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Notes on deterministic chaos:

One of the most mysterious aspects of the natural world is the coexistence of order and
disorder.  Some things appear to be fairly predictable.  These things appear to obey fairly clear,
rigid rules.  When you flip the light switch the lights come on (mostly).  When you turn the key
in car’s ignition, the engine starts (mostly).  The sun rises at a very precisely predictable time
each morning and sets at an equally predictable time each evening.  As a species, we are able to
build dams and roads and bridges; we are able to cure diseases; we are able to place
communication satellites into orbit; we are able to tame (much of) our environment.  All of these
things are predictable, obey rules, are orderly, can be controlled.

Then there are other things: the weather, the stock market, some sporting events, games
of “chance,” outcomes of some elections, and so on.  These things are much less predictable, and
certainly not controllable.  We often say that they contain aspects of randomness, meaning no
rhyme-or-reason, no predictability.  Random is the opposite of deterministic.  In randomness,
future events are not rigidly determined by past events. In deterministic behavior, the future is
rigidly determined by the past.  Newton’s Laws of Motion are an exquisite example of
determinism.  Once the initial state of a Newtonian system is known, the future is completely
determined by the rules that relate state (position and velocity) to the forces acting.

Why is the universe filled with some stuff that’s orderly, deterministic, Newtonian, and
other stuff that’s not?  And how do we know when a system is one kind or the other?  There is a
growing awareness that at least some of the irregularity in nature is not due to random
rulelessness.  In the last 30 years or so, it has become apparent that some erratic and seemingly
unpredictable behavior is actually deterministic.  The emergence of irregularity from order is
called deterministic chaos.  (Deterministic chaos has been brought to the attention of large
numbers of nonscientists through a popular book Chaos by James Gleick and via Jeff
Goldblum’s character in the movie of Michael Chrichton’s Jurassic Park.)

Our understanding of chaos (the “deterministic” part is usually deleted, but it’s important
to remember that it’s implied) has its origins in the study of fluids.  When a real fluid (that is, one
that has viscosity) flows in a pipe at low speeds, the flow is steady, smooth, and streamline.  If
the pipe is straight and horizontal, the streamlines at low flow rates are straight lines parallel to
the pipe walls.  As the flow speed is increased the streamlines begin to wiggle, at first smoothly
undulatory like a sine function, then more-and-more jaggedly, as the flow rate is made larger.
As the flow speed is increased even further, the streamlines begin to break up into a regular
series of swirls called vortices.  Finally, at high flow speeds, no regular patterns are observed in
the flow at all; this situation is called turbulence.  Turbulence is filled with erratic and
unpredictable variations.  It appears to be random.  But the smooth flow at slow speeds is in
exact agreement with the predictions of Newton’s Laws of Motion—low speed flow is perfectly
deterministic.  So how does randomness creep into the behavior of the fluid just because its flow
rate is increased?

Today, we strongly suspect it doesn’t.  We believe (although it hasn’t yet been
completely demonstrated) that turbulence and smoothness are really two sides of the same
coin—and both are equally deterministic.  Let’s examine the transition from smooth behavior to
chaotic behavior as the flow rate is increased a little more closely.  In several different fluid
systems where a similar progression from streamline to turbulent flow is observed a qualitatively
identical pattern of events appears to be present.  For the pipe flow example, suppose the velocity
perpendicular to the pipe walls is measured in the center of the pipe.  Suppose at the input end a
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little paddle wiggles in such a way that it tries to make little sinusoidal undulations in the
streamlines near the middle of the pipe.  The fluid will always get little ripples in it near the
paddle but at low flow rates these ripples tend to disappear as we look downstream some
distance from the paddle.  In other words, at low flow rates viscosity causes the input variations
to die out.  There is an attractor for the fluid flow that at low flow rates has zero undulations
perpendicular to the net flow direction.  At higher flow rates, this zero undulation behavior
becomes unstable and we find that the streamlines downstream now undulate periodically with
the same period as that of the paddle.  If the speed perpendicular to the walls is recorded every
time the velocity reaches a maximum, the result is (except for measurement error) the same
nonzero value, again-and-again.  The attractor for the fluid flow in this case is a periodic
variation perpendicular to the net flow direction.

