Quiz Summary

© Average Score © High Score
20\% 60\%
© Low Score
0\%
© Standard
Deviation
© Average Time
1.29

06:07

Question Breakdown

Attempts: 154 out of 159

What is the total resistance of the circuit below?

+0.35

Discrimination
Index ?

$1 / 3$ ohm	3 respondents	2%
$4 / 3$ ohm	26 respondents	16%
2 ohm	29 respondents	18%
6 ohm	14 respondents	9%

I don't know
No Answer

82 respondents
5 respondents

16\% answered correctly

Attempts: 154 out of 159

A really strong French chef throws a 1 meter long baguette at you for insulting his croissants. You dodge the loaf, which is quite a feat because it is moving at four-fifths the speed of light. How long does the loaf look to you as it whizzes by your head?

+0.30

Discrimination Index (3)		
$1 / 5 \mathrm{~m}$	34 respondents	21%
$3 / 5 \mathrm{~m}$	14 respondents	9%
1 m	16 respondents	10%
$5 / 4 \mathrm{~m}$	43 respondents	27%
I don't know	47 respondents	30%
No Answer	5 respondents	3%

Attempts: 154 out of 159

For an electromagnetic wave moving through vacuum, what is the ratio of the magnitude of the electric field to the magnitude of the magnetic field equal to?
a) ϵ_{0}
b) $4 \pi \epsilon_{0}$
c) c
d) c^{2}
e) I don't know.

+0.07

Discrimination
Index ?

a)	18 respondents	11%
b)	27 respondents	17%
c)	3 respondents	$\mathbf{2} \%$
d)	9 respondents	6%
e)	97 respondents	61%
No Answer	5 respondents	3%

2\% answered correctly

Attempts: 154 out of 159

In which direction does the proton initially deflect as it passes into the magnetic field in the diagram below? The magnetic field is directed into the page.

+0.10

Discrimination
Index ?

up	9 respondents	6%
down	8 respondents	5%
into the page	45 respondents	28%
out of the page	53 respondents	33%
I don't know	39 respondents	25%
No Answer	5 respondents	3%

6\% answered correctly

Attempts: 153 out of 159

Which of the following can be completely explained without quantum physics?

The Balmer series
The work function of the photoelectric effect.

The interference pattern of light.

The interference pattern of electrons.
I don't know.

No Answer

12\%
answered
correctly

This image was most likely created by passing one wavelength of light through

a circular aperture.
a single slit.
a double slit.
a diffraction grating.

I don't know.

No Answer
16 respondents

50 respondents

30 respondents

35 respondents
23 respondents

5 respondents

10 \%
31%

19 \%

22 \%

14 \%

3 \%

Discrimination
Index (?)

Attempts: 153 out of 159

A stream of protons, electrons and oxygen atoms pass at the same speed through a 1 micrometer-wide slit. Which stream will produce the widest diffraction pattern on a detector behind the slit?

+0.38

Discrimination
Index (?)

The electrons.	36 respondents	$\mathbf{2 3} \%$
The oxygen atoms.	40 respondents	$\mathbf{2 5} \%$
All three will be the same.	11 respondents	$\mathbf{7} \%$
None of them will produce a diffraction pattern.	10 respondents	6%
I don't know.	48 respondents	$\mathbf{3 0 \%}$
No Answer	6 respondents	$\mathbf{4} \%$

Attempts: 154 out of 159

This image shows a point (the dot) among two equal positive charges and a negative charge. At the dot, the electric field points
\oplus
23\% answered correctly
-

$+0.52$

Discrimination
Index (?

left	71 respondents	$\mathbf{4 5} \%$
right	45 respondents	28%
up	3 respondents	2%
down		0%
nowhere. The electric field is zero.	16 respondents	10%

I don't know.
No Answer

19 respondents
12 \%
3%

The image shows a blob shaped closed surface, with total area A, and has several charges scattered randomly throughout the volume it encloses. In total there are 6 free electrons and 17 free protons within the blob. If q represents the fundamental charge of a proton and ϵ_{0} is the permittivity of free space, then what is the electric flux through the surface?
a) $23 \frac{q^{2}}{A}$
b) $11 \frac{q}{\epsilon_{0}}$
c) $-6 q A$
d) $\epsilon_{0} A$
e) I don't know

+0.32

Discrimination
Index ?
a)
b)
c)
d)
e)

No Answer

10 respondents
24 respondents

6 respondents
9 respondents
104 respondents

6 respondents
6%
15 \%
4 \%
6%
65%
4 \%

15\% answered correctly

Attempts: 152 out of 159

An electron is released from rest at point B, where the electric potential is 0 V . Afterward, the electron will

+100 V	0 V	-100 V
\vdots	\vdots	\vdots
A	$\mathrm{~B} \bullet$	C
\vdots	\vdots	\vdots

+0.37

Discrimination Index (?)		
remain at rest at B.	34 respondents	21 \%
move toward A at constant speed.	14 respondents	9 \%
move toward A at an increasing speed.	60 respondents	38 \%
move toward C at constant speed.	4 respondents	3 \%
move toward C at an increasing speed.	15 respondents	9%
I don't know.	25 respondents	16 \%
No Answer	7 respondents	4 \%

