutions to Eq. (13) are 
 
 φin

n e±± Φ=Φ 0 . (14) 
 
Now we need to use a little physics.  Because we expect any physical solution to have 
the same value for 0=φ  and πφ 2=  we must have (for the +Φ n  solution) 
 
 π20 inee = , (15) 
 
or 
 
 π21 ine=  (16) 
 
Using Euler's relation, it is easy to see that Eq. (16) requires that n  be an integer.  
Now because n  can be a positive or negative integer, we do not need to explicitly 
keep up with the  −Φn  solution, and so we write for the φ  dependence 
 
 φin

n e0Φ=Φ ,        K,2,1,0 ±±=n  (17) 
 
D.  Dependence on ρ  
We are now left with one last equation.  Also setting the rhs of Eq. (12) equal to 2n   
and doing a bit of rearranging yields 
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 ( ) 02222 =−+′+′′ RnaRR ρρρ  (18) 
 
This is definitely not the harmonic oscillator equation!  Its solutions are well know 
functions, but to see what the solutions to Eq. (18) are we need to put it in "standard" 
form, which is a form that we can look up in a book such as Handbook of Mathematical 
Functions by Abramowitz and Stegun (the definitive, concise book on special functions, 
which has been updated an is available online as the NIST Digital Library of 
Mathematical Functions). 
 
To put Eq. (18) in standard form, we make the substitution ρas = .  Now the 
substitution would be trivial, except that because Eq. (18) is a differential equation in 
the independent variable ρ , we need to change the derivatives in Eq. (18) to 
derivatives in s .  As usual we do this using the chain rule.  If we now think of ( )ρR  as 
a function of ρ  through the new independent variable s , i.e., as ( )[ ]ρsR , then using 
 

 a
ds
dR

d
ds

ds
dR

d
dR

==
ρρ

 (19a) 

 
and 
 

 2
2

2

2

22

2

2

2

2

a
ds
Rd

d
sd

ds
dR

d
ds

ds
Rd

d
ds

ds
dR

d
d

d
Rd

=+







=








=

ρρρρρ
. (19b) 

 
we can rewrite Eq. (18) as 
 

 ( ) ( ) ( ) ( ) 0222
2

=−+′+′′





 sRnsasR

a
sasR

a
s . (20) 

 
where we now emphasize that ( )sRR = .  Equation (20) obviously simplifies to  
 
 ( ) ( ) ( ) ( ) 0222 =−+′+′′ sRnssRssRs . (21) 
 
This equation is know as Bessel's equation.  It's two linearly independent solutions 
are known as Bessel functions ( )sJ n  and Neumann functions ( )sYn .  Sometimes 
the functions ( )sJ n  and ( )sYn  are called Bessel functions of the first and second 
kind, respectively.  The subscript n  is know as the order of the Bessel function  
Although one can define Bessel functions of non-integer order, one outcome of the 
Φ  equation is that n  is an integer, so we only need deal with integer-order Bessel 
functions for this problem.   
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The following figure plots both ( )sJ n  and ( )sYn  for several values of (positive) n .   
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There are several facts about Bessel functions that are worth noting, some of which 
can be discerned from these graphs: 
 
(i) ( ) 100 =J ; ( ) 00 =nJ , 0≠n .  ( )sYn  diverges as 0→s .  Also notice the behavior of 
these functions as 0→s  for increasing n :  the functions ( )sJn  converge more rapidly 
while the functions ( )sYn  diverge more rapidly.   
 
(ii) ( )sJn  and ( )sYn  oscillate with decreasing amplitude as ∞→s . 
 
(iii) It is customary to define ( ) n

n
n JJ 1−=−  and ( ) n

n
n YY 1−=− .  (Notice that the Bessel 

equation only depends upon 2n , so the n−  solution must be essentially the same as 
the n+ solution.) 
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(iv)  Bessel functions have the series representation 
 

 ( ) ( )
( )∑

∞

=

+









++Γ
−

=
0

2

2 21!2
1

m

nm

m

m

n
s

nmm
sJ , (22) 

 
where  
 

 ( ) ∫
∞

−−=Γ

0

1 dtetx tx  (23) 

 
is the Gamma function.  Note that for integer x , ( ) ( )( ) 121!1 L−−==+Γ xxxxx .   
 

(v)  ( ) ( ) ( ) ( )
( )π
π
n

sJnsJsY nn
nnn ′

−′
= ′−′

→′ sin
coslim  (24) 

 
More entertaining facts about Bessel functions can be found in the NIST Digital 
Library of Mathematical Functions.   
 
Now because ρas = , the solutions to Eq. (18) are thus simply ( )ρaJ n  and ( )ρaYn .  
That is, we have the two linearly independent results  
 
 ( ) ( )ρρ aJRR nJ

J
an =,      and     ( ) ( )ρρ aYRR nY

Y
an =, . (25a) – (25b) 

 
II.  Separable Solutions   
Let's put all of this analysis together and write down our separable solutions.  Let's 
further assume that (1) we want the z  dependence of the solution to oscillate (or at 
least not either grow or decay exponentially) and (2) we are only interested in 
solutions that remain finite as 0→ρ .  We then have the following pieces to our 
separable solution 
 
 ( ) ikct

k eTtT 0= ,  ∞<<∞− k  (25a) 
 
 zaki

ak eZZ 22

0,
−±± = , ka ≤  (25b) 

 
 φin

n e0Φ=Φ ,  K,2,1,0 ±±=n  (25c) 
 
 ( ) ( )ρρ aJRR nna 0, = . (25d) 
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Putting all of Eq. (24) together we can write our separable solutions as 
 
 ( ) ( ) ikctzakiin

nkankan eeeaJCtzq 22

,,,, ,,, −±±± = φρφρ . (26) 
 
Let's look at some graphs of some of these functions.  For simplicity we look at 
functions that have no z  dependence. From Eq. (26) we see that these are solutions 
where ak ±= .  With this constraint we can write Eq. (6) as 
 
 ( ) ( ) iactin

naanaan eeaJCtzq ±
±± = φρφρ ,,,, ,,, . (27) 

 
The following pictures show graphs (with 1=a ) of ( )[ ] ( )ρφρ aJzq aa 0,,0 0,,,Re = , 

( )[ ] ( ) ( )φρφρ cos0,,,Re 1,,1 aJzq aa = , and ( )[ ] ( ) ( )φρφρ 2cos0,,,Re 2,,2 aJzq aa = .   

Re q0( )Re q0( )
 

Re q1( )Re q1( )
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Re q2( )Re q2( )
 

 
For the moment, this ends our discussion of cylindrical coordinates.  In the next 
lecture we move on to studying the wave equation in spherical-polar coordinates.   
 
Exercises 
 
*21.1  Dispersion Relation. 
Consider the solution ( ) ( ) ( )[ ] ( ) ikctzaki

nkankan eenaiYaJCtzq −−±±± +=
22

cos,,, ,,,, φρρφρ .  
From this equation it is clear that the frequency ω  is equal to ck .  This looks like 
there is a dispersion relation, but it is not really clear what k  represents in this case.  
Here we show that if positive, it is essentially the magnitude of a wave vector 

zρk ˆˆ zkk += ρ  (where the meanings of the unit vectors should be obvious).  To do this 
we take advantage of the fact that for large s , the Bessel functions have the 
asymptotic expansions 

 

( ) ( )ππ
π 4

1
2
1cos2

−−≈ ns
s

sJn         and        ( ) ( )ππ
π 4

1
2
1sin2

−−≈ ns
s

sYn . 

 
(a)  Using these equations show that component of the wave vector in the ρ  
direction is ak =ρ .   
(b)  Identify the z  component zk  of the wave vector. 
(c)  Then, show that 222 kkk z =+ρ . 
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*21.2  Linear Combinations of Bessel Functions.  The Bessel functions of the third 
kind (also known as Hankel functions) are defined as 
 

( )( ) ( ) ( )siYsJsH nnn +=1         and        ( )( ) ( ) ( )siYsJsH nnn −=2 . 
 
(a)  Using the asymptotic expansions given in Exercise 21.1, show for large s  that  
 

( )( ) ( )ππ

π
4
1

2
121 −−≈ nsi

n e
s

sH         and        ( )( ) ( )ππ

π
4
1

2
122 −−−≈ nsi

n e
s

sH . 

 
(b)  Using the results of (a) describe the behavior of the waves  
 

( ) ( ) ( )( ) iact
aa eaHtzq −= ρφρ 1

0
1

,,0 ,,,         and        ( ) ( ) ( )( ) iact
aa eaHtzq −= ρφρ 2

0
2

,,0 ,,, . 
 
for large ρ  (assuming that 0>a )  (That is, are they standing or traveling waves, etc).   
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Separation of Variables in Spherical Coordinates 
 
Overview and Motivation:  We look at separable solutions to the wave equation in 
one more coordinate system – spherical (polar) coordinates.  These coordinates are 
most useful for solving problems with spherical symmetry. 
 
Key Mathematics:  Spherical coordinates, the chain rule, and associated Legendre 
functions (including Legendre polynomials).   
 
I.  Spherical Coordinates and the Wave Equation 
As in the case of the cylindrical-coordinates version of the wave equation, our first job 
will be to express the Laplacian 2∇  in spherical coordinates ( )φθ ,,r , which are defined 
in terms of Cartesian coordinates ( )zyx ,,  as 
 
 222 zyxr ++= , (1a) 
 

 










++
=

222
arccos

zyx
zθ , (1b) 

 

 





=
x
yarctanφ . (1c) 

 
The diagram at the top of the next page graphically illustrates these coordinates for 
the vector r .  The coordinate r  is the length of r ; the coordinate θ  (known as the 
polar angle) is the angle of the vector r  from the z  axis; the coordinate φ  (known as 
the azimuthal angle) is the angle of the xy -plane projection of r  from the x  axis to 
the y  axis.  Notice that the coordinate φ  is also used in cylindrical coordinates. 
 
To write f2∇  (where f  is some function of r , θ , and φ ) in spherical coordinates we 
go through the same procedure as we did for cylindrical coordinates.  We think of f  
as a function of ,x  y , and z  through the new coordinates r , θ , and φ  
 
 ( ) ( ) ( )[ ]zyxzyxzyxrff ,,,,,,,, φθ=  
 
and then re-express 
 

 
2

2

2

2

2

2
2

z
f

y
f

x
ff

∂
∂

+
∂
∂

+
∂
∂

=∇  (2) 
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in terms of the new coordinates using the chain rule.  For example, to re-express the 
x -derivative term we first use the chain rule to write 
 

 
x

f
x

f
x
r

r
f

x
f

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ φ

φ
θ

θ
. (3) 

 
Using Eq. (3) we can then express the second derivative as 
 

 







∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

=






∂
∂

∂
∂

=
∂
∂

x
f

x
f

x
r

r
f

xx
f

xx
f φ

φ
θ

θ2

2

, (4) 

 
and then using the chain rule again we can write 
 

 

2

2

2

222

2

22

2

22

2

222

2

2

2

2

x
f

xx
f

x
f

x
r

r
f

x
f

xx
f

x
f

x
r

r
f

x
r

r
f

x
r

xr
f

xr
f

x
r

r
f

x
f

∂
∂

∂
∂

+
∂
∂









∂
∂

∂
∂

+
∂
∂

∂∂
∂

+
∂
∂

∂∂
∂

+

∂
∂

∂
∂

+
∂
∂









∂
∂

∂∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂∂
∂

+

∂
∂

∂
∂

+
∂
∂









∂
∂

∂∂
∂

+
∂
∂

∂∂
∂

+
∂
∂

∂
∂

=
∂
∂

φ
φ

φφ
φ

θ
φθφ

θ
θ

θφ
θφ

θ
θθ

φ
φ

θ
θ

. (5) 

 
Pretty ugly, eh?  Actually, if you scrutinize Eq. (5) you will see that there is a bit of 
symmetry present:  switching any of the spherical coordinates results in the same 
equation.   
 

x 

y 

z

r

φ

θ
r
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Although we will not go through the rest of the procedure, you should recall that 
there are two types of terms in Eq. (5).  There are derivatives of f  with respect to the 
new variable (which remain unchanged) and there are derivatives of the new variables 
with respect to the old variable x .  We must calculate these second type of derivatives 
and then express them in terms of the new variables using Eq. (1).  If we go through 
this procedure for all three terms in the Laplacian and sum everything up, we end up 
with the spherical-coordinates expression for the wave equation 
 

 
( )

( )
( ) 2

2

222
2

22

2

2 sin
1sin

sin
111

φθθ
θ

θθ ∂
∂

+





∂
∂

∂
∂

+







∂
∂

∂
∂

=
∂
∂ q

r
q

rr
qr

rrt
q

c
 (6) 

 
II.  Separation of Variable in Spherical Coordinates   
As before we look for separable solutions to the wave equation by assuming that we 
can write ( )trq ,,, φθ  as a product solution 
 
 ( ) ( ) ( ) ( ) ( )tTrRtrq φθφθ ΦΘ=,,, . (7) 
 
Substituting this into Eq. (6) and dividing the result by ( ) ( ) ( ) ( )tTrR φθ ΦΘ  yields 
 

 ( ) ( ) ( )[ ] ( ) Φ
Φ ′′

+′Θ′
Θ

+′′=
′′

θ
θ

θ 222
2

22 sin
1sin1

sin
111

rr
Rr

RrT
T

c
. (8) 

 
 
A. Dependence on Time 
As with Cartesian and cylindrical coordinates, we again make the argument that the 
rhs of Eq. (8) is independent of t , and so the lhs of this equation must be constant.  
As with cylindrical coordinates we call this constant 2k−  (where we are thinking of k  
as real) and so we again have 
 
 022 =+′′ TkcT , (9) 
 
which has the two linearly independent solutions, 
 
 ( ) ikct

k eTtT ±± = 0 . (10) 
 
B. Dependence on φ  
Equating the rhs of Eq. (8) to 2k− , multiplying by ( )θ22 sinr , and doing some 
rearranging of terms gives us 
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 ( ) ( ) ( ) ( ) ( )[ ] ′Θ′
Θ

−′′−−=
Φ
Φ ′′

θθθθ sinsinsinsin 2
2

222 Rr
R

rk , (11) 

 
which separates out the φ  dependence from r  and θ .  Equating the lhs of Eq. (11) to 
the constant 2m−  gives us the equation for Φ ,1 
 
 02 =Φ+Φ ′′ m , (12) 
 
which, yet again, is the harmonic oscillator equation.  Equation (12) has the solutions 
 
 ( ) φφ im

m e±± Φ=Φ 0 . (13) 
 
Again, because we require continuous solutions as a function of φ , we must restrict 
m  to integer values, K,2,1,0 ±±=m  .  Note that the dependence on φ  is exactly the 
same as in the cylindrical-coordinates case.   
 
C. Dependence on θ . 
The last variable that we will deal with today is the polar angle θ .  If we now equate 
the rhs of Eq. (11) to 2m− , divide by ( )θ2sin , and do a bit of rearranging, we end up 
with 
 

 ( ) ( )[ ] ( ) ( ) 222
2

2 1
sin

sin
sin

1 rkRr
R

m
−′′−=−′Θ′

Θ θ
θ

θ
, (14) 

 
which separates the θ  and r  variables.  Each side of this equation is a constant, which 
by convention is taken to be ( )1+− ll .  This results in the differential equation for 
( )θΘ  

 

 ( ) ( )[ ] ( ) ( ) 0
sin

1sin
sin

1
2

2

=Θ







−++′Θ′

θ
θ

θ
mll  (15) 

 
This is definitely not the harmonic oscillator equation!  It is however, close to the 
standard form of another well known equation. To put Eq. (15) in this standard form 
we make the change of variables ( ) ( )θθ cos=s .  We now think of Θ  as a function of θ  
through the variable s  as ( )[ ]θsΘ=Θ , and we write the derivatives of Θ  as 
 

                                                 
1 You may ask why we do we use 2m−  for spherical coordinates when we used 2n−  for cylindrical 
coordinates?  I have no idea.   
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 ( )[ ] [ ]21sin s
ds
d

ds
d

d
ds

ds
d

d
d

−−
Θ

=−
Θ

=
Θ

=
Θ θ

θθ
 (16a) 

 
and 
 

 
( ) [ ]s

ds
ds

ds
d

d
sd

ds
d

d
ds

ds
d

d
ds

ds
d

d
d

d
d

−
Θ

+−
Θ

=

Θ
+






Θ

=





 Θ

=
Θ

2
2

2

2

22

2

2

2

2

1

θθθθθ . (16b) 

 
Substituting Eq. (16) into Eq. (15) yields, after a bit of algebra, 
 

 ( ) ( ) ( ) ( ) ( ) 0
1

121
2

2
2 =Θ





−
−++Θ′−Θ ′′− s

s
mllssss . (17) 

 
This equation is known as the associated Legendre equation.  As with all second-
order linear, ordinary differential equations, there are two linearly independent 
solutions.  These solutions are know as associated Legendre functions of the first 
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and second kind, which are denoted ( )sPml  and ( )sQm
l , respectively.  Usually we are 

interested in only the ( )sPml  solutions because the ( )sQm
l  solutions diverge as 1±→s .   

 
The figure on the previous page plots some of the ( )sPml  functions for various values 
of l  and m .  Notice that these functions are plotted for 11 ≤≤− s  because this 
corresponds to πθ ≤≤0 , the range of the polar angle θ .  The following statements 
summarize some key feature of the associate Legendre functions, some of which are 
evident in the figure. 
 
(i)  For the ( )sPml  solutions to Eq. (17) to remain finite, the parameter l  must be an 
integer and m , which is already an integer, must satisfy lm ≤ .  (You are already likely 
familiar with this result from quantum mechanics, where the angular parts of the 
separable solutions of the Schrödinger in spherical coordinates are identical to the 
solutions here.)   
 
(ii)  For 0=m  (azimuthal symmetry) the solutions ( ) ( )sPsP ll

0≡  are known as 
Legendre polynomials.  These functions are polynomials in s  of order l .  The first 
four Legendre polynomials are 
 

 ( ) 10 =sP ,       ( ) ssP =1 ,       ( ) ( )13
2
1 2

2 −= ssP ,       ( ) ( )sssP 35
2
1 3

3 −=  (18a) – (18d) 

 
(iii)  A nice simple formula for calculating the Legendre polynomials, known as 
Rodrigues' formula, is 
 

 ( ) ( )
l

ll

ll ds
sd

l
sP 1

!2
1 2 −

=  (19) 

 
(iv)  For the associated Legendre functions Rodrigues' formula generalizes to  
 

 ( ) ( ) ( )l
lm

lm
m

l
m
l s

ds
ds

l
sP 11

!2
1 222 −−=

+

+

. (20) 

 
(v)  The first few 0=m  Legendre functions of the second kind can be written as 
 

( ) 







−
+

=
s
ssQ

1
1ln

2
1

0 ,    ( ) 1
1
1ln

21 −






−
+

=
s
sssQ ,    ( )

2
3

1
1ln

4
13 2

2
s

s
sssQ −






−
+−

= . (21a) – (21c) 
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(vi)  For 1≥l  the 0=m  Legendre functions of the second kind can be expressed in 
terms of the Legendre functions of the first kind as 
 

 ( ) ( ) ( ) ( )∑
=

−− 



−







−
+

=
l

m
mlmll sPsP

ms
ssPsQ

1
1

1
1
1ln

2
1 . (22) 

 
The following figure plots the first few of these functions.  Notice that they all diverge 
as 1→s , although because the divergence involves the logarithm function, the 
divergence is very slow, as the graph on the rhs of the figure illustrates.   
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As with the Bessel functions, more entertaining facts about associated Legendre 
functions can be found in Handbook of Mathematical Functions by Abramowitz and 
Stegun or in the online NIST Digital Library of Mathematical Functions. 
 