At yet another precise and repeatable value of the flow rate, the undulation downstream
suddenly becomes more complicated.  The velocity perpendicular to the net flow direction still
undulates, but instead of having the same amplitude every cycle the amplitude alternates every
other cycle.  That is, the speed measured every time the velocity reaches a maximum is one time
a higher value, the next time a lower value, the next time the higher value, the next time the
lower value, and so on.  Instead of the value repeating every time the speed is sampled, it repeats
every other time.  The attractor of the fluid flow is still periodic, but the repeat time—the period
of the undulation—is double what it was before.  Note that, the paddle is still wiggling at its
former rate.  The new period of the fluid downstream is not due to changes in the way the fluid is
being wiggled at the input end of the pipe.

In very careful experiments of this kind, it is observed that as the flow rate is increased
further, at precise and repeatable values of the flow rate the repeat time for the maximum speed
doubles again, and again, and so forth.  Eventually, when turbulence emerges, the maximum
perpendicular speed never repeats.  The motion of the fluid through the pipe ceases being smooth
and the perpendicular variations of velocity become aperiodic (never repeat).  In this condition,
the fluid flow is said to be chaotic.  (Incidentally, the reverse of this process is how blood
pressure measurements are made.  A cuff that can be pressurized is wrapped around a major
artery and the flow is temporarily cut off.  Gradually the constraining force is eased up and at
some point flow begins, but through a very narrow opening.  Because the of requirement that Av
= constant, the speed of the rushing blood through the small opening is fast, and, therefore,
turbulent.  The turbulent flow makes a characteristic rumbling sound that can be heard with a
stethoscope.  As the force is released further, the opening widens and eventually the flow
becomes smooth.  The applied pressure at which turbulent flow first begins is called the systolic
pressure [that corresponds to the highest pressure the heart can deliver] and where smooth flow
commences the diastolic pressure [that corresponds to the lowest pressure the heart can deliver].)

The complicated swirling of the fluid in turbulent flow can be analyzed statistically and
when we do so we find that irrespective of how the paddle wiggles at the input end of the pipe
the statistical properties of the turbulence are the same.  In other words, when the fluid is flowing
chaotically there is still something repeatable about the irregularity.  Because of that, we say that
the motion is associated with a chaotic, or strange, attractor.

This so-called period doubling route to chaos is observed in many different, seemingly
unrelated, phenomena.  Besides fluids it has been reported in: electronic circuits, the intensity
fluctuations in lasers, various mechanical devices, dripping faucets, woodwind instruments,
chemical reactions, the synchronized contractions of cardiac cells, the levels of armaments of
antagonistic countries, and even in babies’ crying.  Though we now know that period doubling is
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not the only route to chaos, its appearance in such diverse situations implies that it is a
remarkably robust and ubiquitous phenomenon.  And where period doubling exists, we probably
should expect that deterministic chaos is possible as well.

The key to producing chaos is to have a sufficient degree of nonlinearity.  A linear
mathematical model contains dependent and independent variables all raised to the power one.
A nonlinear model has variables raised to other powers, or contained in complicated functions
like sines and exponentials (and worse).  So where does nonlinearity come into fluid dynamics?
The answer is, through the acceleration in Newton’s Second Law applied to a lump of fluid.
There are two ways a lump of fluid can accelerate.  One way is that the velocity at every point in
the flow is changing in time.  But, even if the flow is steady—that is, no change in time
anywhere—a lump of the fluid can accelerate if it is being swept by the flow from a region of
one speed to a region of another.  A good example is a narrowing pipe.  To conserve mass, as the
pipe narrows the flow rate has to increase.  Thus, a lump of fluid when it is upstream will travel
more slowly than when it is downstream.  The acceleration of the lump is its rate of change of
velocity.  Thus, if we take the velocity downstream minus that upstream and divide by the time
necessary to get from upstream to downstream, we get the acceleration.  The time that we divide
by is roughly the distance between the up- and downstream points divided by the average
velocity between up and down points.  When you do the algebra you find that the acceleration
due to sweeping is the product of a velocity and a change in velocity.  That is, the acceleration
due to sweeping essentially involves the square of velocity.  The larger the flow speed the larger
will be this nonlinear term.  Newton’s Second Law for a lump of fluid is inherently nonlinear.

