
2000.02.1  September 1998 1

EXPERIMENT 2000.02.1:  Newton’s Second Law of Motion

Topics of investigation:  The relation between force and acceleration

Read about this topic in:  Serway, Ch. 4, 5; C&J Ch. 4

Toolkit: Computer
Laboratory interface & software (SW 2.3.2)
Motion sensor
String and pulley
Masses: 20 g, 50 g, 100 g; two massive bars
Flat track
Cart

Sketch of set up:

force sensor

track cart

motion sensor

interface

First Assumptions:

(1) The leveled track in this exercise can be used to compensate for gravity.  (2)  The light
string and pulley have negligible affect on the dynamics of the masses in the setup.  (3)
Frictional forces on the cart are negligible.

First Prediction:
If the mass of the cart plus force sensor is M and the mass attached to the “falling”

end of the string is m, then, given the above assumptions, Newton’s Second Law predicts
that when the cart is being pulled by the string only the magnitude of its acceleration will be

a0 = g
m

m + M
,

a constant, irrespective of how m and M are initially moving.  (The subscript "0" designates
"no friction.")  Similarly, Newton's Second Law predicts the tension in the string is to be

T0 = Ma0 =
mM

m + M
g ,

irrespective of how m and M are moving.

Before proceeding: Derive the predicted acceleration and tension by using Newton’s
Second Law of Motion applied to each mass in the system.  What assumptions do you have
to make in order to get the stated result?
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Exercises:

E0.  Getting started

•E0.1  Weigh your cart, force sensor, and all additional masses (2 bar masses per cart).
Record all values.
•E0.2  Level your air track if necessary.  A bubble level should be available to check your
track.  Each station should have a string with loops on both ends that is about 1 m long.
•E0.3  Turn on your interface box.  Start your Mac.  Launch Science Workshop.  Make
sure the motion sensor leads are properly inserted in the interface box (yellow in first digital
port, black in the second).  Make sure the lead from the force sensor is inserted in analog
port A.
•E0.4  Program the software to recognize a motion sensor (drag a digital plug icon onto the
first Digital Channel, then define it in the Choose a digital sensor window) and a force
sensor (drag an analog plug icon onto analog port A, then define it in the Choose an analog
sensor window).
•E0.5  Calibrate your force sensor.  To
do this, double click on the force sensor
icon in the set-up window.  A window
like the one shown to the right should
appear.  The range of forces, -50 N to
+50 N, is too coarse for the purposes of
this lab.  (A negative force is a pull, a
positive one a push.)  With the force
sensor lying in the cart bed (as shown in
the sketch above) and with no strings
attached, press the TARE button on the
side of the sensor for about a count of
ten.  Release.  The Cur Value under
Volts should now be very close to zero.
Click on the High Value Read button.
Replace the High Value 50.000 N with
0.  Attach a string with the 100 g mass
on one end to the hook.  Feed the string over the pulley and allow the cart to rest gently
against the stop.  Cur Value Volts should now be some value such as -0.1 or -0.2.  Click on
Low Value Read and replace the -50.000 N with -0.98.  Click OK.
•E0.6  Create a graph of motion sensor readings by dragging a graph icon onto the motion

sensor icon and selecting Position, x (m).  Using the add graph button, , add to the
first graph a graph of force sensor output.