Now that we have some idea of the behavior of these functions, we can get back to 
our solution of the wave equation.  Because ( )θcos=s  the solutions to Eq. (15) are 
 
 ( ) ( )( )θθ cos,

m
lP

P
ml PΘ=Θ     and    ( ) ( )( )θθ cos,

m
lQ

Q
ml QΘ=Θ , (23) 

 
(or some linear combination of the two solutions)  Because they remain finite, we are 
usually exclusively interested in solutions involving Legendre functions of the first 
kind.  The figure at the top of the next page plots some of the  ( )( )θcosm

lP  functions 
as a function of θ .  Notice that they are similar, but not identical to the functions 
plotted on p. 5.   
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Exercises 
 
*22.1  Calculate the change-of-coordinates derivatives xr ∂∂ , x∂∂θ , and x∂∂φ  and 
express them as functions of the new variables.   
 
*22.2  Consult the figure on p. 5.  For the function ( )sPml , how many zero crossings 
of are there for 11 <<− s ?  That is, deduce the formula for the number of zero 
crossings as a function of l  and m . 
 
*22.3  The Legendre polynomials ( )xPl0  can be used as a set of orthogonal basis 
functions on the interval 11 ≤≤− x .  Using the standard definition of the inner 
product, show that 0P , 1P , and 2P  are all orthogonal.  Find normalized versions of 
each of these functions. 
 
*22.4  Using Eq. (7), derive Eq. (8) from Eq. (6).  
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Spherical Coordinates II / A Boundary Value Problem /  
Separation of Variables Summary  

 
Overview and Motivation:  We look at the fourth differential equation that arises in 
the separable solution to the spherical-coordinates wave equation.  We then review 
the separable solutions in all three coordinate systems – Cartesian, cylindrical, and 
spherical.  Finally, we use a separable solution to find the normal modes of a 
drumhead. 
 
Key Mathematics:  More separation of variables, spherical Bessel functions, and 
normal modes in polar coordinates. 
 
I.  Separation of Variables in Spherical Coordinates (continued) 
Last time we began our search for separable solutions to the wave equation in 
spherical coordinates, 
 

 ( ) ( ) ( ) 2

2

222
2

22

2

2 sin
1sin

sin
111

φθθ
θ

θθ ∂
∂

+





∂
∂

∂
∂

+







∂
∂

∂
∂

=
∂
∂ q

r
q

rr
qr

rrt
q

c
. (1) 

 
We assumed a solution of the form ( ) ( ) ( ) ( ) ( )tTrRtrq φθφθ ΦΘ=,,,  and then solved 
three ordinary differential equations, which gave us the three functions ( )tT , ( )φΦ , 
and ( )θΘ .  Because each of these differential equations is second-order, linear, and 
homogeneous, there are two linearly independent solutions that can be (linearly) 
combined to produce the most general form of each solution.  For the functions ( )tT , 
( )φΦ , and ( )θΘ  the most general forms can be written as 

 
 ( ) ikct

k
ikct

kk eBeAtT −+= , (2) 
 
 ( ) φφφ im

m
im

mm eDeC −+=Φ ,       lm K,2,1,0= , (3) 
 
 ( ) ( )( ) ( )( )θθθ coscos ,,,

m
lml

m
lmlml QFPE +=Θ ,       K,2,1,0=l  (4) 

 
Here kA , mC , and mlF , , etc. are undetermined constants, and m

lP  and m
lQ  are 

associated Legendre functions of the first and second kind, respectively.   
 
Let's now look at the ( )rR  part of ( )trq ,,, φθ .  Looking back at p. 4 of the Lecture 22 
notes we see that the ordinary differential equation for ( )rR  is 
 

 ( ) ( ) 22211 rkRr
R

ll −′′−=+− , (5) 
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which can be rewritten as   
 
 ( )[ ] 012 222 =+−+′+′′ RllrkRrRr . (6) 
 
As with some of the other equations that we have looked at, this not quite in standard 
form.  Equation (6) can be put in standard form (in a manner similar to the Bessel 
equation that arose in cylindrical coordinates) by defining the new independent 
variable krs = .  With this definition (and the chain rule) Eq. (6) can be transformed 
into  
 
 ( ) ( ) ( )[ ] ( ) 012 22 =+−+′+′′ sRllssRssRs , (7) 
 
where we emphasize that R  is now a function of the new variable s .  If you look back 
at Eq. (21) of the Lecture 21 notes (Bessel's equation), you will see that Eq. (7) is quite 
similar to that equation. 
 
The solutions to Eq. (7) (which are indeed similar to Bessel functions) are known as 
spherical Bessel functions.  The spherical Bessel functions of the first and second 
kind are denoted ( )sjl  and ( )syl .  The following figure plots these functions (for 

3,2,1,0=l ). 
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The following facts about these functions, some of which can be discerned from the 
graphs, are worth noting. 
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(i)  ( )sjl  are finite everywhere; ( )syl  diverge as 0→s .  Also notice the behavior of 
these functions as 0→s  for increasing l :  the functions ( )sjl  converge more rapidly 
while the functions ( )syl  diverge more rapidly.   
 
(ii)  The functions oscillate with decreasing amplitude as ∞→s . 
 
(iii)  The spherical Bessel functions can be written in terms of (standard) Bessel 
functions of noninteger order as 
 
 ( ) ( )sJssj ll

2
12

1
+= π ,       ( ) ( )sYssy ll

2
12

1
+= π  (8a), (8b) 

 
(iv)  The ( )sjl  functions have the convenient integral representation1 
 

 ( ) ( ) ( )[ ] ( )∫ +
+ +Γ

=

π

θθθ
0

12
1

sincoscos
12

ds
l
ssj l

l

l

l . (9) 

 
(v)  The first three ( )sjl 's and ( )syl 's can be represented in terms of sine and cosine 
functions as 
 

 ( ) ( )
s
ssj sin

0 = , ( ) ( )
s
ssy cos

0 −= , (10a), (10b) 

 

 ( ) ( ) ( )
s
s

s
ssj cossin

21 −= , ( ) ( ) ( )
s
s

s
ssy sincos

21 −−= , (10c), (10d) 

 

 ( ) ( ) ( )s
s

s
ss

sj cos3sin13
232 −






 −= , ( ) ( ) ( )s

s
s

ss
sy sin3cos13

232 −





 −−= . (10e), (10f) 

 
Similar, although increasingly more complicated, formulae can be derived for higher-
order ( )sjl 's and ( )syl 's.  Notice that the formulae for ( )syl  are identical to the 
formula for ( )sjl  with the changes ( ) ( )ss cossin −→  and ( ) ( )ss sincos → .   
 
Let's now get back to our solution to the wave equation.  Because krs = , the solution 
to Eq. (6) [the equation for ( )rR ], can be generally written as 
 

                                                 
1 At least Eq. (9) can be convenient when using a computer mathematic program such as Mathcad.  In fact, 
you can use Eq. (9) and Mathcad to generate the formulae for ( )sjl  in Eq. (10). 
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 ( ) ( ) ( )kryHkrjGrR llkllklk ,,, += . (11) 
 
So putting Eqs. (2), (3), (4), and (11) together we now have the general form of the 
separable solution in spherical coordinates 
 

 ( ) ( ) ( )[ ] ( )( ) ( )( )[ ]
( )( )ikct

k
ikct

k
im

m
im

m

m
lml

m
lmlllkllkmlk

eBeAeDeC
QFPEkryHkrjGtrq

−− ++×

++=
φφ

θθφθ coscos,,, ,,,,,, , (12) 

 
where the parameters l  and m  are specified by K,2,1,0=l  and lm K,2,1,0= .  The 
parameter k  is unspecified.   
 
II.  Summary of Separable Solutions 
We previously wrote down separable solutions in the other coordinate systems, but 
never in as general a form as Eq. (12) for spherical coordinates.  Let's now do this for 
the previous coordinate systems.   For cylindrical coordinates we can write the general 
separable solution as 
 

  
( ) ( ) ( )[ ] ( )

( ) ( )ikct
k

ikct
k

zaki
ak

zaki
ak

in
n

in
nnannankan

eBeAeDeC

eFeEaYHaJGtzq
−−−−

−

++×

++=
2222

,,

,,,, ,,, φφρρφρ
, (13) 

 
where nJ  and nY  are Bessel functions.  The parameter n  is specified by K,2,1,0=n , 
but the parameters a  and k  are unspecified.  Similarly, for Cartesian coordinates we 
have2 
 

 
( ) ( )( )

( )( )tkkkic
kkk

tkkkic
kkk

zik
k

zik
k

yik
k

yik
k

xik
k

xik
kkkk

xyx

zyx

xyx

zyx

y

z
x

z

y

y
x

y
x

x
x

xzyx

eBeAeDeC

eFeEeHeGtzyxq
222222

,,,,

,, ,,,
++−++−

−−

++×

++=
. (14) 

 
In this equation none of the parameters xk , yk , or zk  are specified.   
 
Some general remarks concerning Eqs. (12) – (14) are in order.  First, notice that all 
three solutions depend upon three parameters, which are (essentially) the three 
independent separation constants that arise in the separation-of-variables process.  
Second, the discrete parameters ( ml,  in spherical coordinates, n  in cylindrical 
coordinates) are discrete because of mathematical considerations related to the 
coordinate system being used.  The other parameters ( k  in spherical coordinates, ak,  

                                                 
2 You have seen an almost general form for Cartesian coordinates in Exercise 19.2. 
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in cylindrical coordinates, zyx kkk ,,  in Cartesian coordinates) can take on any values 
and the solutions will still satisfy the wave equation.   
 
For a given problem, the physics of the situation may dictate that these parameters 
take on only certain values.  For example, in Exercise 19.2, where you found the 
normal-mode standing waves in a rectangular room, you found that because of the 
boundary conditions the parameters xk , yk , and zk  could only take on the values 
 

 
x

x
x L

n
k

π
= ,        

y

y
y L
n

k
π

= ,       
z

z
z L
nk π

= , (15a) – (15c) 

 
where the in 's are integers and the iL 's are the dimensions of the room.  Physical 
considerations, such as boundary conditions, may also place constraints on the 
multiplicative factors that appear in Eqs. (12) – (14). 
 
III.  A Vibrating Circular Drumhead  
Let's look at another example where physics constrains some of these unspecified 
parameters.  In particular, let's find the normal modes of vibration of a circular 
drumhead.  First, we must recognize that this is a two dimensional, rather than a three 
dimensional problem.  If we were working in Cartesian coordinates we would only 
need x  and y, but because we are interested in a circular drumhead we should 
recognize that it might be better to work in polar coordinates (with the origin at the 
center of the drum head).  Well, if we were to write the 2D wave equation in polar 
coordinates and do separation of variables, the solutions would be the same as the 

22 ak =  solutions for cylindrical coordinates in Eq. (13).  That is, the solutions would 
be 
 
 ( ) ( ) ( )[ ] ( ) ( )iact

a
iact

a
in

n
in

nnannanan eBeAeFeEaYHaJGtq −− +++= φφρρφρ ,,, ,, . (16) 
 
Let's now apply some physics.  First we know that we want the displacement q  to be 
everywhere finite.  So because the functions ( )sYn  diverge for 0→s  we must have 

0, =anH .  Also, we want the displacement to be a real quantity.  With that in mind we 
explicitly write the φ  and t  parts of Eq. (16) in terms of sine and cosine functions, 
rather then the complex exponential functions.3  We then have 
 
 ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]actBactAnFnEaJGtq aannnanan sin~cos~sin~cos~,, ,, ++= φφρφρ , (17) 
 
                                                 
3 There are, of course, other ways to make sure that the solution is real.  See the discussion on p. 8 of the 
Lecture 2 notes. 
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where the quantities with tildes in Eq. (17) are real multiplicative factors [that can be 
related to the quantities without tildes in Eq. (16), if necessary].   
 
There is now one more bit of physics to consider:  the boundary condition at the edge 
of the drum head.  For simplicity, we assume that this bc is ( ) 0,,0, =tq an φρ , where 0ρ , 
is the radius of the drumhead.   Applying this bc to Eq. (17) then gives us 
 
 ( ) ( ) ( )[ ] ( ) ( )[ ]actBactAnFnEaJG aannnan sin~cos~sin~cos~0 0, ++= φφρ . (18) 
 
So how can Eq. (18) be satisfied?  The only nontrivial way is to require that a  be such 
that ( ) 00 =ρaJn .  Now, each Bessel function nJ  has an infinite number of discrete 
zeros (see the figure on p. 5 of Lecture 27 notes) so that there are an infinite number 
of discrete values of a  (which are different for each n ) that will satisfy Eq. (18).  
Unfortunately, in contrast to the Cartesian coordinate example specified by Eq. (15), 
there are no nice, simple formulae for the zeros of the Bessel functions.  Nonetheless, 
the zeros can be found numerically.   
 
A. 0=n  Normal Modes 
We first look at normal mode solutions specified by 0=n .  For these solutions the 
Bessel function ( )sJ0  comes into play.  The zeros of this function are equal to 2.405, 
5.520, 8.654, 11.791, …4  Thus, the bc will be satisfied for 
 

                                                 
4 The zeros are tabulated in Handbook of Mathematical Functions by Abramowitz and Stegun (where else?). 
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 =0ρa 2.405, 5.520, 8.654, 11.791, … (20) 
 
This is illustrated in the graph on the previous page, where we have set 100 =ρ .  
Notice that ( )ρaJ 0  is indeed equal to zero at 0ρρ =  for each value of a  given by Eq. 
(20).   
 
Let's now look at the complete solution for 0=n .  Simplifying Eq. (17) we can write 
the 0=n  normal modes as 
 
 ( ) ( ) ( ) ( )[ ]ctaBctaAEaJGtq iiiiiii 00000000,0 sin~cos~~,, += ρφρ , (21) 
 
where 00 ρia  is the i'th zero of ( )sJ 0 .  Notice that in Eq. (21) we have changed the 
labeling of the solution; we now label the normal modes with two integers:  the first 

z1 z2

z3 z4



Lecture 23  Phys 3750 

D M Riffe -8- 3/28/2011 

( 0= ) corresponds to n , and the second ( i ) labels the value of a  that makes the 
solution vanish at the boundary.  Notice that the only spatial variable in Eq. (21) is ρ :  
the dependence on φ  is gone.  Snapshots of first four normal-mode solutions are 
shown on the previous page.  The class web site has animated (time dependent) 
versions of these solutions.  As evident in the animations [and should be evident from 
Eq. (21)], these solutions are radially symmetric versions of standing waves. 
 
B. 1=n  Normal Modes 
For any other value of n , the normal modes are found in essentially the same manner.  
We must again satisfy the bc at the edge of the drum head, which determines the 
values of a .  For 1=n  the zeros of ( )sJ1  are 3.832, 7.016, 10.173, 13.325, … Thus, for 

1=n  the boundary condition is satisfied for 
 
 =0ρa 3.832, 7.016, 10.175, 13.325,  … (22) 
 
This is illustrated in the following figure.   
 

0 2 4 6 8 10
0.4

0.2

0

0.2

0.4

0.6

a = 0.3832
a = 0.7016
a = 1.0173
a = 1.3325

a = 0.3832
a = 0.7016
a = 1.0173
a = 1.3325

rho

J1
(a

 rh
o)

0

r0

 
 
For the complete solution we thus have 
 
 ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]ctaBctaAFEaJGtq iiiiiii 111111111,1 sin~cos~sin~cos~,, ++= φφρφρ . (23) 
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Because the φ  dependence is no longer trivial, this solution is a bit more complicated 
than that for 0=n .  For 0=n  the disappearance of  φ  resulted in only one linearly 
independent solution (in terms of spatial variables – there are still two linearly 
independent solutions if one considers time).  Here, however, the ( )φcos  and ( )φsin  
solutions are linearly independent.  For simplicity, let's just consider the solution with 

0~
1 =F , which leaves only the ( )φcos  term.  Then we have 

 
 ( ) ( ) ( ) ( ) ( )[ ]ctaBctaAEaJGtq iiiiiii 11111,1,1 sin~cos~cos~,, += φρφρ . (24) 
 
The following figure shows snapshots of this solution.  Animated versions are again 
available on the class web site.   
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z3 z4  
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IV.  Concluding Remarks 
That is it for separation of variables (until you run into them again in some later 
course, or perhaps while doing some research!).  Summarizing, we have seen that we 
can obtain solutions to the wave equation in three different coordinate systems using 
this technique.  Sometimes these solutions are simple, sometime they are not so 
simple, at least in terms of functions with which you may be familiar.  Each solution is 
labeled by three independent separation constants, which may or may not be 
constrained to certain values.  Because the ordinary differential equations that give us 
these solutions are homogeneous and linear, there are also undetermined 
multiplicative factors associated with each part of the solution.  Often (at least) some 
of the separation constants and the multiplicative factors are determined by physical 
considerations, such as imposed boundary conditions.  In the example that we just did 
we saw that the parameter a  must take on discrete values in order for the boundary 
condition at the edge of the drumhead to be satisfied. 
 
While separation-of-variables solutions can be interesting in their own right (as in the 
case of the drumhead modes), I'll again remind you that they are also quite useful 
because they can be used to construct a basis for any solution to the wave equation, 
much as we previously discussed for the 1D wave equation.  This point has been 
previously discussed in Sec. III of the Lecture 19 notes.   
 
Exercises 
 
*23.1  Using the definition of s  and the chain rule, derive Eq. (7) from Eq. (6).  (Hint:  
you may wish to review the Lecture 21 notes.) 
 
*23.2  The figure on p. 2 indicates that ( ) 002 =j .  Using Eq. (10e) show that this is 
indeed the case.   
 
*23.3  The two linearly independent combinations of the spherical Bessel functions 
 

( ) ( ) ( ) ( )siysjsh lll +=1  and ( )( ) ( ) ( )siysjsh lll −=2  
 
are know as spherical Bessel functions of the third kind.  Using these definitions and 
Eq. (10), express ( )( )sh 1

1  and ( ) ( )sh 2
1  in terms of the functions ise  and ise− . 

 
*23.4  Normal Modes Inside a Sphere. 
Starting with Eq. (12) find all normal-mode solutions to the wave equation inside a 
sphere that satisfy all of the following conditions:  the solutions are (1) real, (2) 
spherically symmetric, (3) finite everywhere, and (4) vanish on the boundary of the 
sphere, which has a radius of 0r .   
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Energy Density / Energy Flux / Total Energy in 1D 
 
Overview and Motivation:  From your study of waves in introductory physics you 
should be aware that waves can transport energy from one place to another – consider 
the generation and detection of radio waves, for example.  In the next two lectures we 
consider some of the details of the energy associated with wave phenomena.  To keep 
it initially simple, we start out with one dimensional waves.  In the next lecture we 
generalize the concepts discussed here to three dimensions.   
 
Key Mathematics:  density, flux, and the continuity equation. 
 
I.  Density, Flux, and the Continuity Equation   
Let’s start by considering some quantity Q  that has associated with it a density ρ .  
Because we are interested in only one (spatial) dimension, the density associated with  
Q  will be so much Q  per unit length.  If we then integrate that density between two 
points in space, 1x  and 2x , then we will get the total amount of Q  between the points 

1x  and 2x .  Mathematically, we write this as 
 

 ( ) ( )∫=
2

1

,,, 21

x

x

dxtxtxxQ ρ  (1) 

 
We have explicitly included time because Q  may be a dynamic quantity.   
 