The kind of order/disorder, yin and yang harbored by fluids can be studied without
having to get into a lot of complicated mathematics.  One very simple example of a nonlinear
dynamical system
(dynamical means a
system that changes
in time) that shows
much of the
interesting behavior
that fluids do comes
from population
biology.  Many
wildlife populations
are known to have
regular periods and
wildly fluctuating
ones.  The graph to
the right shows the
variation of wolverine pelts taken in British Columbia over a period of 65 years.  The
fluctuations may be attributable to several factors, but underlying population is probably one the
stronger ones.  The population dynamics model that we will examine is due called the Ricker
Equation.  This equation is supposed to describe one species’ population size in a finite
environment—a finite landscape or waterscape region.  In it the variable xk is the size of the
population divided by the environment’s carrying capacity (the population size the environment
can support at optimal energy consumption).  In the fluid dynamics example described above,
there was a single control parameter—the flow rate.  In the Ricker Equation there is also a single
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control parameter, b, the intrinsic birth rate—the average number of births per generation per
individual in the population.

The population is measured every generation, and for Ricker beasties, there is no overlap
of generations: every individual lives for exactly one generation.  (While not valid for many
animals, this is an appropriate assumption for certain insects and fishes.)  The Ricker Equation
relates the next population size, xk+1, to the previous, xk:

xk+1 = bxkexp(-xk).

The term exp(-xk) means the exponential constant e = 2.718281828... raised to the minus xk

power.  (The constant e always appears wherever there is exponential growth or decay, as in
population dynamics, chain reactions, compounding of interest, and so forth.)  The values of x
are numbers greater than zero.  The value of b depends on the fecundity of the species.  When x
is much smaller than 1 (that is, when the size of the population is much less than the carrying
capacity), exp(-x) is approximately 1.  So, for small population sizes the Ricker Equation is
equivalent to xk+1 = bxk.  Such an equation is linear in the x’s.  As long as this approximate
relation holds it is easy to show that xk = bkx0, where x0 is some starting value.  (Make sure you
understand why.  Start with x1 = bx0.  Then x2 = bx1 = b(bx0), and keep going.)  If b < 1 (less than
one offspring produced per individual), the population size steadily decreases (and eventually
extincts).  If, on the other hand, b > 1 (more than 1 offspring produced per individual), the
population grows by a larger amount in each generation because bk increases as k increases
nonlinearly.  This is called exponential growth.  If left unfettered exponential growth will lead to
an enormous population.  That’s where the “exp” term comes in.

The bigger x the smaller is exp(-x).  This term describes the effects of too many
individuals competing for a finite amount of energy in the environment (finite carrying capacity).
You can think of it as being the probability an offspring will survive to maturity to produce more
offspring.  The product bexp(-x) is therefore the effective birth rate of each individual.  The
number of births per individual times the probability each birth will survive to reproduce.  If the
population size ever becomes too large, the species pays a price in the next generation because
few offspring are produced, and the population decreases.  Of course, if the population ever
becomes very small, exponential growth returns it to ever-larger values.  This interplay between
growth and collapse is akin to the opposing effects of pressure and friction in a fluid.  Pressure
speeds flow up, friction slows it down.

The interplay is also responsible for some very interesting results.  First, note that x = 0 is
a special value.  If you put 0 in for x on the right hand side of the Ricker Equation you get 0 back
out.  The value 0 never changes.  Such an unchanging value is called a fixed point of the
dynamics.  When b < 1, every starting value of x eventually evolves to 0.  For b < 1, zero is an
attractor, a stable fixed point.  This situation is identical to the lowest speed fluid flow, where
there is zero velocity perpendicular to the walls downstream.  If you intentionally make little
perpendicular wiggles in the fluid to try to induce perpendicular motion, they die out at low flow
rates and straight line, streamline flow returns.