E1.  Acceleration and force

•E1.1  Central to the First Prediction is the idea that once the cart is moving under the
influence of the string only, both acceleration and tension are independent of cart motion.
This aspect of the prediction may be investigated by launching the cart toward the motion
sensor and collecting position-time data for a round trip.  If the acceleration is constant
throughout, a graph of position of the cart as a function of time will have a tell-tale parabolic
shape.  (Why?)  Let's try it.  Place the 20 g mass on the end of the string.  Start with the cart
at the end of the track farthest from the motion sensor.  Practice setting the cart in motion
with a gentle push so that the 20 g mass comes almost up to the pulley before falling back
down.  The member of the team who is putting the car in motion should also carefully hold
the force sensor lead cord up so that it doesn't rub or bind on the table.  Don't pull the cart
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with the cord.  When ready to record data, remove the string from the force sensor hook
while at the same time pressing the TARE button for a count of ten.  (That resets the force
sensor to its original calibration.)  Place the string back on the hook.  Another member of
the team clicks on REC to start collecting data.  Push the cart into motion.  Continue
collecting data until the cart hits the restraining bumper.
•E1.2  Your data set will include moments when the hand is pushing the cart, moments when
the string only is affecting the cart's motion, and moments when the cart is colliding with the
bumper.  It is only the middle portion of the data for which the Prediction might be valid.
To see how well the data are described by a quadratic function, click on the Σ symbol in the
graph window.  This should open up a statistics panels for both graphs.  In the pull down
menu of the position-time panel, drag to Curve Fit then to Polynomial Fit.  The default
setting with this option is to try to fit a second order (quadratic) polynomial to the data.  The
fit is of the form y = a1 + a2 x + a3x

2   where y is the dependent variable (position relative to
the motion sensor) and x is the
independent variable (time). The
constants represent values of
initial position, initial velocity,
and 1/2 the acceleration,
respectively.  (Make sure you
understand why.)  For our
purposes here, it is only the
latter that is of interest.  As in
the figure to the right, select a
portion of the position-time data
set that appears to be parabolic
by clicking on the graph and
dragging.  Record the value of
a3.  Multiply by 2 to get the
acceleration associated with this
quadratic fit.  Record the acceleration.
•E1.3  In the statistics panel for the force sensor data click and drag on the pull down menu
and select Mean and Standard Deviation.  Select the same time interval as for the position
data.  Record the mean value of the tension.  Note the standard deviation value.  That is a
measure of how accurately the force sensor measures force.  Most of the values in the
interval shown will be within plus or minus one standard deviation from the mean value.

Remember, any time you want to view all data click in the  button.

Analysis

•A1.1  Using the expressions in the Prediction and the values of the masses you measured,
calculate a0 and T0.  You will need a value of g; in Logan, to good approximation, it
is 9.801 m/s2.  Compare these calculated values with the values obtained in steps E1.2 and
E1.3.  (Reminder:  1 g = 0.001 kg.)

•E1.4  Repeat steps E1.1-E1.3 four more times, each time recording best fit values of
acceleration (2a3) and tension.  Don't delete any good data sets; you'll be using them again
later.

•A1.2  You will undoubtedly observe that the value of the best fit acceleration varies from
run-to-run.  That is an inevitable characteristic of real measurements.  No one measurement
is "right."  There are many reasons for measurement variation, most having to do with how
the instrumentation is designed and constructed.  Sometimes beginning experimenters
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clump all such variations into a single category they call "human error"--suggesting that
humans are measuring devices with built-in variability.  With contemporary electronic data
collection techniques the subjective role of the human observer is vastly reduced.  The
concept of "human error" is a kind of cop-out and should be abandoned, unless, of course,
by "human error" is meant "screw-ups."  If the latter is infecting your experimental results
you should make every effort to STOP DOING IT!

In any case, intellectual responsibility requires that a statement of how reliable the
value is accompany the report of a measured value.  One way of assessing reliability is to
repeat the measurement many times, each time performing the measurement the same
(screw-up free) way.  Then, the reported measurement should be the mean value from all
trials and the reliability should reflect the variations actually observed.  One such measure of
reliability is the "standard deviation."  Standard deviation is calculated as follows:  Start with
a set of measurements {x1, x2, …, xN}.  Determine the mean:  <x> = (x1+x2+…xN)/N.
Subtract <x> from each measurement to find the "deviation of the measurement from the
mean:"  di = xi - <x>.  Square each deviation (so that each deviation is converted into a
positive number), and find the mean of them (the mean of the deviations without squaring is
exactly zero):  <d2> = (d1

2+d2
2+…+dN

2)/N.  Finally, take the square root to determine the

standard deviation:  σ = < d2 > .   A properly reported measured value is then given as

<x>±σ.
From the five trials you have run in E1.1-E1.4 with m = 20 g determine the mean

value of acceleration (<a>) and its standard deviation (σa).  Likewise determine the mean
value of the tension (<T>).  Take as the uncertainty of the tension the mean value of all the
standard deviations (σT).  Now, we can answer the question, Are the First Predictions

consistent with the measured values?  The answer is YES if a0 lies in the range <a>-σa to

<a>+σa and T0 lies in the range <T>-σT to <T>+σT, and (probably) NO otherwise.  So
which is it?