Often, Q  is a conserved quantity.  That is, it cannot be either created or destroyed.  If 
that is the case then the change in Q  within the region from 1x  to 2x  
 

 ( ) ( )∫ ∂
∂

=
∂

∂
2

1

,,, 21

x

x

dx
t
tx

t
txxQ ρ  (2) 

 
must be equal to the net flow of Q  into the region.  That is,  
 

 ( ) ( ) ( )txjtxj
t

txxQ
21

21 ,,,
−=

∂
∂ , (3) 

 
where j  is the Q  current density (or flux).  Convention is that if 0>j , then the 
flow is in the positive x  direction, and if 0<j , then the flow is the negative x  
direction.  Note that the units of ρ  are [ ] mQ  and the units of j  are [ ] [ ] smsQ ρ= .  
For example, if Q  represents charge, then [ ]ρ  = Coulomb/m and [ ]j  = Coulomb/s.   
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If we now equate the rhs's of Eqs. (2) and (3) we get 
 

 ( ) ( ) ( )txjtxjdx
t
tx

x

x

21 ,,
2

1

−=
∂

∂∫ ρ . (4) 

 
Now the rhs of Eq. (4) can be written as 
 

 ( ) ( ) ( )∫ ∂
∂

−=−

2

1

,, 21

x

x

dx
x
txjtxjtxj  (5) 

 
and so we can rewrite Eq. (4) as 
 

 ( ) ( ) 0,,
2

1

=





∂
∂

+
∂

∂∫
x

x

dx
x
txj

t
txρ . (6) 

 
Now, because the limits 1x  and 2x  are arbitrary, the integrand must vanish.  This gives 
us an important relationship between the density and flux, 
 

 ( ) ( ) 0,,
=

∂
∂

+
∂

∂
x
txj

t
txρ . (7) 

 
Equation (7) is known as the (1D) continuity equation.  Because the density and 
flux are local quantities (which means that they can be defined at each point in space, 
as opposed to Q , which is a global quantity), Eq. (7) is a local statement about the 
conservation of Q .   
 
II.  Energy Density and Flux for 1D Waves   
Let's now apply this discussion to the energy associated with 1D waves.  That is, we 
let Q  be the total energy associated with 1D waves between two points 1x  and 2x .  To 
be specific, let's think about transverse waves on a string.  For this particular physical 
system, where the wave speed c  is given by µτ=c , where τ  is the tension in the 
string and µ  is the mass density (mass per unit length), the energy density can be 
written as1 

                                                 
1 We do not prove this result here.  For its derivation we refer you to an intermediate mechanics text, such 
Classical Dynamics by Marion and Thornton.   
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 ( )
22

22
, 







∂
∂

+






∂
∂

=
x
q

t
qtx τµρ  (8) 

 
The first term on the rhs is the kinetic energy density Tρ while the second is the 
potential energy density Vρ .   
 
So, we have the energy density, but what about the energy flux j ?  Well, whatever it is 
it must satisfy Eq. (7), the continuity equation.  Let's thus calculate t∂∂ρ  and see 
what happens. Using Eq. (8) we have 
 

 0
2

2

2

=





∂∂
∂

∂
∂

+
∂
∂

∂
∂

−
∂
∂

xt
q

x
q

t
q

t
q

t
τµρ  (9) 

 
Comparing this with Eq. (7) we see that we would like to be able to write 
 

 







∂∂

∂
∂
∂

+
∂
∂

∂
∂

−
xt
q

x
q

t
q

t
q 2

2

2

τµ  (10) 

 
as x∂∂  of some quantity, which we could then identify as the flux j .  To do this we 
can get some help from the wave equation (here we use µτ=2c  for string waves),  
 

 
2

2

2

2

x
q

t
q

∂
∂

=
∂
∂

µ
τ , (11) 

 
and the equality of mixed partial derivatives, 
 

 






∂
∂

∂
∂

=






∂
∂

∂
∂

t
q

xx
q

t
, (12) 

 
to rewrite Eq. (9) as 
 

 0
2

2

2

=





∂∂
∂

∂
∂

+
∂
∂

∂
∂

−
∂
∂

tx
q

x
q

x
q

t
q

t
τρ , (13) 

 
which can be compacted as 
 

 0=








∂
∂

∂
∂

−
∂
∂

+
∂
∂

x
q

t
q

xt
τρ . (14) 
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We can thus identify the energy flux as 
 

 ( )
x
q

t
qtxj
∂
∂

∂
∂

−= τ, . (15) 

 
III.  Several Examples 
Let's look at three examples:  a traveling wave, a standing wave, and two colliding 
wave packets.  In each example we consider the two energy densities Tρ  and Vρ  and 
the energy flux j .   
 
A. Traveling Wave 
To follow along at this point you will need to go to the class web site and bring up the 
video file Energy in 1D Traveling Wave.avi, which shows these time dependent quantities 
for the traveling wave 
 
 ( ) ( )cktkxqtxq −= cos, 0 . (16) 
 
Notice that, as perhaps expected, that all quantities move to the right at the wave 
speed c .  Furthermore, the "wavelength" of the energy densities and flux is half that 
of the displacement q .  For the energy densities, this should be obvious from their 
definitions.  Furthermore, because for this traveling-wave example it is not hard to 
show that ρcj = , j  looks essentially the same as the total energy density ρ . 
 
B. Standing Wave 
The next video on the web site, Energy in 1D Standing Wave.avi,  shows these same time 
dependent quantities for the standing wave 
 
 ( ) ( ) ( )cktkxqtxq cossin, 0= . (17) 
 
This example is a bit more interesting.  Notice that now the energy oscillates back and 
forth between kinetic and potential, which now have their (stationary) maxima at 
different spatial points.  A careful examination of the flux shows that the energy at a 
given point flows one direction and then the other as it is converted between potential 
and kinetic.   
 
C. Colliding wave packets 
The last example can be found in the video Energy in 1D Colliding Pulses.avi.  The 
displacement for this wave is given by  
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 ( ) ( ) ( )[ ] ( ) ( )[ ][ ]2
0

2
0 coscos, 00

acktkxacktkx ecktkxqecktkxqtxq +−−− +−−= . (18) 
 
For most of the time the wave looks like two noninteracting wave packets (or pulses), 
each moving at the speed c  but in different directions.  Notice that when the pulses 
are far apart the behavior of the density and flux is similar to that for a traveling wave, 
but as the pulses overlap the density and flux behave in a manner similar to a standing 
wave (which can, of course, be described as the superposition of two traveling waves).   
 
IV.  Total Energy   
Now that we have seen some examples illustrating the local quantities ( )tx,ρ  and 
( )txj , , let's consider the total energy associated with wave motion.  In particular, let's 

consider transverse waves on a string on the interval Lx ≤≤0  with the standard 
boundary conditions ( ) ( ) 0,,0 == tLqtq .  In that case we can write any wave on the 
string as a linear superposition of standing waves as2 
 

 ( ) ( ) ( ) ( )[ ]∑
∞

=

+=
1

sincossin,
n

nnnnL
n tBtAxtxq ωωπ , (19) 

 
where Lcnn πω = , and the coefficients nA  and nB  depend upon the initial conditions. 
 
Using Eq. (1) the total kinetic and potential energies can be expressed in terms of 
their densities as 
 

 ( ) ( ) ∫∫ 






∂
∂

==

LL

T dx
t
qdxtxtT

0

2

0
2

, µρ , (20a) 

 

 ( ) ( ) ∫∫ 






∂
∂

==

LL

V dx
x
qdxtxtV

0

2

0
2

, τρ , (20b) 

 
Let's now substitute the general form of the displacement on the rhs of in Eq. (19) 
into Eq. (20) and calculate the total kinetic and potential energies.  For the kinetic 
energy we have  
 

                                                 
2 See Lecture 10 notes. 
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( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ] dxtBtAx

tBtAxtT

m

mmmmmL
m

L

n

nnnnnL
n













+−×













+−=

∑

∫ ∑
∞

=

∞

=

1

0 1

cossinsin

cossinsin
2

ωωω

ωωωµ

π

π

 (21) 

 
Notice that we use different indices on the two sums so that we know which 
quantities go with each sum.  Switching the orders of integration and summation we 
can rewrite Eq. (21) as 
 

 

( ) ( ) ( )[ ] ( ) ( )[ ]{

( ) ( ) }∫

∑∑
×

+−+−=
∞

=

∞

=

L

L
m

L
n

n m

mmmmnnnnmn

dxxx

tBtAtBtAtT

0

1 1

sinsin

cossincossin
2

ππ

ωωωωωωµ

 (22) 

 
We can now simplify this considerably because of the orthogonality of the sine 
functions.  That is, using 
 

 ( ) ( ) } nm

L

L
m

L
n Ldxxx δππ

2
sinsin

0

=∫ , (23) 

 
Eq. (22) becomes 
 

 ( ) ( ) ( )[ ]∑
∞

=

−=
1

22 cossin
4

n

nnnnn tBtALtT ωωωµ . (24) 

 
Now 
 

 ( ) ( ) ( )[ ]22 cossin
4

tBtALtT nnnnnn ωωωµ
−=  (25) 

 
is simply the kinetic energy contained in the n th normal mode.  Thus Eq. (24) can be 
simply viewed as the sum of kinetic energies contained in all of the normal modes, 
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 ( ) ( )∑
∞

=

=
1n

n tTtT  (26) 

 
Similarly, starting with Eq. (20b), one can show that the total potential energy can be 
written as 
 

 ( ) ( )∑
∞

=

=
1n

n tVtV , (27) 

 
where  
 

 ( ) ( ) ( )[ ]22 sincos
4

tBtALtV nnnnnn ωωωµ
+=  (28) 

 
is the potential energy contained in each normal mode.  Further, using Eqs. (25) and 
(28) it is not difficult to show that the total energy contained in each mode, 

( ) ( ) ( )tVtTtE nnn += , is equal to 
 

 ( ) ( )222

4 nnnn BALtE += ωµ , (29) 

 
and is thus constant.  That the energy in each normal mode is constant is due to the 
fact that the normal modes do not interact.  Why?  Because the equation of motion 
for each normal mode is independent of the other normal modes.  Notice also that 
the energy is each normal mode is proportional the square of the amplitude  ( )22

nn BA + .  
Finally, because ( )tEn  is constant, the total energy  
 

 ( ) ( )∑
∞

=

=
1n

n tEtE  (30) 

 
is also constant.   
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Exercises 
 
*24.1.  Energy Density and Current for a Traveling Wave.  Consider the traveling 
wave solution to the 1D wave equation ( ) ( )cktkxqtxq −= cos, 0 . 
(a)  Calculate the kinetic, potential and total energy densities ( )txT ,ρ , ( )txV ,ρ , and 
( )tx,ρ , respectively, and the energy current density ( )txj , .  Show that ( ) ( )txtx VT ,, ρρ = .  

Further show that ( ) ( )txctxj ,, ρ= .   
(b)  Does the energy current flow in the direction that you expect?  Explain. 
(c)  Show that the 1D continuity equation is satisfied by your expressions for ( )tx,ρ  
and ( )txj , .   
 
**24.2.  Energy Density and Current for a Standing Wave.  Consider the standing-
wave solution to the wave equation for transverse waves on a string 
( ) ( ) ( )tkxqtxq ωsinsin, 0= .   

(a)  Calculate the kinetic and potential energy densities ( )txT ,ρ  and ( )txV ,ρ , 
respectively, and the energy current density ( )txj , .  Express your answers using the 
parameters µ , c , and ω .   
(b)  Show that the 1D continuity equation [Eq. (7)] is satisfied for this wave.   
(c)  For this wave find the total kinetic energy ( )tT  and potential energy ( )tV  in a 
string of length L  on the interval Lx ≤≤0 , assuming that Lnk π= , where n  is some 
positive integer.  Here, use the parameters µ , L , and ω  to express your answers. 
(d)  Show that the total energy ( ) ( ) ( )tVtTtE +=  is independent of time.   
 
*24.3  Total Energy in Vibrating String.   
(a)  As was done for the kinetic energy in Sec. IV, show that the total potential energy 
contained in the vibrating string is given by 
 

( ) ( ) ( )[ ]∑
∞

=

+=
1

22 sincos
4

n

nnnnn tBtALtV ωωωµ  

 
(b)  Using Eqs. (25) and (28) show that the total energy ( )tEn  in a normal mode is 
constant.   
 
*24.4   Consider the generic traveling wave ( ) ( )ctxftxq −=, .  Show that for this wave 
(a)  VT ρρ =  and  
(b)  ρcj = .   
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Energy Density / Energy Flux / Total Energy in 3D 
 
Overview and Motivation:  In this lecture we extend the discussion of the energy 
associated with wave motion to waves described by the 3D wave equation.  In fact, 
the first part of the discussion is exactly the same as the 1D case, just extended to 3D.  
In the examples we look at the energy associated with spherically symmetric waves. 
 
Key Mathematics:  Some 3D calculus, especially the divergence theorem and the 
spherical-coordinates version of the gradient.   
 
I.  Density, Flux, and the Continuity Equation   
As in the 1D case let's assume that we are interested in some quantity ( )tQ  that has an 
associated density ( )tx,ρ .  Since we are dealing with a density that lives in a 3D space, 
the units of density will be the units of Q  divided by m3.  That is, [ ] [ ] 3mQ=ρ .   
 
Let's consider a volume Ω  enclosed by a surface S , as illustrated in the following 
figure.  At each point on the surface we define a perpendicular, outward-pointing unit 
vector ( )SS rn̂  associated with each point Sr  on the surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The amount of Q  contained in Ω  can be written as 
 
 ( ) ( )∫

Ω
Ω = rdttQ 3,rρ  (1) 

 
As in the 1D case, if Q  is a conserved quantity, then the change in Q  inside Ω , 
 

( )SS rn̂  

( )SS rn̂
( )

enclosed volume Ω  

( )SS rn̂  
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 ( ) ( )
∫
Ω

Ω

∂
∂

= rd
t
t

dt
tdQ 3,rρ , (2) 

 
must be equal to the net flow of Q  into Ω , 
 

 ( ) ( ) ( )∫ ⋅−=Ω

S
SSS dSnt

dt
tdQ rrj ˆ, . (3) 

 
The (vector) quantity j  is again known as the Q  current density or the Q  flux.  The 
dimensions of j  are the dimensions of ρ  times a velocity, so  [ ] [ ] smρ=j .  Thus also 
[ ] [ ] ( )sm2Q=j .  Note that the rhs of Eq. (3) can be interpreted as the total Q  current 
flowing out through the surface S .  Equating the rhs's of Eqs. (2) and (3) gives us 
 

 ( ) ( ) ( )∫∫ ⋅−=
∂

∂

Ω S
SS dStrd

t
t rnrjr ˆ,, 3ρ . (4) 

 
We can now use the divergence theorem (which is one of several 3D extensions of 
the fundamental theorem of calculus), 
 
 ( ) ( ) ( )∫∫ ⋅=⋅∇

Ω S
SSS dSrd rnrArA ˆ3 , (5) 

 
to rewrite Eq. (4) as 
 

 ( ) ( ) 0,, 3 =



 ⋅∇+

∂
∂

∫
Ω

rdt
t
t rjrρ  (6) 

 
Now, because the volume Ω  is arbitrary, the integrand must vanish.  Thus 
 

 ( ) ( ) 0,,
=⋅∇+

∂
∂ t
t
t rjrρ . (7) 

 
Equation (7) is the 3D version of the continuity equation, which again is a local 
statement of the conservation of Q .   
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II.  Energy Density and Flux for 3D Waves   
We now apply this discussion to the energy associated with 3D waves.  In this case  Q  
represents the energy associated with a wave (within some volume).  For waves 
described by the 3D wave equation the energy density can be written as 
 

 ( ) ( )











∇+







∂
∂

= 22
2

2
, qc

t
qt µρ r , (8) 

 
where ( )tq ,r  is the variable that is governed by the wave equation.  The first term on 
the rhs of Eq. (8) is the kinetic energy density Tρ , and the second is the potential 
energy density Vρ .  Now Eq. (8) is fairly general as long as µ  is suitably interpreted.  
If q  is a true displacement, then µ  will be a parameter with the units of mass density.  
If q  represents something else, say an electric field, then it will have some other units.  
From Eq. (8) it is fairly easy to see that the units of µ  are generally given by 
[ ]=µ (Joule s2 )/(m3 [ ]2q ).  It is not hard to show that the energy flux, which can be 
written as 
 

 ( ) q
t
qct ∇
∂
∂

−= 2, µrj , (9) 

 
together with the energy density in Eq. (8) satisfy Eq. (7), the continuity equation.   
 
III.  Several Examples 
Let's look at some examples that involve spherically symmetric waves.   
 
A. Spherical Standing Wave 
Let's look at a standing-wave example.  You may recall that a spherical-coordinates 
separable solution that is finite everywhere is of the form 
 
 ( ) ( ) ( )( ) ( ) ( )ikct

k
ikct

k
im

m
im

m
m
llmlkmlk eBeAeDeCPkrjCtrq −− ++= φφθφθ cos,,, ,,,, , (10) 

 
where lj  is a spherical Bessel function (of the first kind), and m

lP  is an associated 
Legendre function (of the first kind).  The parameter m  is an integer whose absolute 
value can be no larger than the nonnegative integer l .  If we want a solution with 
spherical symmetry, then there can be no θ  or φ  dependence. This means that both l  
and m  must be zero because the only associated Legendre function independent of θ  
is ( )( ) 1cos0

0 =θP .  Thus, the spherical Bessel function in Eq. (10) must be 
( ) ( ) ( )krkrkrj sin0 = , and so Eq. (10) simplifies to 
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 ( ) ( ) ( )ikct
k

ikct
kkk eBeA

kr
krCtrq −+=

sin,,, 0,0,0,0, φθ . (11) 

 
If we simplify this further by letting kA  be a real number and let kk AB =  (making the 
solution explicitly real) then we have 
 

 ( ) ( ) ( )kct
kr
krCAtrq kkk cossin2,,, 0,0,0,0, =φθ . (12) 

 
Because all parts of the system oscillate with the same phase, this is a spherically 
symmetric version of a standing wave. 
 
Using Eqs. (8) and (9) we can calculate the kinetic and potential energy densities and 
the energy flux associated with the wave in Eq. (12).  To do this in a fairly simple 
manner we can use the spherical-coordinates version of the gradient 
 

 ( ) ( ) φθr ˆ
sin

1ˆ1ˆ,,
φθθ

φθ
∂
∂

+
∂
∂

+
∂
∂

=∇
f

r
f

rr
frf , (13) 

 
where r̂ , θ̂ , and φ̂  are unit vectors in the r , θ , and φ  directions, respectively.  The 
nice thing about spherically symmetric solutions is that only the first term on the rhs 
of Eq. (13) contributes to the gradient. 
 
A video of q , Tρ , Vρ , and j  for the wave in Eq. (12), Energy in 3D Standing Wave.avi, 
is available on the class web site.  As the video shows, the displacement is indeed a 
standing wave.  Unfortunately, the energy densities and flux fall off with the radial 
distance r  so fast that it is hard to really see their behavior.   
 
Given this, we have made another video, Energy in 3D Standing Wave 2.avi, which plots 
the surface integrated density and flux,1  
 
 ( ) ( )∫=

S
S dSrD rρ , (14) 

 
and 
 
 ( ) ( ) ( )∫ ⋅=

S
SS dSrI rnrj ˆ , (15) 

 
                                                 
1 The video separately shows the kinetic and potential contributions to ( )rD .   
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where the surface S  is of radius r  centered at the origin.  Now because a spherically 
symmetric solution is independent of the two angles θ  and φ , this amounts to 
multiplying the density ρ  and flux j  by the factor 24 rπ , which is the surface area of 
the sphere S .  The quantity ( )rD  (which has units of Joule/m) can be though of as a 
linear energy density (i.e., the energy per unit length along the radial direction), while 
the quantity ( )rI  (which has units of Joule/s) is the total (energy) current flowing 
through S .  Notice that this new video is very similar to the 1D standing wave video 
that we looked at in the last lecture.   
 
B. Spherical Traveling Wave 
Let's also look at a spherically symmetric traveling wave.  If we are thinking about 
sound waves, this is the sort of wave that would result from a pulsating sphere 
centered at the origin.  We can construct a traveling wave solution from a linear 
combination of 2 linearly independent standing waves.  We thus need to use both 
kinds of spherical Bessel functions.  The linear combination that produces a 
spherically symmetric, outgoing, traveling wave is2 
 
 ( ) ( ) ( ) ( ) ( )[ ]kctkrykctkrjCtrq kk sincos,,, 000,0,0,0, −=φθ . (16) 
 
which can be written in terms of sine and cosine functions as 
 

 ( ) ( ) ( ) ( ) ( )



 −= kct

kr
krkct

kr
krCtrq kk sincoscossin,,, 0,0,0,0, φθ . (17) 

 
The video, Energy in 3D Traveling Wave.avi, shows ( )rD  and ( )rI  for this wave.  Indeed, 
away from the origin the wave appears to be an outgoing traveling wave.  However, at 
the origin something rather different seems to be happening – something with some 
standing-wave character, perhaps? 
 
