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1 Vector spaces
You are familiar with the idea of a vector: an object much like an arrow that has magnitude and direction.
These intuitive descriptors are indeed crucial properties of vectores, but we need a more formal understanding
of them.

Here we identify some basic formal properties of vector spaces. We will use these to describe solutions
to differential equations in greater detail.

1.1 Vector space: a formal definition
Briefly, a vector space is a set of objects, S, which we may (1) add and (2) take scalar multiples.

1. By addition, denoted as usual
−→u +−→v

we mean a way of combining any two vectors such that:

(a) −→u +−→v is another vector, i.e. another element in S
(b) There is a zero vector in S, called −→0 , such that for every vector, −→u +

−→
0 =

−→
0 +−→u = −→u

(c) For every −→u there is another vector (called −−→u ) in S such that −→u + (−−→u ) =
−→
0

(d) For any three vectors, −→u + (−→v +−→w) = (−→u +−→v ) +−→w
(e) −→u +−→v = −→v +−→u

A set having an operation satisfying the first four of these properties is called a group. When the operation,
in our case addition, is commutative it is called an Abelian group.

A scalar multiple of a vector is multiplication by a real (or complex) number. Scalar multiplication gives
us another vector in the space, so for all real numbers α and any vector −→u in S,

−→w = α−→u

is also in S.
Addition and scalar multiplication satisfy distributive laws,

α (−→u +−→v ) = α−→u + α−→v
(α+ β)−→u = α−→u + β−→u

These properties mean that for any collection of vectors, we may take arbitrary linear combinations, and
the result is always another vector:

−→w = α1
−→u 1 + α2

−→u 2 + . . .+ αn−→u n

The terms in this sum may be written in any order and added with any groupings.
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1.2 Linear independence
A collection of vectors {−→u 1,−→u 2, . . . ,−→u n} is linearly dependent if there exist nonzero constants such that

α1
−→u 1 + α2

−→u 2 + . . .+ αn−→u n = 0

When such a nontrivial sum of vectors vanishes, at least one of the αs must be nonzero, and we can divide
through to solve for one of the vectors in terms of the others. Thus, if α1 is one of the nonvanishing scalars,
we may write

−→u 1 = − 1

α2
(α2
−→u 2 + . . .+ αn−→u n)

This means that many vectors may be written in terms of a smaller set, called a basis.
A collection of vectors is independent if it is not dependent. This means that for independent vectors,

the only solution above is for all of the α1, α2, . . . to vanish. A basis is any maximal independent set of
vectors. For example, in 3 dimensions we know that we may write any vector as a linear combination of any
three independent vectors. Let −→u ,−→v ,−→w be any 3 independent vectors in 3-space (so that the only way to
get α−→u + β−→v + γ−→w = 0 is to have α = β = γ = 0). Then if −→x is any other 3-vector the set

{−→u ,−→v ,−→w ,−→x }

is dependent. There exist nonzero numbers α, β, γ, µ such that

α−→u + β−→v + γ−→w + µ−→x = 0

and necessarily µ is nonzero since the first three vectors are independent. Therefore,

−→x = − 1

µ
(α−→u + β−→v + γ−→w)

proving that any other vector in the space may be written as a linear combination of (−→u ,−→v ,−→w). A basis
gives a very concise way of describing any vector–all we need are the three real numbers,

(
−αµ ,−

β
µ ,−

γ
µ

)
.

These are the components of −→x in the (−→u ,−→v ,−→w) basis.

1.3 Norm and inner product
Now we come to the important ideas of magnitude and direction. These may be summarized for 3-vectors
by the dot product. Essentially, the dot product is a way (one of many!) of producing a real number from
a pair of vectors. Such a mapping on a vector space is called an inner product.

To find the squared length of any 3-vector–its norm–we have

‖−→x ‖2 := −→x · −→x

When we have such a mapping that linearly assigns a positive real number to each vector, it is called a norm.
Linearity means that

‖α−→x ‖2 : = (α−→x ) · (α−→x )

= α2 (−→x · −→x )

and

‖−→x +−→y ‖2 : = (−→x +−→y ) · (−→x +−→y )

The distributive property and symmetry of the dot product allow us to write this as

‖−→x +−→y ‖2 = −→x · −→x +−→y · −→x +−→x · −→y +−→y · −→y
= ‖−→x ‖2 + 2−→x · −→y + ‖−→y ‖2
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and therefore

‖−→x +−→y ‖2 = −→x · −→x +−→y · −→x +−→x · −→y +−→y · −→y
−→x · −→y =

1

2

(
‖−→x +−→y ‖2 − ‖−→x ‖2 − ‖−→y ‖2

)
Conversely, if we were to take this as a definition of −→x · −→y , it is automatically symmetric, −→x · −→y = −→y · −→x
and is defined in terms of vector length. This allows us to define an inner product between pairs of vectors
once we have the squared norm for individual vectors.

A word of caution: there are other sorts of norms and vector spaces that do not automatically give an
inner product.