•E1.5  Replace the 20 g mass with the 50 g mass and repeat steps E1.1-E1.4 and the
analyses in A1.1 and A1.2.  Does the average acceleration increase as predicted?  Are the
new Predictions compatible with the new results?
•E1.6  Place one of the massive bars in the bed on the back of the force sensor.  Repeat
E1.5.
•E1.7  Place the second massive bar in the bed on the back of the force sensor.  Repeat
E1.5.

E2.  Desperately seeking friction

If you examine some of your position-time data sets carefully, you will probably
notice that the parts of the graphs that are supposed to be parabolas are not exactly
symmetric around the turning points.  So, we have

Amended Assumption:

Friction, while small, is not negligible.  We assume, here, the frictional force, f, is constant.
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This leads to a

Second Prediction

Let the subscript "u" refer to motion in which m goes up and "d" to motion in which m goes
down.  Then

au = a0 +
f

M + m
 and ad = a0 −

f

M + m
or, what is the same thing,

f = 1
2 (M + m)(au − ad)

You should verify these predictions before proceeding.

•E2.1  The Second Prediction states that acceleration during the time the cart is being pulled
by the string only is not constant.  It is greater when m is going up than when m is falling.
Make a sketch of what you think velocity as a function
of time would look like under these conditions.  One
way of testing this prediction is to reanalyze the data you
have already taken.  Double click on the first data set
taken.  Instead of displaying position-time display
velocity-time.  (Click on the motion sensor icon in the
graph window, drag to Digital 1, then to Velocity, v
(m/s).)  In the statistics pull down menu of the graph
change from Polynomial Fit to Linear Fit.  The
parameter a2 in a linear fit of velocity versus time is
acceleration.  (Why?)  Select data over the first portion of "string only" motion as shown
to the right.  It should be clear that the velocity versus time does not have a single slope (as
it should if the acceleration were constant throughout).  Record a2 (= au).  Select data over
the second phase of the "string only" motion.  Record a2 (= ad).

•A2.1  Calculate f from your values of m, M, au, and ad.

•E2.2  Repeat E2.1 for all data sets collected in step E1.

•A2.2  Repeat A2.1 for all values recorded in E2.2.
•A2.3  Calculate average values of f for each separate combinations of masses.  If f were
due to sliding friction f would equal µMg.  Does f change as M changes the way the latter
expression says it should?
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Worksheet:
exercise 1 exercise 3
mass: cart+FS (g) = mass: cart+FS+1 bar (g) =
falling mass (g) = 20 falling mass (g) = 50
predicted accel. (m/s2) = predicted accel. (m/s2) =
predicted tension (N) predicted tension (N)
a3 accel. (m/s2) tension (N) a3 accel. (m/s2) tension (N)

average accel. ± stddev (m/s2) = average accel. ± stddev (m/s2) =
average tension ± stddev (N) = average tension ± stddev (N) =

exercise 2 exercise 4
mass: cart+FS (g) = mass: cart+FS+2 bars (g) =
falling mass (g) = 50 falling mass (g) = 50
predicted accel. (m/s2) = predicted accel. (m/s2) =
predicted tension (N) predicted tension (N)
a3 accel. (m/s2) tension (N) a3 accel. (m/s2) tension (N)

average accel. ± stddev (m/s2) = average accel. ± stddev (m/s2) =
average tension ± stddev (N) = average tension ± stddev (N) =

exercise 5 exercise 7
au (m/s2) ad (m/s2) f (N) au (m/s2) ad (m/s2) f (N)

average f = average f =
exercise 6 exercise 8
au (m/s2) ad (m/s2) f (N) au (m/s2) ad (m/s2) f (N)

average f = average f =