Well, as it turns out, the current density j  has terms with two types of behavior.  The 
first type has a 21 r  dependence.  These terms describe the radiative part of the wave, 
which carries energy off to infinity.  Because the radiative part of j  varies as 21 r  the 
radiative part of ( )rI  does not vanish as ∞→r .  However, there are also 
nonradiative terms, which vary as 31 r .  These terms act more like a standing wave:  
the energy associated with these terms just oscillates back and forth and never really 
goes anywhere.  Because of the 31 r  behavior to the nonradiative part of j , the 
current ( )rI  associated with these terms vanishes as r1  as ∞→r .  These terms are 

                                                 
2 Note that this solution is only valid in the region of space outside the source.  In the video you may think of 
the source as being infinitesimally small, so that the solution is valid infinitesimally close to the origin. 
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thus sometimes called the local fields associated with the source.  In the video Energy 
in 3D Traveling Wave 2.avi we separately show the current ( )rI  associated with each 
type of term.  Notice that the radiative piece looks essentially like a 1D traveling wave 
while the nonradiative piece is really only important in the vicinity of the origin.   
 
Exercises 
 
*25.1  Show that the expressions for the density ρ  and j  in Eqs. (8) and (9), 
respectively, satisfy Eq. (7), the continuity equation. 
 
**25.2  Spherical Traveling Wave 
(a)  Write the wave in Eq. (17), 
 

( ) ( ) ( ) ( ) ( )



 −= kct

kr
krkct

kr
krCtrq kk sincoscossin,,, 0,0,0,0, φθ , 

 
as an explicit function of ( )ctr − , thus showing that it is a traveling wave moving 
outward from the origin.   
(b)  Using your result from part (a), show that the radiative and nonradiative 
components of the current density j  can be written, respectively, as 
 

 ( ) ( )rj ˆcos, 2
2

2
0

3
kctkr

r
qctrR −=

µ     and    ( ) ( ) ( )rj ˆsincos, 3

2
0

3
kctkrkctkr

kr
qctrNR −−−=

µ . 

 
(c)  Calculate the time average of each of these current-density components (defined 

as ( )∫
T

dttr
T 0

,1 j , where T  is one period of oscillation) and show that the average of the 

radiative part points in the positive r̂  direction, while the time average of the 
nonradiative part is zero.  (Note:  neither answer should have any dependence on T .) 
 
 
*25.3  Plane Wave Energy Density.  Consider the plane-wave solution to the 3D 
wave equation  ( ) ( ){ }kctzkykxkiqtzyxq zyx −++= exp,,, 0 .   
(a)  Calculate the kinetic, potential, and total energy densities ( )tzyxT ,,,ρ , ( )tzyxV ,,,ρ , 
and ( )tzyx ,,,ρ , respectively and the energy current density ( )tzyx ,,,j .   
(b)  Show that the 3D continuity equation is satisfied by your expressions for ρ  and j .   
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**25.4  Spherical Standing Wave Energy Density.  Consider the spherically 
symmetric standing wave solution to the 3D wave equation 

( ) ( ) ( )kct
kr
krqrq cossin,, 0=φθ . 

(a)  Calculate the kinetic, potential, and total energy densities ( )trT ,,, φθρ , ( )trV ,,,, φθρ , 
and ( )tr ,,,, φθρ , respectively. 
(b)  Show for large distances from the origin ( 1>>kr ) that the total energy density for 

this wave is approximately ( ) ( ) ( ) ( ) ( ) ( )
















+



=

22
22

0 coscossinsin
2

,,,, kct
kr
krkct

kr
krkcqtr µφθρ .  
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The 1D Schrödinger Equation for a Free Particle 
 
Overview and Motivation:  Here we look at the 1D Schrödinger equation (SE), an 
equation that describes the quantum motion of a nonrelativistic particle.  The SE can 
have solutions similar to those of the wave equation (WE).  In fact, as we shall see, 
the normal-mode solutions to the SE for a free particle (one not subject to any force) 
are very similar to those of the wave equation:  they are traveling (or standing) waves 
that oscillate harmonically in space and time.  An importance difference, though, is 
that the dispersion relation ( )kω  is not the same for both equations.  This leads to key 
differences in the general solutions that are built up from the normal-mode solutions.   
 
Key Mathematics:  We use separation of variables to find solutions to the SE.  The 
solution to the initial-value problem will be specified in terms of the initial conditions 
using the Fourier transform, as we previously did for the WE (see Lecture 17).   
 
I.  The 1D Schrödinger Equation 
The 1D SE  
 

 ( )
t

itxV
xm ∂

∂
=+

∂
∂

−
ψψψ

h
h ,
2 2

22

 (1) 

 
is a homogeneous and linear partial differential equation for the function ( )tx,ψψ = , 
which is often referred to as the wave function.  While we will not worry too much 
about the physical significance of this equation (that will be left to a quantum-
mechanics class), we point out that ( )π2h=h  (where h  is Planck's constant), m  is the 
mass of the particle being described by the SE, and ( )txV ,  is the potential to which the 
particle is subjected.  But for now simply think of ( )tx,ψ  as the solution to Eq. (1).   
 
II.  Separation of Variables 
Let's look for separable solutions to Eq. (1).  As before we start with a product 
function ( ) ( ) ( )tTxXtx =,ψ  and substitute this into Eq. (1), which yields 
 

 ( )
T
TitxV

X
X

m
′

=+
′′

− h
h ,
2

2

 (2) 

 
Now ( )txV ,  is often independent of time, in which case Eq. (2) becomes 
 

 ( )
T
TixV

X
X

m
′

=+
′′

− h
h

2

2

. (3) 
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The variables x  and t  are now separated; both sides of the equation are thus equal to 
some constant, which is conventionally called E .  This gives us two ordinary 
differential equations that are related via the separation constant E , 
 

 ( ) ( )tTEitT
h

−=′ , (4) 

 

 ( ) ( ) ( ) ( )xEXxXxVxX
m

=+′′−
2

2h . (5) 

 
Equation (4) says that the first derivative of T  is proportional to T .  The function T  
must thus be an exponential and is given by 
 

 ( ) tEi
eTtT h
−

= 0 . (6) 
 
As with the wave equation the time dependence is harmonic, but because Eq. (4) is a 
first-order equation there is only one solution, not two linearly independent solutions 
as in the case of the wave equation.  From Eq. (6) we see that the (angular) frequency 
of oscillation ω  equals hE .   
 
III.  Separable Solutions for a Free Particle 
Equation (5), the differential equation for ( )xX , has no solution until we specify the 
potential ( )xV .  Our interest here is in a free particle – one with no external force.  
Zero force implies a constant potential ( )xV ; we can thus set ( ) 0=xV .1  Then Eq. (5) 
becomes 
 

 ( ) ( ) 02
2

=+′′ xXmExX
h

, (7) 

 
which is our old friend, the harmonic oscillator equation!  By this point you should be 
able to immediately write down the two independent solutions 
 

 ( )
xmEi

eXxX 2
2

0
h=+ , (8a) 

 

 ( )
xmEi

eXxX 2
2

0
h

−
− = . (8b) 

 
                                                 
1 As is the case in classical mechanics, making the potential some unspecified arbitrary constant (rather than 
zero) does not change the physics.  In the case at hand it is simplest to let that constant equal zero.   
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As usual, we identify the wave vector k  as the factor that multiplies x  in the 
argument of the harmonic function (excluding the ± i ).  Thus 22 hmEk = .  Solving 
this equation for mkE 222h=  and comparing this with the expression for the 
frequency hE=ω  gives us the dispersion relation for the free-particle SE 
 

 ( )
m
kk

2

2h
=ω . (9) 

 
Notice that as a function of k , this is different than 
 
 ( ) ckk =ω , (10) 
 
the dispersion relation for harmonic solutions to the wave equation:  the wave-
equation dispersion relation is a linear function of k  while the SE dispersion relation is 
a quadratic function of k .  The significance of this difference will be discussed in a 
Lectures 27 and 28.   
 
Combining the T  and X  pieces we obtain two linearly independent solutions to the 
free-particle SE   
 
 ( ) ( ) ( )[ ]tkxiktxkitixik

k eeeetx ωωω ψψψψ −−−+ === 000, , (11a) 
 
 ( ) ( ) ( )[ ]tkxiktxkitixik

k eeeetx ωωω ψψψψ +−+−−−− === 000, . (11b) 
 
These two solutions are harmonic waves that travel with speed mkkvph 2h==ω . 
(The subscript ph  stands for phase – more on that later.)  Unlike wave-equation 
solutions [which all move with the same speed ( cvph = )], the propagation speed of 
these harmonic waves depends upon the wave vector k , with kvph ∝ .   
 
As defined above, the wave vector is a positive quantity.  However, if we let the wave 
vector take on negative as well as positive values we see that +−

− = kk ψψ .  Thus we can 
write all the separable solutions as 
 
 ( ) ( )[ ]tkxki

k etx ωψψ −= 0, . (12) 
 
where now ∞<<∞− k , and ( )kω  is still defined by Eq. (9), the dispersion relation.   
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IV.  The Free Particle Initial Value Problem   
As it turns out (and perhaps shouldn't be too surprising) we can write any solution to 
the free-particle SE as a linear combination of these harmonic solutions.  Because the 
index k  is continuous, the linear combination must be expressed as an integral over k , 
 

 ( ) ( ) ( )∫
∞

∞−

= txkCdktx k ,, ψψ , (13) 

 
where ( )kC  is the coefficient of the k th basis state ( )tkk ,ψ .  Using Eq. (12) we can 
rewrite Eq. (13) as 
 

 ( ) ( ) ( )[ ]∫
∞

∞−

−= tkxkiekCdktx ω

π
ψ

2
1, , (14) 

 
where we have set πψ 210 = .2  As in the case of the WE, the coefficients ( )kC  are 
determined by the initial conditions, but because there is only one time derivative 
there is only one initial condition, ( )0,xψ  (the value of the wave function at 0=t ).  
Setting 0=t  in Eq. (14), we obtain 
 

 ( ) ( )∫
∞

∞−

= xikekCdkx
π

ψ
2
10, . (15) 

 
Now this equation tells us that ( )kC  is simply the Fourier transform of the initial 
condition ( )0,xψ .  We can thus invert Eq. (15) to write 
 

 ( ) ( )∫
∞

∞−

−= xikexdxkC 0,
2
1 ψ
π

. (16) 

 
Taken in tandem Eqs. (14) and (16) are the complete solution to the free-particle SE 
initial-value problem.   
 
V.  An Initial-Value-Problem Example 
Let's see what happens if we start with the initial condition 
 
 ( ) 22

00, σψψ xex −= , (17) 

                                                 
2 The choice πψ 210 =  normalizes the harmonic basis states.  See the Lecture 16 notes for details. 
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which is a Gaussian with amplitude 0ψ  and width parameter σ  that is centered at the 
origin.  As will become apparent, this corresponds to a particle whose average 
position x  and average momentum p  are both zero.  Furthermore, the particle has 
an uncertainly in position that is proportional to the width parameter σ .   
 
Using Eq. (16) we can calculate ( )kC , 
 

 ( ) 40 22

2
σσψ kekC −= . (18) 

 
(For details of this calculation see the Lecture 12 notes.)  This is pretty cool:  the 
Fourier transform of the Gaussian function ( )0,xψ , ( )kC , is also a Gaussian function 
(of k ).  Furthermore, the width parameter of ( )kC is σ2 , which is inversely 
proportional to the width parameter σ  of the original function ( )0,xψ . Thus the 
product of the two width parameters is a constant, 22 =⋅ σσ .   
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Using Eq. (18) in Eq. (14), we obtain the solution to this initial-value problem, 
 

 ( ) ( )[ ]∫
∞

∞−

−−= tkxkik eedktx ωσ

π
σψ

ψ 40 22

2
, , (19) 

 
where ( )kω  is given by Eq. (9). 
 
The previous two figures 3  show graphs of ψRe , ψIm , and ψψ *  (the associated 
probability density for the particle) for various times t .  In the first figure 3=σ , while 
in the second figure 1=σ .  As evident from the graphs of ψψ * , in the second case the 
particle is initially more localized than in the first case.   
 
The following facts are also worth noting. 
 
                                                 
3 These figures show snapshots of the videos SE Wavepacket 1.avi and SE Wavepacket 2.avi, which are available 
on the class website.   
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(i)  Although ( )0,xψ  is real, in general ( )tx,ψ  has both real and imaginary parts.  This 
is due to the presence of i  in the Eq. (1), the SE equation.   
 
(ii)  Neither the real or imaginary part of ( )tx,ψ  retains a Gaussian shape, but the 
probability density ψψ *  is Gaussian for all t .   
 
(iii)  The wave function ( )tx,ψ  spreads out along x  in time.  This is due to something 
known as group-velocity dispersion [which depends upon the dispersion relation 
( )kω ] We will discuss this in detail later, but for now note that the narrower the initial 

pulse, the faster the pulse spreads in time.   
 
Let's think for a moment about how this solution compares to the solution to the WE 
that has an initial Gaussian displacement (and no initial velocity).  What was the 
solution in that case?  You should recall that the initial Gaussian pulse split into two 
Gaussian pulses with the same width as the original displacement, and that those 
pulses traveled in opposite directions away from the origin at the speed c .  In contrast 
to the solution here, the traveling pulses described by the wave equation do not 
broaden with time.   
 
Exercises 
 
*26.1  As illustrated, the solution ( )tx,ψ  to the SE is in general a complex function.  
Write ( )tx,ψ  as a sum of real and imaginary parts, ( ) ( )txitx IR ,, ψψ + , substitute into Eq. 
(1) and show that Eq. (1) can be written as two real coupled equations for Rψ  and Iψ .  
(Here you will need to use the fact that the real and imaginary parts of an equation are 
independent of each other.) 
 
*26.2  The momentum p  of a particle in the state ( ) ( )[ ]tkxki

k etx ωψψ −= 0,  is a well-
defined quantity (i.e., it has no uncertainty) and is given by kp h= .  Similarly, the 
energy of the particle in this state is well defined and is simply the parameter 

( )kE ωh= .  Using the dispersion relation ( )kω , show that it is equivalent to the 
energy-momentum relationship for a free classical particle.   
 
*26.3  The two linearly-independent solutions for the ( )xX  equation were written as 

( )
xmEi

eXxX 2
2

0
h=+  and ( )

xmEi
eXxX 2

2

0
h

−
− = .  Find the appropriate linear combinations of 

these two solutions that give the other commonly used form of two linearly 
independent  solutions:  ( ) ( )xAxX mE

2
2

11 cos
h

=  and ( ) ( )xAxX mE
2

2
22 sin

h
= .   
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*26.4  Show for the Gaussian initial condition ( ) 22

00, σψψ xex −=  that the probability 
density ( ) ( )0,0,* xx ψψ  is also a Gaussian.  How is the width parameter of ( ) ( )0,0,* xx ψψ  
related to the width parameter σ  of the wave function ( )0,xψ ?   
 
**26.5  A Free-Particle SE Initial Value Problem 
(a)  Starting with the initial condition 
 

 ( )


 <<−

=
otherwise0

11210, xxψ  

 
for a free particle, find the function ( )kC  appropriate to this initial condition. 
(b)  Then find the formal solution [the equivalent of Eq. (19)] to this initial value 
problem. 
(c)  Make plots of ( )tx,ψ  for 0=t , 2=t , and 4=t .  For purposes of keeping things 
simple, set 1=h  and 1=m  so that the dispersion relation is simply ( ) 22kk =ω .  Hint:  
when numerically evaluating the integral, set the limits only large enough so that the 
integrand is negligible at the endpoints of the integration. 
(d)  Discuss the time dependence of ( )tx,ψ .   
 

*26.6  Show that ( ) ( ) ( )[ ]∫
∞

∞−

−= tkxkiekCdktx ω

π
ψ

2
1,   with ( )

m
kk

2

2h
=ω   solves the 1D, free-

particle Schrödinger equation for any ( )kC .   
 
***26.7  Free Particle in 3D.  Consider the 3D, free-particle Schrödinger equation, 
 

 
t

i
m ∂

∂
=∇−

ψψ h
h 2

2

2
, 

 
Find separation-of-variables solutions to this equation in  
(a)  Cartesian coordinates, 
(b)  cylindrical coordinates, and  
(c)  spherical-polar coordinates. 
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A Propagating Wave Packet – The Group Velocity 
 
Overview and Motivation:  Last time we looked at a solution to the Schrödinger 
equation (SE) with an initial condition ( )0,xψ  that corresponds to a particle initially 
localized near the origin. We saw that ( )tx,ψ  broadens as a function of time, 
indicating that the particle becomes more delocalized with time, but with an average  
position that remains at the origin.  To extend that discussion of a localized wave 
(packet) here we look at a propagating wave packet.  The two key things that we will 
discuss are the velocity of the wave packet (this lecture) and its spreading as a function 
of time (next lecture).  As we shall see, both of these quantities are intimately related 
to the dispersion relation ( )kω .  This discussion has applications whenever we have 
localized, propagating waves, including solutions to the SE and the wave equation 
(WE).   
 
Key Mathematics:  Taylor series expansion of the dispersion relation ( )kω  will be 
central in understanding how the dispersion relation is related to the properties of a 
propagating wave packet.  The Fourier transform is again key because the localized 
wave packet will be described as a linear combination of harmonic waves.    
 
I.  A Propagating Schrödinger-Equation Wave Packet 
In the last lecture we found the formal solution to the initial value problem for the 
free particle SE, which can be written as 
 

 ( ) ( ) ( )[ ]∫
∞

∞−

−= tkxkiekCdktx ω

π
ψ

2
1, , (1) 

 
where the coefficients ( )kC  are the Fourier transform of the initial condition ( )0,xψ , 
 

 ( ) ( )∫
∞

∞−

−= xikexdxkC 0,
2
1 ψ
π

, (2) 

 
and the dispersion relation (for the SE) is given by 
 

 ( )
m
kk

2

2h
=ω . (3) 

 
The example that we previously considered was for the initial condition  
 
 ( ) 22

00, σψψ xex −= . (4) 
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We saw that for increasing positive time ( )tx,ψ  becomes broader (vs x ), but its 
average position remains at the origin.  So, on average the particle is motionless, but 
there is increasing probability that it will be found further away from the origin as t  
increases.   
 
So you might ask, what initial condition would describe a particle initially localized at 
the origin, but propagating with some average velocity?  Well, here is one answer: 
 
 ( ) 22

0
00, σψψ xxik eex −= . (5) 

 
As will be demonstrated below, you may think of 0k  as some average wave vector (or 
momentum 0kh  through deBroglie's relation kp h= ) associated with the state ( )tx,ψ .   
 
As we did in the last lecture, let's find an expression for ( )tx,ψ .  We start by using Eq. 
(2) to calculate ( )kC , so we have 
 

 ( ) ( )∫
∞

∞−

−−−= xkkix eedxkC 0
22

2
0 σ

π
ψ . (6) 

 
This almost looks like the Fourier transform of a Gaussian, which we can calculate.1  
Indeed, we can make it be the Fourier transform of a Gaussian if define the variable 

0kkk −=′ , so that the rhs of Eq. (6) becomes 
 

 ∫
∞

∞−

′−− xkix eedx
22

2
0 σ

π
ψ . (7) 

  
This equals the Gaussian (in the variable k ′ ) 
 

 40 22

2
σσψ ke ′− , (8) 

 
and now reusing the relation 0kkk −=′  we can write 
 

 ( ) ( ) 40 22
0

2
σσψ kkekC −−= . (9) 

                                                 
1 As we stated in the last lecture, the Fourier transform of the Gaussian 22 σxe−  is another Gaussian 

4
2

22σσ ke− . 



Lecture 27 
  Phys 3750 

D M Riffe -3- 4/3/2013 

Note that if 00 =k , then we obtain ( ) ( ) 4
0

22

2 σσψ kekC −= , the result from the last 
lecture. 
 