Zero is always a fixed point of the Ricker Equation, but when b > 1, it is unstable.  That
means that any slight deviation from zero will evolve away from zero, not come back.  (Stability
and instability can be thought of in terms of a marble and a bowl.  If the bowl is open side up, the
bottom of the bowl is a fixed point for a marble, because a marble placed there will stay there.  It
is also a stable fixed point.  If you displace the marble away from the bottom a bit and let go, the



Physics 2110 – Chaos 5

marble will slide back down toward the bottom of the bowl.  On the other hand, suppose the
bowl is inverted, so the open side is down.  Assuming the bottom of the bowl is perfectly
round—a tough bowl to eat from because it will rock back and forth whenever you touch it—you
can still, with great care, perch a marble at the very top.  But now any slight nudge will send the
marble careening away from the top.  In this case, the top of the bowl is an unstable fixed point.)

What happens when b > 1, if zero is not stable?  The answer is that the population
reaches a new stable
fixed point the value
of which is not zero.
The figure to the right
shows what happens
for any x except zero
as the starting value
and for b = 2
(bottom), b = 5
(middle), and b = 7
(top).  Eventually, x
goes to a fixed value
greater than zero.
The fixed value
reached in each case
is greater for greater
values of b.  Again, this is just like the fluid flow described at the outset.  This is analogous to the
situation where, downstream, the flow has a simple periodic wiggle perpendicular to the flow
direction.  Every cycle the maximum perpendicular speed is the same.  Note that as b increases it
takes longer and longer for the dynamics to settle into the fixed-point value.  That is evidence
that the fixed point is getting increasingly less stable as b increases.

In fact, at
about b = 8, the
nonzero fixed point
also becomes
unstable.  Instead, we
observe a pattern of
population values that
repeats every other
cycle instead of every
cycle.  The repeat
period has doubled.
This repeat-every-
other-time behavior is
called a two-cycle
(repeats every two
samples).  For b = 8,
the fixed point at zero and the nonzero fixed point still exist, but both are unstable.  The stable
behavior is instead a two-cycle.  Again, this is the same as for fluid flow.
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When b is made a little bit bigger than 12, the two-cycle becomes unstable and is
replaced by a stable
four-cycle, as in the
figure to the right
(recall the fluid).  This
sequence of period
doublings occurs
again-and-again as b is
made larger and larger
(4-cycle goes to 8-
cycle to 16-cycle to
32-cycle, and so on).
Eventually, the repeat
time becomes so long,
the population size just
never repeats.  The
latter situation is called
deterministic chaos.
An example of
deterministic chaos in
the Ricker Equation for
b = 17 is shown in the
figure to the right.
(You may think a birth
rate of 17 is pretty high
but many insects and
fishes produce many
more progeny than
that.)  The big picture
point here is that
Ricker Equation
reproduces
qualitatively all of the behavior seen in fluids as the flow rate is increased.  Both are nonlinear
dynamical systems and essentially any nonlinear dynamical system can produce chaos provided
the system control parameters are in the correct range.

Please note the two circled stretches in this graph where the value of x seems to settle into
a repeat-every-time, fixed-point pattern.  The values that x takes on in each stretch are about the
same.  In fact, those values are almost the value of the unstable, nonzero fixed point for b = 17 (a
value that can be calculated exactly—it’s ln(17) = 2.833...; I’ll give you 10 extra course points if
you prove it).  This behavior is no accident.  Deterministic chaos is a recurrent attempt to hit one
or other periodic behavior, it’s just that every attempt fails because the periodic behaviors are all
unstable (you’d have to hit them infinitely precisely—any slight miss and away you go).  In fact,
almost immediately after the second attempt to be the unstable fixed point, the behavior attempts
to be an unstable four-cycle.  Do you see it?

The fact that deterministic chaos is a continual, recurrent, ever-failing pursuit of
periodicity allows it to be controlled by a very subtle technique.  Usual engineering control is
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accomplished in a “brute force” manner.  The usual method for control starts with a
mathematical model of the system to be controlled and a target behavior.  A controller is then
designed based on the model.  Often the control is energy intensive and not at all optimal.  Chaos
control is different.  It exploits the failed periodicity character of chaos and is extremely
efficient.  It doesn’t require a model of the behavior.  The way it works is, you (or your
computer) look for examples of recurrent unstable periodic behaviors in the output of the system
(such as the two circled stretches in the previous graph).  Once those are identified, you wait
until the same behavior recurs (it will, though you may have to wait a bit).  When that happens
you change the system’s control parameter ever so slightly, and only when needed, to keep the
system close to the identified behavior.  The details of how the parameter adjustment is actually
done are fairly easy to work out, but for our purposes it is sufficient to know that little parameter
jiggles are often sufficient to trap the system’s behavior in a mode that it ordinarily would not
like to stay in.