Equation (9) tells us several important things.  Recall that we are describing the state 
( )tx,ψ  as a linear combination of normal-mode traveling-wave states ( )[ ]tkxkie ω− , each 

of which is characterized by the wavevector k λπ2=  and phase velocity  
mkkkvph 2)( h== ω .  As Eq. (1) indicates, the function ( )kC  is the amplitude (or 

coefficient) associated with the state with wavevector k .  As Eq. (9) indicates, the 
coefficients ( )kC  are described by a Gaussian centered at the wave vector 0k .  Thus, 
you may think of the state ( )tx,ψ  as being characterized by an average wave vector 0k .  
The width of the function ( )kC , with width parameter σ2 , is also key to describing 
the state ( )tx,ψ .  Because this width parameter is inversely proportional to the 
localization (characterized by σ ) of the initial wave function ( )0,xψ , we see that a 
more localized wave function ( )0,xψ  requires a broader distribution (characterized by 
σ2 ) of (normal-mode) states in order to describe it.  Insofar as momentum is equal 

to kh , this inverse relationship between the widths of ( )0,xψ  and ( )kC  is the essence 
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of the uncertainty principle. We shall discuss this in great detail in Lecture 29.   
 
Let’s now look at the time dependence of ( )tx,ψ .  With Eq. (9) we can now use Eq. (1) 
to write 
 

 ( ) ( ) ( )[ ]∫
∞

∞−

−−−= tkxkikk eedktx ωσ

π
σψψ 40 22

0

2
, , (10) 

 
keeping in mind that the dispersion relation ( )kω  is given by Eq. (3).  This looks 
complicated, so let's look at some graphs of ( )tx,ψ  to see what is going on with this 
solution.  The preceding figure, which contains snapshots of the video SE Wavepacket 
3.avi,  illustrates ( )tx,ψ  as a function of time (for a positive value of 0k ).  Notice that 
the wave packet moves in the x+  direction with a constant velocity.  Notice also that 
( )tx,ψ  is not simply a translation in time of the function ( )0,xψ .  That is, the solution is 

not of the form ( )vtxg − , where v  is some velocity.  This can be seen in the video by 
noticing that the center of the wave packet travels faster than any of the individual 
oscillation peaks.   
 
II.  The Group Velocity 
We now want to determine the velocity of the propagating wave packet described by 
Eq. (10).  Because this solution ( )tx,ψ  can be thought of as having an average wave 
vector 0k , you might guess that the velocity is simply the phase velocity ( ) kkvph ω=  
evaluated at the average wave vector 0k .  That is, you might think that the packet's 
velocity is simply the velocity of the normal-mode traveling-wave solution  
 
 ( ) ( )[ ] ( )[ ]tkxiktkxki

k eetx 0000

0 00, ωω ψψψ −− == , (11) 
 
which propagates in the x+  direction at the phase velocity ( ) mkkkvph 2000 h==ω .  
However, this is not correct!   
 
To figure out the packet's velocity we must carefully analyze the propagating-pulse 
solution described by Eq. (10).  This solution lends itself to some approximation 
because part of the integrand, ( ) 422

0 σkke −− , is peaked at 0kk = , and for values of 
σ20 >>− kk  this part of the integrand is nearly zero.  The importance of this is that 

we only need to know what ( )kω  is for 0kk −  less than a few times the width 
parameter σ2 .  That is, we only need to know what ( )kω  is for values of k  close to 

0k .  If ( )kω  is does not vary too much for these values of k , then it makes sense to 
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approximate ( )kω  by the first few terms of a Taylor series expansion about the point 
0k .  So we write 

 

 ( ) ( ) ( )( ) ( )( ) ...
2
1 2

00000 +−′′+−′+= kkkkkkkk ωωωω  (12) 

 
If we now approximate ( )kω  in Eq. (10) by the first two terms of the series, 
( ) ( ) ( )( )000 kkkkk −′+≈ ωωω , then we obtain 

 

 ( ) ( ) ( )[ ] ( ) ( )[ ]∫
∞

∞−

′−−−′−−≈ tkxikkktkkki eedketx 0
22

0000 40

2
, ωσωω

π
σψψ . (13) 

 
This looks rather messy, but the integral can be calculated exactly to yield 
 
 ( ) ( )[ ]{ } ( )[ ] 22

0000
0, σωωψψ tkxtkkxik eetx ′−−−≈ . (14) 

 
We can now easily see what is going on.  This (approximate) solution is the product of 
the normal-mode traveling wave solution ( ) ( )[ ]{ }tkkxik

k etx 000

0 0, ωψψ −=  (at the wave vector 

0k ), which travels at a speed equal to the phase velocity  
 

 ( ) ( )
k
kkvph

ω
=  (15) 

 
(evaluated at 0k ) and a Gaussian "envelope" function ( )[ ] 22

0 σω tkxe ′−− , which travels at a 
speed equal to ( )0kω′ .  The derivative ( )kω′  is known as the group velocity 
 

 ( ) ( )
dk
kdkvgr

ω
=  (16) 

 
and so the envelope function, which describes the position of the packet, travels at 
the group velocity (evaluated at 0kk = ).  Note that the group and phase velocities are 
not necessarily equal.  The group velocity is typically more important than the phase 
velocity because the average position of the particle is given by the peak of the 
envelope function.   
 
With these definitions of phase and group velocities we can now write Eq. (14) as 
 
 ( ) ( ) ( ) 22

0
0, xgrph atvxtvxik eetx −−−≈ψψ , (17) 
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where both phv  and grv  are evaluated at the wave vector 0k .   
 
III.  Application to the Schrödinger Equation 
You may have noticed that nothing in the last section was necessarily directly related 
to the SE.  That is, Eq. (17) can be applied to any situation where general solutions to 
the problem at hand can be described as a linear combination of harmonic, traveling-
wave solutions that have a dispersion relation ( )kω .  The SE happens to be one of 
those situations;  so let's apply the results of the last section to the SE.  We simply 
need to know that for the SE the dispersion relation is 
 

 ( )
m
kk

2

2h
=ω . (18) 

 

From Eq. (18) we obtain the phase  and the group velocities ( ) mkkvph 200 h=  and 
( ) mkkvgr 00 h= , respectively.  Notice that the group velocity is twice the phase velocity.   

This explains the behavior of the pulse in the video, where the center of the pulse 
(which travels at grv ) travels faster than any of the oscillation peaks (which travel at 
phv ).  With the interpretation that Eq. (10) describes a particle with an average 

momentum 00 kp h= , we see that the group velocity corresponds to the result for a 
classical, nonrelativistic particle mpvgr 0= .   
 
IV.  Application to the Wave Equation 
We can also apply the results of Sec. II to the wave equation.  Because harmonic 
traveling waves can also be used as basis functions for solutions to the WE (see 
Lecture notes 21), we can also create a wave-packet solution to the WE of the form of 
Eq. (17).  Again , we simply need to know the dispersion relation 
 
 ( ) ckk =ω  (19) 
 
in order to calculate the phase and group velocities, which are thus 

( ) ( ) ckkkvph == 000 ω  and ( ) ( ) ckkvgr =′= 00 ω , respectively.  So in this case the two 
velocities are equal!  Then the solution given by Eq. (17) becomes 
 
 ( ) ( ) ( ) 22

0

0 0, xatcxtcxik
k eetx −−−=ψψ . (20) 

 
Notice that Eq. (20) is a function of ctx − , and as such is an exact solution to the wave 
equation, rather than an approximate solution (as it is for the SE).  (Why is that?)  The 
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figure on the preceding page shows snapshots of the video WE Wavepacket 1.avi.  In 
contrast to the SE solution both the center of the wave packet and the oscillation 
peaks travel at the same velocity, consistent with the solution being a function of 

ctx − .   

 
 
Exercises 
 
*27.1  Show that Eq. (13) follows from Eq. (10) with the linear Taylor's-series 
approximation described in the notes. 
 
*27.2  Equation (12) is the Taylor's-series expansion of the dispersion relation about 
the point 0kk = .  For the dispersion relation appropriate to the WE, find all terms in 
this expansion.  Then argue why Eq. (20), is an exact solution to the WE. 
 
 

20 0 20 40
1

0.5

0

0.5

t = 15

x

20 0 20 40
1

0.5

0

0.5

t = 5

x

20 0 20 40
1

0.5

0

0.5

t = 0

Re ψ x t,( )( )

Im ψ x t,( )( )

2 ψ x t,( ) ψ x t,( )

⋅( )⋅ 1−

x

20 0 20 40
1

0.5

0

0.5

t = 10

Re ψ x t,( )( )

Im ψ x t,( )( )

2 ψ x t,( ) ψ x t,( )

⋅( )⋅ 1−

x



Lecture 27 
  Phys 3750 

D M Riffe -8- 4/3/2013 

 
**27.3  SE Approximate Solution 
(a)  Calculate the integral on the rhs of Eq. (13) and show that Eq. (13) simplifies to 
Eq. (14).  (Hint:  Transform the integral to be the Fourier transform of a Gaussian, 
and then use the fact that the Fourier transform of 22 σxe−  is 4

2

22σσ ke− .) 
(b)  Show that Eq. (14) consistent with Eq. (5), the initial condition. 
 
*27.4  EM Waves  For electromagnetic waves traveling in a dielectric material such as 
glass the dispersion relation is ( ) ( )knck =ω , where n  is the index of refraction, which 
is often assumed to be a constant. 
(a)  If n  is indeed a constant, calculate the phase and group velocities for these waves. 
(b)  Often, however, the index of refraction depends upon the wave vector k .  
Assuming that ( ) knnkn 10 += , find the phase and group velocities.   
(c)  For ( )kn  given in (b) show that ( )[ ]knnknvv phgr 1011 +−= .   
 
*27.5  Calculate ψψ *  for the approximate wave function given by Eq. (17) and show 
that ψψ *  travels at the group velocity grv .   
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A Propagating Wave Packet – Group Velocity Dispersion 
 
Overview and Motivation:  In the last lecture we looked at a localized solution 
( )tx,ψ  to the 1D free-particle Schrödinger equation (SE) that corresponds to a particle 

moving along the x  axis (at a constant velocity).  We found an approximate solution 
that has two velocities associated with it, the phase velocity and the group velocity.  
However, the approximate solution did not exhibit an important feature of the full 
solution – that the localization (i.e., width) of the wave packet changes with time.  In 
this lecture we discuss this property of propagating, localized solutions to the SE.   
 
Key Mathematics:  The next term in the Taylor series expansion of the dispersion 
relation ( )kω  will be central in understanding how the width of the pulse changes in 
time.  We will also gain practice at looking at some complicated mathematical 
expressions and extracting their essential features.  We will do this, in part, by defining 
normalized, unitless parameters that are applicable to the problem.   
 
I.  The First-Order Approximate Solution (Review)  
In the last lecture we looked at a localized, propagating solution that can be described 
as a linear combination of traveling, normal-mode solutions of the form ( )[ ]tkkxie ω− , 
 

 ( ) ( ) ( )[ ]∫
∞

∞−

−−−= tkxkikk eedktx ωσ

π
σψψ 40 22

0

2
, . (1) 

 
If Eq. (1) is a solution to the SE, then the dispersion relation is ( ) mkk 22h=ω .  In 
order to gain some insight into Eq. (1) we Taylor-series expanded the dispersion 
relation about the average wave vector 0k  associated with ( )tx,ψ , 
 

 ( ) ( ) ( )( ) ( )( ) ...
2
1 2

00000 +−′′+−′+= kkkkkkkk ωωωω . (2) 

 
We then approximated ( )kω  by the first two terms (the constant and linear- k  terms) 
in the expansion and obtained the approximate solution  
 
 ( ) ( )[ ] ( )[ ] 22

000
0, σψψ tkvxtkvxik grph eetx −−−≈ , (3) 

 
where ( ) ( ) kkkvph ω=  is known as the phase velocity and ( ) ( )kkvgr ω′=  is known as the 
group velocity.  The phase velocity is the speed of the normal-mode solution 

( )( )[ ]tkkxike 000 ω− , while the group velocity is the speed of the envelope function 
( )[ ] 22

0 σω tkxe ′−− .  Because it is also the speed of the probability density function 
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 ( )[ ] 22
02

0
*
0

* σωψψψψ tkxe ′−−= , (4)  
 
it can be though of as the average speed of the particle that the SE describes.   
 
However, the approximate solution [Eq. (3)], does not exhibit an important property 
of the exact solution:  the localization (or width) of the exact solution varies with time 
while the localization of the approximate solution is constant (and can be described by 
the width parameter σ .)   
 
The three videos, SE Wavepacket4.avi, SE Wavepacket5.avi, and SE Wavepacket6.avi 
illustrate the time dependent broadening of propagation wave-packet solutions.  
Notice that the narrower the initial wave packet, the faster it spreads out in time.  This 
is one result from the analysis below.   
 
II.  The Second-Order Approximate Solution 
By also including the next term in Eq. (2), the Taylor's series expansion of the 
dispersion relation, we obtain an approximate solution that exhibits the desired 
feature of a width that changes as the wave packet propagates.1  Including the first 
three terms in the Taylor's series expansion and substituting this into Eq. (1) produces, 
after a bit of algebra, the approximate solution 
 

 ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫
∞

∞−

′−′′+−−′−−≈ tkxiktkikktkkki eedketx 00
22

0000 240

2
, ωωσωω

π
σψψ  (5) 

 
This is exactly the same as the approximate solution that we obtained in the last 
lecture except for the term containing ( )0kω ′′ .  But notice where it appears – as an 
additive term to 42σ , which controls the width of the pulse.  Thus we might already 
guess that ( )0kω ′′  will affect the width as the pulse propagates. 
 
Fortunately, for purposes of further analysis Eq. (5) has an analytic solution 
 

 
( )

( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ] ( )[ ]{ }

( )( )[ ] ( )[ ] ( )[ ] 











 ′′+′−−

−

′′+′−′′′′−

×

′′+
≈

22
0

22
0

000

2
0

42
00

2
0

21

222arctan2
412

0
4

0

2
,

σωσω
ω

ωσωωσω

ωσ

σψψ

tktkxtkkxik

tktkxtkitki

ee

ee
tk

tx
. (6) 

 

                                                 
1 Actually, all of the higher-order terms can contribute to the broadening of the pulse.  However, if the width 
parameter σ  is not too small, then only the contribution of the quadratic term to the time dependent 
broadening needs to be considered. 
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OK, so maybe solving the integral wasn't so fortunate.  But let's see what we can do 
with it.  First notice that, compared to our previous solution we have two new 
exponential-function terms, ( ) ( )( )2

02arctan2 σω tkie ′′−  and ( ) ( )[ ] ( )[ ]{ }2
0

42
00 22 tktkxtkie ωσωω ′′+′−′′  [Notice 

that they are both equal to 1 when ( ) 00 =′′ kω .]  However, because the exponents in 
both of these terms are purely imaginary, they contribute nothing to the width of the 
wave packet (as we will see below).  We will thus not worry about them.  The third 
exponential term we are already familiar with; it is the harmonic traveling wave 
solution ( )( )[ ]tkkxike 000 ω−  that propagates at the phase velocity ( )0kv ph .  (Because its 
exponent is also purely imaginary, it too does not contribute to the width of the wave 
packet.)   
 
It is the fourth exponential-function term that has some new interest for us.  Notice 
that it is a Gaussian function that again travels with the group velocity ( )0kω′ , but with 
a time-dependent width 
 

 ( ) ( )
212

2
021

















 ′′

+=
σ

ωσσ tkt  (7) 

 
that is a minimum for 0=t .  Notice that if ( ) 00 =′′ kω , as in the case of the wave 
equation, then the width has no time dependence and is simply σ .2  However, in the 
case of the SE, for example, ( ) 00 ≠=′′ mk hω .  Thus the SE wave packet has a time 
dependent width. 
 
For large times we see from Eq. (7) that ( )tσ  is approximately linear vs time 
 

 ( ) ( )
σ

ωσ tkt 02 ′′
≈ , (8) 

 
which tells us that  
 

 ( ) ( )
σ

ωσ 02 k
dt
td ′′
≈ . (9) 

 
That is, for long times the rate of broadening is proportional to the second derivative 
of the dispersion relation and inversely proportional to the width parameter σ .  That 
is, the narrower the pulse is at 0=t , the faster it broadens with time, as the videos 
above illustrated.   
                                                 
2 Because all derivatives of the dispersion relation for the WE higher than first order are zero, Eq. (3) is exact 
for the wave equation. 
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III.  Normalized Variables 
To gain some further insight into this time-dependent width let's make a graph of 
( )tσ  vs t .  But let's be smart about the graph;  let's construct the graph so that it has 

universal applicability.  To do this we will graph unitless, normalized quantities that are 
scaled values of  ( )tσ  and t .  So how do we normalize ( )tσ  and t  to make them 
universal to the problem at hand.  The answer is in Eq. (7) itself.  First notice that if 
we divide ( )tσ  by σ  then we will have a unitless width that is equal to 1 at 0=t .  So 
let's define a normalized width Nσ  as ( ) σσ t .  What about the variable t ?  Again, the 
answer is in Eq. (7).  Notice that the quantity ( ) 2

02 σω tk′′  is also unitless because its 
value squared is added to 1 in Eq. (7).  So let's define a normalized time variable 

( ) 2
02 σωτ tk′′= .  With these two universal variables Eq. (7) can be re-expressed as 

 
 ( ) [ ] 2121 ττσ +=N  (10) 
 
Ah, much simpler!  The figure on the next page plots ( )τσ N  vs τ  on two different 
graphs with different scales.  From the  graphs we can visually inspect the behavior of 
Eq. (10).  For example, we see for 1<<τ  that ( ) 1≈τσ N .  This means that for 1<<τ  the 
width is approximately constant vs time.  The actual time scale (in seconds) over 
which this is true will, of course, depend upon the parameters that went into the 
definition of τ :  ( )0kω ′′  and σ .  From the graph we also see that for 1>>τ , ( ) ττσ ≈N , 
indicating (again) that the width changes linearly vs time for large negative or positive 
times.   
 
IV.  Application to the Schrödinger Equation 
Lastly, let's consider the probability density ψψ * , assuming that Eq. (6) describes a 
solution to the SE.  From Eq. (6) we calculate 
 

 
( )[ ]{ }

( )[ ] ( )[ ] 











 ′′+′−−

′′+
≈

22
0

22
0 212

212
0

4

2
0

*
0*

2

σωσω

ωσ

σψψψψ
tktkx

e
tk

. (11) 

 
Using Eq. (7), the definition of ( )tσ , Eq. (11) can be rewritten more compactly as 
 

 ( )
( )[ ] ( )[ ]22

02
0

*
0

* ttkxe
t

σω

σ
σψψψψ ′−−≈ . (12) 
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Notice that the probability density retains its Gaussian shape as the wave packet 
propagates, but with a time-dependent width parameter equal to ( ) 2tσ .  Notice that 
the amplitude ( )tσσψψ 0

*
0  that multiplies the Gaussian function is also time 

dependent; as the width ( )tσ  increases this amplitude decreases.  The amplitude varies 
with the width such that that the total probability for finding the particle anywhere 
along the x  axis, 
 

 ( ) ( ) ( )txtxdxtP ,,* ψψ∫
∞

∞−

= , (13) 

 
remains constant in time.   
 
The solution given by Eq. (6) and the probability density given by Eq. (11) are 
illustrated for both negative and positive times in the videos SE Wavepacket7.avi, SE 
Wavepacket8.avi, and SE Wavepacket9.avi.  As Eq. (10) indicates, the pulse becomes 
narrower as 0=t  is approached, and the pulse becomes broader after 0=t .  Notice, 
especially in SE wavepacket8.avi, that there is a time near 0=t  during which the pulse 
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width is approximately constant, corresponding to 1<<τ .  During this time the height 
of ψψ *  (which is also shown in the videos) is also approximately constant.   
 
Exercises 
 
*28.1  Equation (2) is the Taylor's-series expansion of the dispersion relation about 
the point 0kk = .  For the dispersion relation appropriate to the SE, find all terms in 
this expansion.  Then argue why Eqs. (5) and (6) are exact solutions (as opposed to 
approximate solutions) to the SE. 
 