The top figure to
the right shows control
of the output of the
Ricker Equation (with b
= 17) using this method.
Though we know the
source is the Ricker
Equation, the computer
doesn’t.  Control comes
on at step # 212, after an
unstable fixed point
value has been identified.
The control stays on for
500 steps, after which it
is turned off.  Before the
control is on the output is
wildly chaotic.  After the
control is turned off the
output is again wildly
chaotic.  Control is
maintained to within
±5% of the fixed point
value by adjusting the
birth rate when
necessary.  The lower
graph to the right shows
the changes in the birth
rate needed to
accomplish this control.
Note that the changes are
few (49 changes in 500
steps), and range between ±0.02 (about ±0.1% of the unchanged birth rate of 17).  Very small
parameter adjustments applied at just the right time can keep the system from returning to its
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wildly chaotic behavior.  In the usual kind of brute force control, the controller would typically
always be doing something and the adjustments would typically always be much larger than
shown in the graph.  The downside to chaos control is that you can’t control to just any behavior.
You can only control to the unstable periodic behaviors that the system permits.  You can’t, for
example, control to a fixed point value of 1 or 5 from the Ricker Equation with b = 17, because
the only fixed point the Ricker Equation has with that b is about 2.83.  Nonetheless, if wild
chaotic swings are very undesirable (as, for example, in a wildly fibrillating heart) any control at
all may be of significant practical utility.

To close this discussion on deterministic chaos, it is necessary to point out that chaos
comes in two forms—simple, or low-dimensional, and complex, or high-dimensional.  The
meaning of low- and
high-dimensional can be
seen by making graphs of
the next value of the
output versus the
previous value—a so-
called first return map.
If a first return map of
output from the Ricker
Equation is made for b =
17, for example, we
obtain the graph to the
right.  The fact that we
obtain a smooth, simple
curve tells us that the
population in generation
k+1 depends only on the
population in generation
k.  When the future
depends on only one value
in the past the dynamics is
said to be one-
dimensional.  If the
Ricker Equation is
slightly modified so that
xk+1 = bxkexp(-xk) – cxk-1,
the first return map (for b
= 15.9, c = 0.31) looks
like the lower figure to the
right.  You can still see
hints of the curve of the
previous graph, but the
new plot shows
considerable smudging
out.  In the modified Ricker Equation, the population in generation k+1 depends on the
populations in generation k and generation k-1.  It is an example of two-dimensional dynamics.
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The rule is, the higher the dimension of the dynamics the more smudged out a first return
map will be.  We almost
always see smudged out first
return maps for real data.  A
typical example from the real
world is the pelt data
displayed earlier.  Its first
return map is shown to the
right.  Although there isn’t
much data, pelt yields appear
to be an example of high-
dimensional dynamics.  We
infer that almost all real
systems are relatively high-
dimensional.

The interesting and
encouraging thing about
chaos is that when it
episodically tries to be periodic, the dimension of the dynamics effectively becomes lower.
Thus, even if the chaotic fluctuations of a real system are high-dimensional, every once in
awhile, the complexity of the dynamics spontaneously reduces.  When that happens, control of
even a high-dimensional system can be put into effect.  There are two physiological examples of
this, one involving rabbit fibrillating rabbit hearts, the other electrical activity in rat brains.  In
both cases the intervals between events (beating of the heart, electrical spikes in the brain) make
a very blobby first return map—suggesting high-dimensional chaos.  Nonetheless, in both
episodic simplification is observed and control using the same principles as in the Ricker
example has been implemented.  There is a considerable interest in seeing whether these
primitive experiments can be extended to humans with positive clinical implications (stabilizing
fibrillation, preventing epileptic seizures).
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