**28.2  A SE free particle 
(a)  Rewrite Eq. (11), the expression for the probability density, with expressions for 
( )kω′  and ( )kω ′′  that are appropriate for a wave described by the Schrödinger equation.   

(b)  Make several graphs (at least 3) of the probability density ( ) ( )txtx kk ,,
00

* ψψ  vs x  for 
several different values of t  .  The graphs should clearly illustrate the change in the 
width of the wave packet as the wave packet propagates.  For simplicity you may set 

1=h  and 1=m . 
 
*28.3  The Dimensionless Time Variable τ  
(a)  Using dimensional analysis, show that the variable ( ) 2

02 σωτ tk′′=  is unitless. 
(b)  1<<τ  and 1>>τ  corresponds to what conditions on t ? 
 
**28.4  The figure in the notes shows that for 1.0<τ  the width of the wave packet is 
nearly constant.  Let's apply this result to a SE free electron with a kinetic energy of 
10 eV.  To do this find the value of t  (in seconds) that corresponds to 1.0=τ .  Do 
this for values of σ  = 10 nm and 10 µm.  For these two cases how far does the 
electron travel in the time corresponding to 1.0=τ ?  How does each of these 
distances compare with the respective initial width? 
 
**28.5  SE probability density. 
(a)  Substitute Eq. (12) into Eq. (13), calculate the integral, and thus show that the 
result does not depend upon t .   
(b)  Generally, the constant 0ψ  in Eq. (12) is chosen so that the total probability to 
find the particle anywhere is equal to 1.  Using your result in (a), find a value for 0ψ  
that satisfies this condition.   
 
*28.6  Show that during a normalized time interval of 1=τ  the normalized distance 
σd  traveled is equal to kk σ0  (where σσ 2=k ).  As the normalized width Nσ  is 

controlled by  τ , this shows that the dispersion is controlled by the ratio kk σ0 .   
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The Uncertainty Principle 
 
Overview and Motivation:  Today we discuss our last topic concerning the 
Schrödinger equation, the uncertainty principle of Heisenberg.  To study this topic we 
use the previously introduced, general wave function for a freely moving particle.  As 
we shall see, the uncertainty principle is intimately related to properties of the Fourier 
transform. 
 
Key Mathematics:  The Fourier transform, the Dirac delta function, Gaussian 
integrals, variance and standard deviation, quantum mechanical expectation values, 
and the wave function for a free particle all contribute to the topic of this lecture.   
 
I.  A Gaussian Function and its Fourier Transform   
As we have discussed a number of times, a function ( )xf  and its Fourier transform 
( )kf̂  are related by the two equations 

 

 ( ) ( )∫
∞

∞−

= dkekfxf ikxˆ
2
1
π

, (1a) 

 

 ( ) ( )∫
∞

∞−

−= dxexfkf ikx

π2
1ˆ , (1b) 

 
We have also mentioned that if ( )xf  is a Gaussian function 
 
 ( ) 22

xxexf σ−= , (2) 
 
then its Fourier transform ( )kf̂  is also a Gaussian, 
 

 ( ) 222ˆ kk

k
ekf σ

σ
−= , (3) 

 
where the width parameter kσ  of this second Gaussian function is equal to xσ2 , and 
so we have the result that the product kxσσ of the two width parameters is a constant,  
 
 2=kxσσ . (4) 
 
Thus, if we increase the width of one function, either  ( )xf  or ( )kf̂ , the width of the 
other must decrease, and vice versa. 
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Now this result wouldn't be so interesting except that it is a general relationship 
between any function and it Fourier transform:  as the width of one of the functions 
is increased, the width of the other must decrease (and vice versa).  Furthermore, as 
we shall see below, this result is intimately related to Heisenberg's uncertainty 
principle of quantum mechanics.   
 
II.  The Uncertainty Principle   
The uncertainty principle is often written as 
 

 
2
h

≥∆∆ xpx , (5) 

 
where x∆  is the uncertainty in the x  coordinate of the particle, xp∆  is the uncertainty 
in the x  component of momentum of the particle, and π2h=h , where h  is Planck's 
constant.  Equation (5) is a statement about any state ( )tx,ψ  of a particle described by 
the Schrödinger equation.1  While there are plenty of qualitative arguments concerning 
the uncertainty principle, today we will take a rather mathematical approach to 
understanding Eq. (5). 
 
The two uncertainties x∆  and xp∆  are technically the standard deviations associated 
with the quantities x  and xp , respectively.  Each uncertainty is the square root of the 
associated variance, either ( )2x∆  or ( )2xp∆ , which are defined as 
 
 ( ) ( )22 xxx −=∆ , (6a) 
 
 ( ) ( )22

xxx ppp −=∆ , (6b) 
 
where the brackets  indicate the average of whatever is inside them. 
 
Experimentally, the quantities in Eq. (6) are determined as follows.  We first measure 
the position x  of a particle that has been prepared in a certain state ( )tx,ψ .  We must 
then prepare an identical particle in exactly the same state ( )tx,ψ  (with time suitably 
shifted) and repeat the position measurement exactly, some number of times.  We 
would then have a set of measured position values.  From this set we then calculate 
the average position x .  For each measurement x  we also calculate the quantity 
( )2xx − , and then find the average of this quantity.  This last calculated quantity is the 

                                                 
1 We are implicitly thinking about the 1D Schrödinger equation; thus there is only one spatial variable.   
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variance in Eq. (6a).  Finally, the square root of the variance is the standard deviation 
x∆ .  This whole process is then repeated, except this time a series of momentum 

measurements is made, allowing one to find xp∆ . 
 
What we want to do here, however, is use the theory of quantum mechanics to 
calculate the variances in Eq. (6).  How do we calculate the average value of a 
measurable quantity in quantum mechanics?  Generally, we calculate the expectation 
value of the operator associated with that quantity.  For example, let's say we are 
interested in the (average) value of the quantity O  for a particle in the state ( )tx,ψ .  
We then calculate the expectation value of the associated operator Ô , which is 
defined as2 
 

 
( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

dxtxtx

dxtxOtx

O

,,

,ˆ,

*

*

ψψ

ψψ

. (7) 

 
The quantity O  can be any measurable quantity associated with the state:  the position 
x , for example.   
 
Notice that the variance involves two expectation values.  Again consider the position.  
We see that we must first use Eq. (7) to calculate x  and then use that in the 
calculation of the second expectation value.  Finally to get x∆  we must take the square 
root of Eq (6a).   
 
We can actually rewrite Eq. (6) in slightly simpler form, as follows.  Consider Eq. (6a). 
We can rewrite it as 
 
 ( ) 222 2 xxxxx +−=∆   (8) 
 
Now because the expectation value is a linear operation [see Eq. 7], this simplifies to 
 
 ( ) 222 2 xxxxx +−=∆ . (9) 
 

                                                 
2 Usually in quantum mechanics one deals with normalized wave functions, in which case the denominator of 
Eq. (6) is equal to 1.  Rather than explicitly deal with normalized functions, we will use Eq. (7) as written. 
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Furthermore, because an expectation value is simply a number, 22 xx =  and 
2222 xxxxx == .  Eq. (9) thus simplifies to 

 
 ( ) 222 xxx −=∆ . (10a) 
 
Similarly, for ( )2xp∆  we also have 
 
 ( ) 222

xxx ppp −=∆ . (10b) 
 
Thus we can write the two uncertainties as 
 
 22 xxx −=∆ , (11a) 
 
 22

xxx ppp −=∆ . (11b) 
 
III.  The Uncertainty Principle for a Free Particle   
A. A Free Particle State 
Let's now consider a free particle and calculate these two uncertainties using Eq. (11).  
You should recall that we can write any free-particle state as a linear combination of 
normal-mode traveling wave solutions as 
 

 ( ) ( ) ( )[ ]∫
∞

∞−

−= tkxkiekCdktx ω

π
ψ

2
1, , (12) 

 
where the coefficient ( )kC  of the k th state is the Fourier transform of the initial 
condition ( )0,xψ , 
 

 ( ) ( )∫
∞

∞−

−= xikexdxkC 0,
2
1 ψ
π

, (13) 

 
and the dispersion relation is, of course, given by ( ) mkk 22h=ω .  To keep things 
simple, let's assume that the state we are interested in is a particle moving along the x  
axis.  As discussed in the Lecture 27 notes one particular initial condition (but 
certainly not the only one, see Exercise 29.1) that can describe such a particle is 
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 ( ) 22
0

00, xxxik eex σψψ −= . (14) 
 
As we also saw in those notes, this initial condition results in 
 

 ( ) ( ) 40 22
0

2
xkkx ekC σσψ −−= , (15) 

 
which gives us the wave function 
 

 ( ) ( ) ( )[ ]∫
∞

∞−

−−−= tkxkikkx eedktx x ωσ

π
σψψ 40 22

0

2
, . (16) 

 
B. Position Uncertainty x∆  
With the wave function in Eq. (16) we can now (in principle) calculate the expectation 
values in Eq. (11).  We start by calculating the uncertainty in .x   From Eq. (11) we see 
that we need to calculate two expectation values:  x  and 2x .  Using Eq. (6), the 
definition of an expectation value, we write the expectation value of x  as 
 

 
( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

dxtxtx

dxtxxtx

x

,,

,ˆ,

*

*

ψψ

ψψ

, (18) 

 
where we have kept the "hat" on the x  inside the integral to emphasize that x̂  is an 
operator.  But when x̂  operates on ( )tx,ψ  it simply multiplies ( )tx,ψ  by x .  Equation 
(18) then becomes 
 

 
( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

dxtxtx

dxtxxtx

x

,,

,,

*

*

ψψ

ψψ

. (19) 

 
We could now insert Eq. (16) for ( )tx,ψ  into Eq. (19) and calculate away, but it will 
get really ugly really fast.  But let's recall the behavior of the free particle state 
described by Eq. (16):  As it propagates from negative time it gets narrower up until 

0=t , and then as it further propagates it becomes broader.  Given this, let's calculate 
the uncertainty in x  when it will be a minimum, at 0=t .   
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Then Eq. (19) becomes3  
 

 

( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

dxxx

dxxxx

x

0,0,

0,0,

*

*

ψψ

ψψ

. (20) 

 
If we now insert the rhs of Eq. (14), the expression for ( )0,xψ , into Eq. (20) we get 
 

 

∫

∫
∞

∞−

−

∞

∞−

−

=
dxe

dxex
x

x

x

x

x

22

22

2

2

σ

σ

 (21) 

 
You should immediately recognize that the integral in the numerator is zero (why?) 
and that the integral in the denominator is not zero.  Thus, 0=x  and so 02 =x .  
This result should not be very surprising:  at 0=t  the probability density is a Gaussian 
centered at 0=x , so the average value of the position is simply zero. 
 
We now calculate 2x , which is given by 
 

 

( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

dxxx

dxxxx

x

0,0,

0,0,

*

2*

2

ψψ

ψψ

. (22) 

 
As we did in calculating x  we substitute the rhs of Eq. (14) for ( )0,xψ , which gives 
us 
 

                                                 
3 As far as all the calculations of the expectation values (that we are interested in) are concerned, t  is just a 
parameter.  We are free to simply set it to whatever value we might be interested in and calculate all 
expectation values with it set to that value.  This would not be true if we were interested in a t  dependent 
operator (such as the energy operator ti ∂∂h ). 
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∫

∫
∞

∞−

−

∞

∞−

−

=
dxe

dxex
x

x

x

x

x

22

22

2

22

2

σ

σ

. (23) 

 
Now this expectation value is certainly not zero.  By looking these two integrals up in 
an integral table (or using Mathcad, for example) we obtain the result 
 

 
4

2
2 xx σ
=  (24) 

 
Given that 22 xxx −=∆  and 0=x , we thus have 
 

 
2
xx σ

=∆ . (25) 

 
That is, the uncertainty in position is simply equal to half of the width parameter xσ .  
Again, this should not be too surprising:  the more spread out the wave function 
( )tx,ψ  (which is controlled by xσ  at 0=t ) the larger the uncertainty in its position.   

 
C. Momentum Uncertainty xp∆  
We now calculate the momentum uncertainty xp∆ .  Referring to Eq. (11), we see that 
we need to calculate xp  and 2

xp .  Notice that both of these are the expectation 
values of some power of the momentum.  Now you should have learned in your 
modern physics course that the momentum operator is given by the differential 
operator 
 

 
x

ipx ∂
∂

−= hˆ . (26) 

 
This then implies for any integer n  that  
 

 ( )
n

n
n

n
n
x x

i
x

ip
∂
∂

−=







∂
∂

−= hhˆ . 

 
Before we go ahead and do the calculations of xp  and 2

xp , it is worth considering 
the expectation value n

xp  for any integer n , 
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( ) ( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−
∂

∂
−

=

dxtxtx

dx
x
txtxi

p
n

n
n

n
x

,,

,,

*

*

ψψ

ψψh

. (27) 

 
To do this we use Eq. (12), which is the general form of ( )tx,ψ for a free particle.  
(Thus this calculation will be applicable to any time t .)  Substituting this into Eq. (27) 
gives us 
 

 

( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]∫ ∫∫

∫ ∫∫
∞

∞−

∞

∞−

−

∞

∞−

′−′−

∞

∞−

∞

∞−

−

∞

∞−

′−′−

′′















∂
∂′′−

=

tkxkitkxki

tkxki
n

n
tkxki

n

n
x

ekCdkekCkddx

ekCdk
x

ekCkddxi

p
ωω

ωω

π

π

*

*

2
1

2
h

 (28) 

 
Now we have seen these sorts of integrals before.  You may remember that things can 
sometimes get considerably simpler if we do some switching of the order of 
integration.  Calculating the derivatives in the numerator and then moving the x  
integral to the interior (in both the numerator and denominator) produces 
 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )∫ ∫∫

∫ ∫∫
∞

∞−

∞

∞−

′−

∞

∞−

−′

∞

∞−

∞

∞−

′−

∞

∞−

−′

′′

′′

=

xkkitkitki

xkkitkintki
n

n
x

edxekCdkekCkd

edxekCkdkekCkd

p
ωω

ωω

π

π

*

*

2
1

2
h

 (29) 

 
We now use an expression for the Dirac delta function, 
 

 ( ) ( )∫
∞

∞−

′−=′− xkkiedxkk
π

δ
2
1 , (30) 

 
to rewrite Eq. (29) as 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )∫ ∫

∫ ∫
∞

∞−

∞

∞−

′−

∞

∞−

′

∞

∞−

−

′−′′

′−′′

=

kkekCkdekCdk

kkekCkdekCkdk

p
tkitki

tkitkinn

n
x

δ

δ

ωω

ωω

*

*h

, (31) 

 
where we have also switched the order of the k  and k ′  integrations.  The k ′  integral 
is now trivially done, giving 
 

 

( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

kCkCdk

kCkkCdk

p

nn

n
x

*

*h

. (32) 

 
Notice that even though we started with the general, time-dependent, free-particle 
wave function ( )tx,ψ  in Eq. (27), the expectation value of any (integer) power of the 
momentum is independent of time.  Perhaps this should not be too surprising.  For a 
classical free particle there is no change in momentum of the particle.  Here we see for 
a quantum-mechanical particle that the expectation value associated with any (integer) 
power of the momentum does not change with time.  In fact, the expectation value of 
any function of the momentum is independent of time for the free particle.   
 
Let's now calculate xp∆  using Eq. (32).  We first calculate xp , which is given by 
 

 

( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

kCkCdk

kCkkCdk

px
*

*h

. (33) 

 
And using Eq. (15), the particular expression for ( )kC  in the case at hand, Eq. (33) 
becomes 
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( )

( )∫

∫
∞

∞−

−−

∞

∞−

−−

=
42

42

22
0

22
0

x

x

kk

kk

x

edk

ekdk
p

σ

σh

. (34) 

 
The integrals can be simplified with the change of variable 0kkk −=′ , dkkd =′ , which 
produces 
 

 
( )

∫

∫
∞

∞−

′−

∞

∞−

′−

′

+′′

=
42

42
0

22

22

x

x

k

k

x

ekd

ekkkd
p

σ

σh

. (35) 

 
Bu inspection it should be clear that this simplifies to 
 
 0kpx h= . (36) 
 
So we see that the average momentum of the particle is just the momentum of the 
state at the center of the distribution ( )kC .   
 
We lastly need to calculate 2

xp .  However, it is actually much simpler if we directly 

calculate ( ) ( ) ( )20
22 kpppp xxxx h−=−=∆ , which we can write as 

 

 ( )
( )( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−

−

=∆

kCkCdk

kCkkkCdk

px
*

2
0

*2

2

h

. (37) 

 
And again using Eq. (15), the expression for ( )kC , Eq. (37) becomes 
 

( )
( ) ( )

( )∫

∫
∞

∞−

−−

∞

∞−

−−−
=∆

42

422
0

2

2

22
0

22
0

x

x

kk

kk

x

edk

ekkdk
p

σ

σh

. (38) 
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Making the same change of integration variable as before, 0kkk −=′ , dkkd =′  (in both 
integrals), Eq. (38) becomes 
 

 ( )
∫

∫
∞

∞−

′−

∞

∞−

′−′

=∆
42

4222

2

22

22

x

x

k

k

x

edk

ekdk
p

σ

σh

. (39) 

 
Notice that these integral are essentially the same as in Eq. (23), where we calculated 

2x .  Looking them up in the same table as before, we find that 
 

 ( )
2

2
2

x
xp σ

h
=∆ . (41) 

 
and so 
 

 
x

xp σ
h

=∆ . (42) 

 
Combining this with Eq. (25) for x∆  we have, for our particular state at 0=t , 
 

 
2
h

=∆∆ xpx  (43) 

 
Notice that this is actually the minimum value allowed by the uncertainty principle.  If 
you think about our traveling wave packet, you will realize that this minimum occurs 
only at 0=t :  as discussed above the uncertainty in momentum is time independent 
but we know that the packet is narrowest in x  space at 0=t .  Thus, the minimum 
uncertainty product only occurs at 0=t .  Furthermore, the minimum uncertainty is only 
seen when ( )kC  is a Gaussian distribution.  For other forms of ( )kC , the minimum 
uncertainty condition is not possible. 
 
Lastly, we make an observation concerning the coefficients ( )kC .  Consider, for 
example, the expectation value 
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( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−=

kCkCdk

kCkkCdk

px
*

*h

. (44) 

 
Notice the striking similarity of this equation and Eq. (19) for x .  Because of this 
similarity and because we interpret ψψ *  as the probability density in x  (real) space, 
we can interpret CC *  as the probability density in k  space.  Further, because kh  is the 
momentum of the state ( )[ ]tkxkie ω− , the product CC *  is essentially the probability density in 
momentum space.   
 
We also emphasize that while ( ) ( )txtx ,,* ψψ  depends upon time, the product ( ) ( )kCkC*  
is time independent (for the free particle).  That is, the momentum probability density 
is time independent.  This is the basic reason that functions of the momentum 
operator have time-independent expectation values, as discussed above. 
 
D. The Fourier Transform and the Uncertainty Principle 
So what does the Fourier transform have to do with the uncertainty principle?  Well, 
first recall that the functions ( )0,xψ  and ( )kC  are a Fourier transform pair and that the 
product of their widths parameters is 2=kxσσ .  Now 2xx σ=∆ , and because 

xxp σh=∆  we can also write 2kxp σh=∆ .  Thus we have (at 0=t ) 
 

 
22
kx

xpx
σσ

h=∆∆  (45) 

 
That is, the products of the uncertainties associated with the 0=t  state is intimately 
related to the products of the width parameters that govern the Fourier transform pair 
( )0,xψ  and ( )kC . 
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Exercise 
 
**29.1  Uncertainty Principle for a Different Wave Packet.  Consider an alternate 
wave-packet initial condition for the 1D free-particle Schrödinger equation,  
 
 ( ) xxik eex αψ −= 00, . 
 
(a)  Find the function ( )kC  that corresponds to this initial condition.   
(b)  Plot ( )kC  for k  in the vicinity of 0k , and thus argue that the average value of k  is 
indeed equal to 0k .  Note that this is equivalent to the average momentum xp  being 
equal to 0kh .   
(c)  As was done in the notes, find the expectation values x  and 2x  at 0=t .  Thus 
calculate x∆ , the uncertainty in x , at 0=t . 
(d)  Using the result from (b) for  xp , calculate  ( ) ( )22

xxx ppp −=∆ , and from this 

find the uncertainty xp∆ . 
(e)  Find the 0=t  product  xpx∆∆ .  Does the product satisfy the uncertainty principle?  
What do you expect to happen to the product xpx∆∆  for values of 0≠t ? 
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Divergence and Curl 
 
Overview and Motivation:  In the upcoming two lectures we will be discussing 
Maxwell's equations.  These equations involve both the divergence and curl of two 
vector fields, the electric field ( )t,rE  and the magnetic field ( )t,rB .  Here we discuss 
some details of the divergence and curl.   
 
Key Mathematics:  The aim here is to gain some insight into the physical meanings 
of the divergence and curl of a vector field.  We will also state some useful identities 
concerning these two quantities. 
 
I.  Review of "del" 
We have already discussed the differential object ∇  (sometimes called "del").  In 
Cartesian coordinates ∇  can be written as 
 

 zyx ˆˆˆ
zyx ∂
∂

+
∂
∂

+
∂
∂

=∇ . (1) 

 
We have seen that this object can operate on a scalar function (or scalar field) ( )rf  to 
produce the gradient of ( )rf , denoted ( )rf∇ .  If f  is expressed as a function of 
Cartesian coordinates, then the gradient can be written as 
 

 ( ) zyx ˆˆˆ,,
z
f

y
f

x
fxyxf

∂
∂

+
∂
∂

+
∂
∂

=∇  (2) 

 
Recall that ( )rf∇  points in the direction of the greatest change in ( )rf  and is 
perpendicular to surfaces of constant ( )rf .  Recall also that ( )rf∇  is a vector function 
(or vector field), which assigns a vector to each point r  in real space.   
 
We have also previously used ∇  on a vector function ( )rV  to calculate the 
divergence of ( )rV , denoted ( )rV⋅∇ .  If V  is expressed as a function of Cartesian 
coordinates, then the divergence can be written as 
 

 ( ) ( ) ( ) ( )
z
zyxV

y
zyxV

x
zyxVzyx zyx

∂
∂

+
∂

∂
+

∂
∂

=⋅∇
,,,,,,,,V  (3) 

 
Recall that ( )rV⋅∇  is a scalar function.   
 
A special case is the divergence of a vector field that is itself the gradient of a scalar 
function, ( )[ ]rf∇⋅∇ .  In this case the vector field is f∇  and so Eq. (3) becomes 
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 ( )[ ] 2

2

2

2

2

2

,,
z
f

y
f

x
fzyxf

∂
∂

+
∂
∂

+
∂
∂

=∇⋅∇ ,  (4) 

 
which in coordinate-system-independent notation we also write as f2∇ .   
 
It may not be obvious, but one reason that the gradient and divergence are useful is 
that they are coordinate-system independent quantities.  That is, as functions of 
position vector r  they produce a quantity that exists independent of the coordinate 
system used to calculate them.  However, this does not mean, for example, that the 
divergence of a vector field will be have the same functional form in each coordinate 
system.  For example, consider the function that is equal to the distance from some 
reference point, the origin say.  This function will have the form 222 zyx ++  when 
expressed in Cartesian coordinates, 22 z+ρ  when expressed in cylindrical 
coordinates, and simply r  when expressed in spherical coordinates.   
 
II.  Interpretation of the Divergence. 
Although we previously defined the divergence of a vector function, we did not spend 
much (if any) time on its meaning.  Let's see what we can say about ( )rV⋅∇ .  To gain 
some insight into the divergence, let’s consider the divergence theorem 
 
 ( ) ( ) ( )∫∫ ⋅=⋅∇

Ω S
SSS dSdv rnrVrV ˆ , (5) 

 
which applies to a vector field ( )rV  defined both inside and on a closed surface S , as 
illustrated 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sn̂  

Sn̂
(

enclosed volume Ω

Sn̂  

surface S
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In words, this equation says that the volume integral (over some volume Ω ) of the 
divergence of a vector field ( )rV  equals the integral over the surface S  enclosing that 
volume of the normal component of that same vector field ( )rV .  Note that ( )SS rn̂  is 
a unit-vector field that is only defined on the surface S , and at every point on S  it 
points outward and is normal to the surface.  Now this theorem is true for any volume, 
but let's think about Eq. (5) when the volume is infinitesimally small.  In fact, let's 
think about a cubic infinitesimal volume 3dldv = , as shown. 
 
 
 
 
 
 
 
 
 
If the volume is small enough (and the vector field is not too pathological) then we 
can consider ( )rV⋅∇  to be approximately constant within the volume 3dl .  On each 
face of the cube (with area 2dl ) we can also consider ( ) ( )SSS V rnrV ⊥=⋅ ˆ  to be constant.  
Then Eq. (5) can be rewritten approximately as 
 
 ( ) ( )

( )

∑ ⊥=⋅∇

n
faces

Sn dlVdl
6

2
,

3 rrV  (6) 

 
or 
 

 ( ) ( )
( )

∑ ⊥=⋅∇

n
faces

Sn dlV
dl 6

2
,3

1 rrV . (7) 

 
The quantity ( ) 2

, dlV Sn r⊥  is usually interpreted as the flux of V  (or total amount of V ) 
passing through the surface nwith area 2dl .  So what does Eq. (7) tell us?  It tells us 
that the divergence of ( )rV  is equal to the net flux of V  leaving the volume / unit 
volume.  Thus, if the divergence of V  is zero, then there is as much V  pointing into 
the infinitesimal volume as is pointing out of the volume, or the net flux of V  
through the surface is zero.  If the divergence of V  is positive, then we say that there 
is a source of V  within the volume.  Conversely, if the divergence of V  is negative, 
we say that there is a sink of V  within the volume.   
 
 

dl
dl

dl

Sn̂

Sn̂
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As we shall discuss in more detail shortly, one of Maxwell's equations is  
 

 ( ) ( )
0ε

ρ rrE =⋅∇ , (8) 

 
where ( )rE  is the electric field and ( )rρ  is the charge density.  With our discussion 
above we see that the charge density is either a source (if positive) or sink (if negative) 
of electric field.  If we are in a region of space without any charge density, then 

( ) 0=⋅∇ rE , which tells us that for any volume there is as much E  pointing inwards as 
outwards.   
  
Example 1  To get a feeling for the divergence we apply Eq. (7) to a vector field to 
find its divergence.  Let's consider a simple vector field, 
 
 ( ) xV ˆ,, 0Vzyx = , (9) 
 
a constant vector field that points in the x  direction. At each point in space this 
vector field is exactly the same, as the following drawing shows (positive x  is to the 
right). 
 
 
 
 
 
 
 
 
 
We now consider the flux coming out of each side of our infinitesimal volume 3dl .  
For the four sides that are parallel to the field there is no flux.  One of the remaining 
sides has a flux equal to 2

0 dlV  and other has 2
0 dlV− , making the net flux emerging 

from the surface equal to zero.  Via Eq. (7) we thus see that the divergence of this 
field is zero.  We could, of course, have used Eq. (3) to directly calculate ( )zyx ,,V⋅∇ , 
obtaining ( ) 0,, =⋅∇ zyxV , in agreement with our analysis using Eq. (7). 
 
Example 2  Let's look at a slightly more complicated field,   
 
 ( ) xV ˆ,, 0xVzyx = . (10) 
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A graphical representation of this field would look something like the following 
picture. 
 
 
 
 
 
 
 
 
 
 
 
Again, let's use Eq. (7) to calculate ( )zyx ,,V⋅∇ .  As we shall see below, the divergence 
is the same everywhere for this field, so for simplicity we consider a cube oriented as 
shown with one side at 0=x .  In this case only the right-hand-side (at dlx = ) has any 
net flux, which is equal to 3

0 dlV , and so via Eq. (7) we have that the divergence is 
simply 0V .  As in Example 1, we could have directly used Eq. (3), also producing 

( ) 0,, Vzyx =⋅∇ V , which is indeed independent of position. 
 
III.  The Curl and its Interpretation 
Another useful first-derivative function of a vector field ( )rV  is known as the curl of 
( )rV , usually denoted ( )rV×∇ .  It has this notation due to its similarity to the cross 

product of two vectors.  Indeed, in Cartesian coordinates it is expressed as 
 

 ( ) zyxV ˆˆˆ,, 







∂
∂

−
∂

∂
+








∂
∂

−
∂
∂

+







∂

∂
−

∂
∂

=×∇
y
V

x
V

x
V

z
V

z
V

y
Vzyx xyzxyz  (11) 

 
Notice that ( )rV×∇  is itself a vector function of r .  As with the gradient and 
divergence, the curl is an object that is independent of the coordinate system that is 
used to calculate it.  An easy way to remember ( )rV×∇  in Cartesian coordinates is to 
see that Eq. (10) can be written as a "determinant" 
 

 ( )

zyx VVV
zyx

zyx
∂
∂

∂
∂

∂
∂

=×∇

zyx

V

ˆˆˆ

,, . (12) 

 

0=x

dl
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So what is the interpretation of ( )rV×∇ ?  Again, we appeal to a theorem of 
multivariable calculus, Stoke's theorem in this case, which can be written as 
 
 ( )[ ] ( ) ( ) ( )∫∫ ⋅=⋅×∇

C
CCC

S
SSS dCdS rTrVrnrV ˆˆ  (13) 

 
In words this says that surface integral of the normal component of the curl of a 
vector field ( )SrV  equals the line integral around the perimeter (of that surface) of the 
tangential component of that same vector field ( )rV .   
 
 
 
 
 
 
 
 
 
 
 
 
 
As illustrated above,  ( )SS rn̂  is again a field of unit vectors that is only defined on the 
surface S , but this time the surface is an open surface so there is no outward direction.  
Because of this lack of outwardness, one must arbitrarily pick one side of the surface 
for the field ( )rnSˆ  to point from.  Similarly, ( )CC rT̂  is a unit-vector field that is only 
defined on the perimeter curve C .  It is tangent to the curve C  at all points along C .  
Its direction is found by the "right-hand rule" whereby one's thumb points along the 
unit vector field  ( )SS rn̂  and one’s fingers curl (hum…) in the direction of  the field 

( )CC rT̂ .   
 
To use Stoke's theorem to gain some insight into the curl, lets consider the surface to 
be an infinitesimal, flat, square surface with sides of length dl , as shown.  One normal 
vector ( )SS rn̂  and one tangential vector ( )CC rT̂  associated with this surface are also 
shown. 
 
 
 
 
 

CT̂

CT̂

CT̂  

Sn̂  

Sn̂

S

perimeter C  

CT̂

Sn̂

dl

dl
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Because of the infinitesimal nature of the surface we can take ( )SrV×∇  to be constant 
on this surface, and so we can rewrite Eq. (13) as 
 
 ( )[ ] ( )

( )

∑=×∇ ⊥

n
sides

CnS dlVdl
4

||,
2 rrV  (14) 

 
or 
 

 ( )[ ] ( )
( )

∑=×∇ ⊥

n
sides

n dlV
dl 4

||,2
1 rrV . (15) 

 
The quantity on the rhs of Eq. (15) is know as the circulation of ( )rV  around the 
curve C .  So what does Eq. (15) tell us?  This equation tells us that component of 

( )rV×∇  normal to an infinitesimal area is equal to the circulation of ( )rV  around the 
perimeter of that area.   
 
Example 1  Well, maybe that last statement is just words to you.  So let's do some 
examples to see if we can get a feel for the curl.  Let's first consider the vector field 
that we discussed above in connection with the divergence, 
 
 ( ) xV ˆ,, 0xVzyx = . (16) 
 
We now consider an infinitesimal, square loop lying in the yx −  plane, with its center 
at 0xx = , and each side parallel to either x  or y , as illustrated.  (The z  direction is 
perpendicular to the page.) 
 
 
 
 
 
 
 
 
 
 
 
 

0=x

dl  

0xx =

dl
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With the loop lying in the yx −  plane, we can use Eq. (15) to find the z  component 
of the curl of V  (because then the surface normal can be taken to be in the ẑ+  
direction).  Because V  points in the x  direction the two sides parallel to y  do not 
contribute to the circulation.  And because the top and bottom sides have tangential 
vectors ( )CC rT̂  pointing in opposite directions, the contributions to the circulation 
from these two sides cancel each other, resulting in zero net circulation for this loop.  
Thus ( )[ ]zzyx ,,V×∇  is zero for this vector field. 
 
In a similar fashion you should be able to determine the other components of ( )rV×∇ .  
How would you orient your loop to enable you to use Eq. (15) to calculate these other 
components?  Do you get zero for these components as well?  You can confirm that, 
indeed,  ( ) 0,, =×∇ zyxV  by using Eq. (11) or Eq. (12).  That is, all components of the 
curl of ( )rV  are, indeed, zero. 
 
Example 2  How about the vector field 
 
 ( ) ( )yxV ˆˆ,, 0 xyVzyx +−= ? (17) 
 
Let’s determine whether this vector field has a nonzero curl. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above sketch illustrates some vectors associated with this field (again drawn in 
the x - y  plane).  Does the field seem to circulate around?  Because it does, we might 
expect the curl to be nonzero.  Here we consider a small, square area sitting on the x  
axis at 0xx =  and use Eq. (15) to see what that curl is like.  Here we must consider all 
fours sides because each side has some contribution to the curl.  Assuming that the 

x  

y

dl  

dl

0xx =

1 

2 
3 

4 
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surface normal vector is again the ẑ  direction, the fours sides contribute the following 
amounts to the circulation: 
 
 side 1:  ( )dldlxV 200 −− , 
 side 2:  ( )dldlV 20 , 
 side 3:  ( )dldlxV 200 + , 
 side 4:  ( )dldlV 20 . 
 
The total circulation is thus 2

02 dlV , which tells us that ( )[ ] 02,, Vzyx z =×∇ V  for this 
field.  Indeed, it is nonzero (and the same everywhere).  You must think about 
orienting the square in three orthogonal direction in order to obtain all three 
components of ( )rV×∇ .  You should be able to convince yourself that the other two 
components of ( )rV×∇  are zero.  If we so desire, we can resort to Eq. (11) or (12) to 
calculate the curl more directly, which produces ( ) zV ˆ2,, 0Vzyx =×∇ , confirming that 
there is a net curl in the z  direction that is the same everywhere.   
 
IV.  Some Useful Identities 
We will not prove them here, but there are three identities that will be useful when we 
discuss Maxwell's equations.  They are 
 
 ( )( ) 0=∇×∇ rf , (18) 
 
 ( )( ) 0=×∇⋅∇ rV , (19) 
 
 ( )( ) ( )( ) ( )rVrVrV 2∇−⋅∇∇=×∇×∇ . (20) 
 
We have not previously considered the Laplacian 2∇  operating on a vector field, but 
looking at Eq. (4) we see that in Cartesian coordinates 
 

 ( )
2

2

2

2

2

2
2 ,,

zyx
zyx

∂
∂

+
∂
∂

+
∂
∂

=∇
VVVV , (21) 

 
and so ( )rV2∇  is also a vector field.   
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Exercises 
 
*30.1  Using Cartesian coordinates, show that 
(a)  ( )( ) 0,, =∇×∇ zyxf  [for any sufficiently differentiable function ( )zyxf ,, ], and 
(b)  ( )( ) 0,, =×∇⋅∇ zyxV  [for any sufficiently differentiable vector field ( )zyx ,,V ].   
 
**30.2  Using Cartesian coordinates, show that ( )( ) ( )( ) ( )rVrVrV 2∇−⋅∇∇=×∇×∇  [for 
any sufficiently differentiable vector field ( )zyx ,,V ].   
 
*30.3  Is Stoke's theorem applicable to a Mobius strip?  Why or why not?   
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Maxwell's Equations 
 
Overview and Motivation:  Maxwell's (M's) equations, along with the Lorentz force 
law constitute essentially all of classical electricity and magnetism (E and M).  One 
phenomenon that arises from M's equations is electromagnetic radiation, that is, 
electromagnetic waves.  Here we introduce M's equations, discuss how they should be 
viewed, and see how M's equations imply the wave equation.  We will look at a plane-
wave solution to M's equations.  We will also see that the conservation of electric 
charge is a direct result of Maxwell's equations.   
 
Key Mathematics:  We will gain some practice with "del" (∇ ) used in calculating the 
divergence and the curl of the electric and magnetic vector fields.   
 
I.  Maxwell's Equations  
The basic Maxwell's equations are typically written, in SI units1, as 
 

 ( ) ( )
0

,,
ε

ρ tt rrE =⋅∇ , (1) 

 
 ( ) 0, =⋅∇ trB , (2) 
 

 ( ) ( )
t
tt

∂
∂

−=×∇
,, rBrE , (3) 

 

 ( ) ( ) ( )
t
ttt

∂
∂

+=×∇
,,, 000
rErjrB εµµ . (4) 

 
These are coupled first-order, linear, partial differential equations for the electric and 
magnetic vector fields, ( )t,rE  and ( )t,rB , respectively.  The two constants in the 
equations, 0ε  and 0µ , are the fundamental constants of E and M, respectively.  You 
probably first encountered these two constants in your introductory physics class 
when you studied the electric force from a point charge and the magnetic force form a 
long, straight wire carrying a constant current.  The other two quantities in these 
equations are the electric charge density ( )t,rρ  and electric-charge current density 
( )t,rj .   

 

                                                 
1 There have been no fewer than 5 systems of units traditionally used for E and M:  electrostatic (esu), 
electromagnetic (emu),  Gaussian (cgs), Heaviside-Lorentz, and Rationalized MKSA (now known as SI).  
Beware when reading the literature! 
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So what is the meaning of Eqs. (1) – (4)?  The way these equations are written you 
should think of the quantity on the rhs as giving rise to the quantity on the lhs of each 
equation.  So Eq. (1) tells us that electric charge density is the source of electric field.  
Similarly, Eq. (2) tells us that there is no such corresponding magnetic charge density. 
Equation (3) tells us that a time varying magnetic field can produce an electric field, 
and Eq. (4) says that both an electric-charge current density and a time varying electric 
field can produce a magnetic field.  Maxwell was actually only responsible for the last 
term in Eq. (4), but the term is key to E and M because without it there would be no 
electromagnetic radiation.   
 
Often one considers the charge density ( )t,rρ  and current density ( )t,rj  to be given 
quantities.  That is, one assumes that there is something external to the problem that 
controls ( )t,rρ  and ( )t,rj  and so they are simply treated as given source terms for the 
equations.  However, in some problems the dynamics of ( )t,rρ  and ( )t,rj  are 
determined by the fields themselves through the Lorentz force equation 
 
 ( ) ( )( )[ ]tvtq ,, rBrEF ×+=

r , (5) 
 
which describes the force on a particle with charge q  and velocity v .  In such cases 
Eqs. (1) – (5) must be solved self consistently for both the time varying fields and 
charge and current distributions.   
 
II.  The Conservation of Electric Charge  
One of the consequences of M's equations is the conservation of electric charge.  If 
we start with Eq. (1) and takes its time derivative, we obtain 
 

 ( ) ( )
t
t

t
t

∂
∂

=
∂

∂
⋅∇

,1,

0

rrE ρ
ε

, (6) 

 
after switching the order of the divergence and time derivative on the lhs.  Equation 
(4) can be rearranged as 
 

 ( ) ( ) ( )tt
t
t ,1,1,

000

rjrBrE
εεµ

−×∇=
∂

∂ . (7) 

 
Using this equation to substitute for t∂∂E  in Eq. (6) then yields 
 

 ( ) ( ) ( )
t
ttt

∂
∂

=







−×∇⋅∇

,1,1,1

0000

rrjrB ρ
εεεµ

. (8) 
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But this simplifies considerably because ( ) 0=×∇⋅∇ V  for any vector field V .  Thus we 
have 
 

 ( ) ( ) 0,,
=⋅∇+

∂
∂ t
t
t rjrρ , (9) 

 
the continuity equation for the charge density and the charge current density.  As we 
discussed in an earlier lecture, the continuity equation is the local form of the 
statement of the conservation of the particular quantity (in this case electric charge) 
that corresponds to the given density and current density. 
 
III.  Wave Equations for the Electric and Magnetic Fields  
As we now demonstrate, M's equations imply waves equations for both the electric 
and magnetic fields.  To keep things simple we consider M's equations in a charge-free, 
current-free region of space.  Then Eq. (1) – (4) become 
 
 ( ) 0, =⋅∇ trE , (10) 
 
 ( ) 0, =⋅∇ trB , (11) 
 

 ( ) ( )
t
tt

∂
∂

−=×∇
,, rBrE , (12) 

 

 ( ) ( )
t
tt

∂
∂

=×∇
,, 00
rErB εµ . (13) 

 
These are know as the homogeneous M's equations because either E  or B  appear 
linearly in every (nonzero) term in the equations.  Let's derive the wave equation for 
the magnetic field.  To do this we first take the curl of Eq. (13) to produce 
 

 ( )[ ] ( )
t
tt

∂
∂

×∇=×∇×∇
,, 00
rErB εµ  (14) 

 
Using the identity ( )( ) ( )( ) ( )rVrVrV 2∇−⋅∇∇=×∇×∇  on the lhs and switching the order 
of the curl and time derivative on the rhs then produces 
 

( )[ ] ( ) ( )[ ]
t
ttt

∂
×∇∂

=∇−⋅∇∇
,,, 00

2 rErBrB εµ . (15) 

 
Now using Eq. (11) to substitute for ( )t,rB⋅∇  on the lhs and Eq. (12) to substitute for 

( )t,rE×∇  on the rhs yields 
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 ( ) ( )
2

2

00
2 ,,

t
tt

∂
∂

=∇
rBrB εµ , (16) 

 
the wave equation for the magnetic field ( )t,rB , where the standard constant 2c  in the 
wave equation is equal to 001 εµ .  One can similarly derive the corresponding wave 
equation for the electric field 
 

 ( ) ( )
2

2

00
2 ,,

t
tt

∂
∂

=∇
rErE εµ . (17) 

 
Notice that each of these wave equations is for a vector quantity, and so in essence 
each of these equations is really three wave equations, one for each component of the 
electric or magnetic field.  Another thing to note is that while M's equations imply the 
wave equations for E  and B , the two fields are not independent.  That is, all solutions 
to Eqs. )16(  and (17) will not necessarily satisfy M's equations.  Another way to think 
about this is that by taking a derivative (the curl) of Eq. (13) (to derive the B -field 
wave equation) we lost some information originally contained in that equation.   
 
IV.  Plane Wave Solutions to M's Equations 
We already know that a plane wave is one possible type of solution to the 3D wave 
equation.  So let's assume that we have an electric field of the form 
 
 ( ) ( )φω +−⋅= tt rkErE cos, 0 . (18) 
 
Remember, the wave vector k  points in the direction of propagation and 

λπ2=≡ kk , where λ  is the wavelength.  Substituting Eq. (18) into Eq. (17)  gives us, 
as usual, the dispersion relation, which in this case is ck=ω  where 001 εµ=c  is 
known as the speed of light.  As far as the wave equation is concerned, the dispersion 
relation is the only constraint that needs to be satisfied in order for Eq. (18) to be a 
solution. 
 
However, M's equations put a further constraint on the electric field.  Let's substitute 
Eq. (18) into Eq. (10).  Then we obtain 
 
 ( )[ ] 0cos0 =+−⋅⋅∇ φω trkE  (19) 
 
To see what this equation implies for our plane-wave solution let's rewrite it using 
Cartesian coordinates, 
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 ( ) ( )[ ] 0cosˆˆˆˆˆˆ 000 =+−++++⋅







∂
∂

+
∂
∂

+
∂
∂ φω tzkykxkEEE

zyx zyxzyx zyxzyx . (20) 

 
Calculating the derivatives produces 
 
 ( ) ( ) 0sin000 =+−++++ φω tzkykxkkEkEkE zyxzzyyxx  (21) 
 
which can be written in coordinate-independent notation as 
 
 ( ) ( ) 0sin0 =+−⋅⋅ φω trkkE . (22) 
 
For this to be true for all values of r  and t , this then implies 
 
 00 =⋅kE . (23) 
 
So what does this tell us?  Because k  points in the direction of the wave's propagation, 
this tells us that the electric field must be perpendicular (or transverse) to the direction 
of propagation.  That is, there is no longitudinal component to the electric field for a 
plane-wave solution to M's equations.   
 
So what about the magnetic field?  Somewhere we should have learned that 
electromagnetic radiation consists of both propagating electric and magnetic fields.  In 
order to see what else M's tell us let's assume that the magnetic field associated with 
the electric field given by Eq. (18) is of the form 
 
 ( ) ( )φω ′+′−⋅′= tt rkBrB cos, 0 . (24) 
 
Let's now see what M's equations tell us about 0B , k′ , ω′ , and φ′ .  As with the 
electric field, we can use Eq. (11) to tell us that 0B  is also perpendicular to the 
direction of propagation.  We can learn more by substituting Eqs. (18) and (24) into 
Eq. (13).  After a bit of algebra and differentiation we end up with the result 
 

 ( ) ( ) ( )φωωφω +−⋅=′+′−⋅′′× t
c

t rkErkkB sinsin 020 , (25) 

 
where we have used 2

00 1 c=εµ .  For this to hold for all values of r  and t  we must 
have the following relationships:  kk =′ , ωω =′ , φφ =′ , and ( ) ( ) 0

2
0 EkB cω=× .  The 

first three relationships tell us that the electric and magnetic fields have the same 
wavelength, frequency, and phase, and propagate in the same direction.  The last 
relationship is a bit more interesting.  The last relationship tells us that 0E  is 
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perpendicular to both k  (which we knew already) and 0B .  Thus, because both 0E  
and 0B  are perpendicular to k  all three vector are perpendicular to each other.  
Furthermore, because ( ) 00 ||EkB ×  we must also have ( ) kBE ||00 ×  and ( ) 00 ||BEk× .  
And lastly, because 0B  and k  are perpendicular, the relationship ( ) ( ) 0

2
0 EkB cω=×  

tells us that ( ) 0
2

0 EckB ω= or, because ck=ω , cEB 00 = .  Thus, the magnetic field can 
be expressed as 
 

 ( ) ( ) ( )φω +−⋅×= t
c

t rkEkrB cosˆ1, 0 , (26) 

 
where kkk =ˆ .  Or we can simply write, for our plane wave solution to M's equations, 
 

 ( ) ( )tr
c

t ,ˆ1, rEkrB ×= .   

 
Exercises 
 
*31.1.  As was done in the notes for the magnetic field, derive the wave equation for 
the electric field. 
 
*31.2.  The product 00εµ  appears in the wave equations where 21 c  traditionally 
appears.  Look up 0µ  and 0ε  and calculate 001 εµ=c .  What do you get? 
 
*31.3.  Derive the dispersion relation ck=ω  by substituting Eq. (18) into Eq. (17). 
 
**31.4.  Conditions on E

r
 and B

r
 for a plane wave 

(a)  Substitute Eqs. (18) and (24) into Eq. (13) and derive Eq. (25). 
(b)  Substitute Eqs. (18) and (24) instead into Eq. (12) and again derive Eq. (25).  This 
shows that in this situation the information in Eq. (12) is redundant.   
 
**31.5.  A traveling-wave solution to Maxwell's equations.  Show that the 
traveling wave fields 
 

 ( ) ( )tkzEt ω−= cosˆ, 0xrE  and ( ) ( )tkz
c
Et ω−= cosˆ, 0 yrB  

 
satisfy all four homogeneous Maxwell equations.   
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Energy Density and the Poynting Vector 
 
Overview and Motivation:  We saw in the last lecture that electromagnetic waves are 
one consequence of Maxwell's (M's) equations.  With electromagnetic waves, as with 
other waves, there is an associated energy density and energy flux.  Here we introduce 
these electromagnetic quantities and discuss the conservation of energy in the 
electromagnetic fields.  Further, we see how the expressions for the energy density 
and energy flux can be put into a form that is similar to expressions for the same 
quantities for waves on a string.   
 
Key Mathematics:  We will gain some more practice with the "del" operator ∇  .  We 
will also discuss what is meant by a time-averaged quantity.   
 
I.  Energy Density and Energy-current Density in EM Waves  
Recall from the last lecture the basic Maxwell's equations, 
 

 ( ) ( )
0

,,
ε

ρ tt rrE =⋅∇ , (1) 

 
 ( ) 0, =⋅∇ trB , (2) 
 

 ( ) ( )
t
tt

∂
∂

−=×∇
,, rBrE , (3) 

 

 ( ) ( ) ( )
t
ttt

∂
∂

+=×∇
,,, 000
rErjrB εµµ . (4) 

 
As we discussed last time, for ( ) 0, =trρ  and ( ) 0, =trj , M's equations imply the wave 
equation for both ( )t,rE  and ( )t,rB .  We know that waves transport energy.  So how 
is the energy in an electromagnetic wave expressed?  Well, you should have learned in 
your introductory physics course that the energy density contained in the electric field 
is given by1 
 

 ( ) ( ) ( ) ( )[ ]200 ,
2

,,
2

, ttttuel rErErEr εε
=⋅= . (5) 

 
Typically this energy density is introduced in a discussion of the energy required to 
charge up a capacitor (which produces an electric field between the plates).  Similarly, 
the energy density contained in the magnetic field is given by 

                                                 
1 In keeping with standard EM notation, we use u  for the energy density and S  for the energy flux. 
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 ( ) ( ) ( ) ( )[ ]2
00

,
2

1,,
2

1, ttttumag rBrBrBr
µµ

=⋅= . (6) 

 
Typically this relationship is introduced in a discussion of the energy required to 
establish a current in a toroid (which produces a magnetic field inside the toroid).  
Notice again that the two fundamental constants of E and M, 0ε  and 0µ , appear in Eq. 
(5) and Eq. (6), respectively.  Thus the total energy ( )tu ,r  contained in a region of 
space with both electric and magnetic fields is 
 

 ( ) ( )[ ] ( )[ ]








+= 2

0

2
0 ,1,

2
1, tttu rBrEr

µ
ε . (7) 

 
Because ( )00

2 1 εµ=c , this can also be written as 
 

 ( ) ( ) ( )[ ]












+



= 2

2

0

,,
2

1, t
c
ttu rBrEr

µ
. (8) 

 
Recall, for a traveling EM wave in vacuum the electric and magnetic field amplitudes 
are related by cEB = .  Equation (8) thus shows that equal amounts of energy are 
contained in the electric and magnetic fields in such a wave.   
 
What about the energy current density (also known as the energy flux)?  Well, another 
basic fact about electromagnetic radiation (that you may or may not have learned in 
your introductory physics course) is that the energy flux in a particular region of space 
is equal to 
 

 ( ) ( ) ( )ttt ,,1,
0

rBrErS ×=
µ

 (9) 

 
As we learned in the last lecture, the direction of propagation of an electromagnetic 
plane wave is in the direction of ( ) ( )tt ,, rBrE × .  As expected, Eq. (9) indicates that the 
energy flux points in this same direction.  In E and M the energy flux is known as the 
Poynting vector (convenient because it points in the direction of the energy flow). 
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II.  Continuity Equation for u  and S
r

  
If u  and S

r
 are indeed the energy and energy-current densities, respectively, then we 

expect that they should be related by the continuity equation 
 

 ( ) ( ) 0,,
=⋅∇+

∂
∂ t
t
tu rSr . (10) 

 
Let's see if M's equations indeed imply Eq. (10).  We first start with Eq. (8) and 
calculate its time derivative, which gives us 
 

 







∂
∂
⋅+

∂
∂
⋅=

∂
∂

ttct
u BBEE

2
0

11
µ

. (11) 

 
In deriving Eq. (11) we must remember, for example, that 2E  is really shorthand for 
EE ⋅  [see Eq. (5)].  Starting with Eq. (9) we can also calculate S⋅∇ , which gives us, 

after using the vector identity ( ) ( ) ( )BAABBA ×∇⋅−×∇⋅=×⋅∇ , 
 

 ( ) ( )[ ]BEEBS ×∇⋅−×∇⋅=⋅∇
0

1
µ

. (12) 

 
We can now use M's Eqs. (3) and (4) to replace the curls in Eq. (12), which produces, 
after a bit of manipulation and the use of 2

00 1 c=εµ , 
 

 jEBBEES ⋅−







∂
∂
⋅+

∂
∂
⋅−=⋅∇

ttc2
0

11
µ

. (13) 

 
Comparing Eqs. (11) and (13) we see that  
 

 jES ⋅−=⋅∇+
∂
∂
t
u  (14) 

 
So what happened?  Why didn't M's equations gives us Eq. (10)?  Well, there is a very 
good reason.  The energy density u  and energy-current density S  are densities 
associated with the fields only.  But energy can also exist in the (kinetic) energy of the 
charge density.  The term jE ⋅  is known as Joule heating; it expresses the rate of 
energy transfer to the charge carriers from the fields.  This is the (spatially) local 
version of an equation with which you are already familiar, IVP = .  Notice that this 
term only contains the electric field because the magnetic field can do no work on the 
charges.  The term appears with a negative sign in Eq. (14) because an increase in 
energy of the charge carriers contributes to a decrease in energy in the fields.  
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Obviously, if the homogeneous M's equations apply [ ( ) 0, =trρ  and ( ) 0, =trj ], then  
Eq. (10), the standard continuity equation is indeed valid.   
 
III.  The densities u  and S  for an EM Plane Wave 
In the last lecture we looked at the plane-wave solution 
 
 ( ) ( )φω +−⋅= tt rkErE cos, 0  (15) 
 

 ( ) ( ) ( )φω +−⋅×= t
c

t rkEkrB cosˆ1, 0  (16) 

 
to the homogeneous Maxwell's equations.  Let's calculate u  and S

r
 for these fields.  

Substituting Eqs. (15) and (16) into Eqs. (8) and (9) produces 
 

 ( ) ( )[ ]2
0

0

0 cos1, φω
µ
ε

+−⋅= tE
c

tu rkr , (17) 

 
and 
 

 ( ) ( )[ ] krkrS ˆcos, 2
0

0

0 φω
µ
ε

+−⋅= tEt , (18) 

 
respectively.  Comparing Eqs. (17) and (18) we see that 
 
 ( ) ( )krrS ˆ,, tuct = . (19) 
 
The agrees with the general expectation for a traveling wave that the energy current 
flux ( )t,rjε  is related to its associated energy density ( )t,rερ  via ( ) ( )vrrj tt ,, εε ρ= , 
where v  is the velocity of ( )t,rερ . 
 
The Poynting vector expressed in Eq. (18) is a space and time dependent quantity.  
Often, however, often we are more interested in the time-averaged value of this 
quantity.  In general, the time-averaged value of a periodic function with period T  is 
given by 
 

 ( ) ( )∫=
T

t
dttA

T
tA

0

1 . (20) 

 
With this definition the time-averaged value of S  is 
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 ( ) ( )[ ]












+−⋅= ∫
πω

φω
π
ω

µ
ε

2

0

2

0

02
0 cos

2
ˆ dttEt

t
rkkS  (21) 

 
Because the average value of any harmonic function squared is simply 21 , we have 
 

 ( ) kS ˆ
2 0

0
2
0

µ
εEt

t
= . (22) 

 
On last remark about ( )

t
t,rS .  In the optics world ( )

t
t,rS  is known as the intensity 

associated with the electromagnetic wave.  Its dot product with a normal vector to 
some surface gives the average power per unit area incident on that surface.   
 
IV.  An Analogy Between Mechanical and EM Waves 
We previously studied the energy contained in mechanical waves.  In particular, we 
looked at transverse waves on a string, which have an energy density and energy-
current density that were essentially expressed as 
 

 ( ) ( ) ( )


















∂
∂

+





∂
∂

=
22 ,,1

2
,

x
txq

t
txq

c
tx τρε , (23) 

 

 ( ) ( ) ( )






∂
∂







∂
∂

−=
x
txq

t
txqtxj ,,, τε . (24) 

 
As they stand, these equations do not look particularly like Eqs. (8) and (9) for the 
corresponding electromagnetic quantities. 
 
The mechanical-waves expressions are written in terms of derivatives of the 
displacement while the electromagnetic quantities are written in terms of the fields.  
However, in the theory of electricity and magnetism we can introduce a quantity 
known as the vector potential ( )t,rA  that, in the absence of ( )tr ,rρ  and ( )t,rj , can be 
defined such that it is related to the electric and magnetic fields via 
 

 ( ) ( )
t
tt

∂
∂

−=
,, rArE  (25) 

 
and 
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 ( ) ( )tt ,, rArB ×∇= . (26) 
 
Substituting these expressions into Eqs. (8) and (9) then gives us two equations that 
now look quite similar to Eqs. (23) and (24), 
 

 ( ) ( ) ( )[ ]












×∇+





∂
∂

= 2
2

0

,,1
2

1, t
t
t

c
tu rArAr

µ
, (27) 

 

 ( ) ( ) ( )[ ]





 ×∇×

∂
∂

−= t
t
tt ,,1,

0

rArArS
µ

. (28) 

 
For a more exact analogy, let's go back to Eqs. (15) and (16), the plane-wave solution 
to M's equations.  Let's simplify things by  choosing the coordinate system so that k  
points in the x+  direction, 0E  points along the y+  direction, which leaves 0B  to 
point along the z+  direction.  The electric and magnetic fields for the plane wave can 
then be written as 
 
 ( ) ( )φω +−= tkxEtx cosˆ, 0yE , (29) 
 

 ( ) ( )φω +−= tkx
c
Etx cosˆ, 0 zB . (30) 

 
These two fields are consistent with the vector potential 
 

 ( ) ( ) ( )yyA ˆ,sinˆ, 0 txAtkxEtx y=+−= φω
ω

. (31) 

 
With this vector potential the time derivative and curl of A  simplify to 

( )yA ˆtAt y ∂∂=∂∂  and ( )zA ˆxAy ∂∂=×∇  so that  
 

 
22









∂

∂
=







∂
∂

t
A

t
yA , (32) 

 

 ( )
2

2








∂

∂
=×∇

x
AyA , (33) 

 
and 
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 ( ) xAA ˆ
x
A

t
A

t
yy

∂
∂

∂
∂

=×∇×
∂
∂ . (34) 

 
With these last three expressions we can express u and S

r
 for our plane wave solution 

[Eqs. (31) and (32)] as 
 

 ( )




















∂
∂

+







∂
∂

=
22

0

1
2
1,

x
A

t
A

c
txu yy

µ
, (35) 

 

 ( ) xS ˆ1,
0 x

A
t
A

tx yy

∂
∂

∂
∂

−=
µ

. (36) 

 
These expression are now essentially identical to Eqs. (23) and (24), the analogous 
expressions for mechanical waves on a string if the following correspondences are 
made:  yAq↔  and 01 µτ ↔ .   
 
Exercises 
 
*32.1  Show that Eqs. (29) and (30) follow from Eq. (31). 
 
**32.2  A traveling-wave solution to Maxwell's equations.  Consider the electric 
field ( ) ( )kctkzEtr −= cosˆ, 0xE  
(a)  What is the corresponding magnetic field? 
(b)  Calculate the energy density ( )tzu ,  associated with each of these fields.  
(c)  Calculate the Poynting vector ( )tz,S  associated with these fields.   
(d)  Show that ( )tzu , and ( )tz,S satisfy the appropriate continuity equation.   
 
*32.3  Show in the absence of charge and current densities that – in general – the 
vector potential ( )t,rA  satisfies the wave equation.  In addition to equations in the 
notes, you will need to use the fact that the vector potential satisfies 0=⋅∇ A . 