1.4 An orthonormal basis
Using the (−→u ,−→v ,−→w) basis for 3-space, we may write any vector as a linear combination,

−→x = xu−→u + xv−→v + xw−→w

where (xu, xv, xw) are the components of −→x . Then the squared norm of −→x is

‖−→x ‖2 = (xu−→u + xv−→v + xw−→w) · (xu−→u + xv−→v + xw−→w)

= xuxu−→u · −→u + xvxu−→v · −→u + xwxu−→w · −→u + xuxv−→u · −→v + xvxv−→v · −→v
+xwxv−→w · −→v + xuxw−→u · −→w + xvxw−→v · −→w + xwxw−→w · −→w

Even if we collect terms,

= (xu−→u + xv−→v + xw−→w) · (xu−→u + xv−→v + xw−→w)

‖−→x ‖2 = x2u
−→u · −→u + 2xuxv−→u · −→v + x2v

−→v · −→v
+2xuxw−→u · −→w + 2xvxw−→v · −→w + x2w

−→w · −→w

this is unnecessarily complicated. We may simplify it to the Pythagorean theorem if we require the basis
vectors to be perpendicular or orthogonal,

−→u · −→v = 0
−→u · −→w = 0
−→w · −→v = 0

and normalized to unit length,
−→u · −→u = 1
−→v · −→v = 1
−→w · −→w = 1

There is a procedure for finding such a basis. The Gram-Schmidt procedure gives both properties at
once, giving us an orthonormal basis. We start with any basis and choose one of the vectors, say −→u . If we
divide −→u by its norm it becomes a unit vector, denoted with a carat (^) instead of an arrow:

û =
−→u√−→u · −→u

Then

û · û =
−→u√−→u · −→u

·
−→u√−→u · −→u

=
−→u · −→u
−→u · −→u

= 1
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The vector û is called a unit vector. It is the first vector in our orthonormal set. Now choose another vector
from the basis, say −→v . We may always divide −→v into parts parallel and perpendicular to û. The component
of −→v along û is just

vu = û · −→v

so the part of −→v parallel to −→v is
−→v ‖ = (û · −→v ) û = vuû

The rest of −→v is given by the difference

−→v ⊥ = −→v −−→v ‖
= −→v − (û · −→v ) û

and this gives the direction of our second basis vector. We only need to give it unit norm,

v̂⊥ =
−→v − (û · −→v ) û

‖−→v − (û · −→v ) û‖

where the denominator is

‖−→v − (û · −→v ) û‖ =
√

(−→v − (û · −→v ) û) · (−→v − (û · −→v ) û)

=

√
−→v · −→v − 2 (û · −→v ) û · −→v + (û · −→v )

2

Our basis now has two orthonormal vectors, (û, v̂⊥).
Exercise: Find a third unit vector orthogonal to both û and v̂⊥.
Given an orthonormal basis, we might as well align our coordinate axes with them and call them simpler

names, such as
(̂
i, ĵ, k̂

)
. Then every 3-vector may be written as

−→v = vx î+ vy ĵ+ vzk̂

and represented by the triple (vx, vy, vz). The squared norm of −→v is now given by the Pythagorean form,

‖−→v ‖2 = v2x + v2y + v2z

1.5 A note on notation
It is often useful to have a more general notation for an orthonormal basis. If we introduce a label, (i), that
takes values 1, 2, 3 and let

ê1 = î

ê2 = ĵ

ê3 = k̂

then orthonormality may be expressed as
êi · êj = δij

where δij is the Euclidean metric, defined by

δ11 = δ22 = δ33 = 1

δ12 = δ23 = δ31 = 0

δ21 = δ32 = δ13 = 0
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or more simply as the matrix

δij =

 1 0 0
0 1 0
0 0 1


Notice that êi · êj = δij is actually nine different equations in which each of the labels i, j may take any of
the values 1, 2, 3.

Now, if we write the components of any vector −→v as
(
v1, v2, v3

)
then expanding in the basis is a simple

sum,

−→v =

3∑
i=1

viêi

This notation allows easy generalization to vector spaces of any dimension. To write an n-dimensional vector,
we just change the upper limit on the sum,

−→v =

n∑
i=1

viêi

The orthonormality of the basis may still be written as êi · êj = δij but this now expresses n2 different
equations as i and j each take values from 1 to n.

Finally, notice that we may use this label notation to compute the inner product. Using the distributive
laws,

−→u · −→v =

(
n∑
i=1

uiêi

)
·

 n∑
j=1

vj êj


=

n∑
i=1

n∑
j=1

uiêi · vj êj

=

n∑
i=1

n∑
j=1

uivj (êi · êj)

=

n∑
i=1

n∑
j=1

uivjδij

Now, since δij vanishes unless i = j, this becomes

−→u · −→v = u1v1 + u2v2 + . . .++unvn

2 Function spaces

2.1 Taylor series
We know that many functions may be written in a Taylor series, including solutions to the wave equation.
For a traveling wave,

q (x, t) = f (x− ct)

for example, we may expand f (u) as about u = 0 as

f (u) =

∞∑
n=0

1

n!
f (n) (0)un
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where f (n) (x) = dnf
dxn . Now, with u = x− ct we have

q (x, t) =

∞∑
n=0

1

n!
f (n) (0) (x− ct)n

that is, the displacement q is written as a power series.

2.1.1 Power series as vectors

If we have two power series,

f (x) =

∞∑
n=0

1

n!
f (n) (0)xn

g (x) =

∞∑
n=0

1

n!
g(n) (0)xn

we may take a linear combination of them to get a third,

h (x) = αf (x) + βg (x)

= α

∞∑
n=0

1

n!
f (n) (0)xn + β

∞∑
n=0

1

n!
g(n) (0)xn

=

∞∑
n=0

1

n!

(
αf (n) (0) + βg(n) (0)

)
xn

If we think of f (x) and g (x) as countably infinite vectors,

f ⇐⇒
(
f (0) (0) , f (1) (0) , f (2) (0) , . . .

)
g ⇐⇒

(
g(0) (0) , g(1) (0) , g(2) (0) , . . .

)
then this is exactly the way the components add, so that the nth component of h (x) = αf (x) + βg (x)
becomes

h(n) (0) = αf (n) (0) + βg(n) (0)

In fact, most of the properties we usually expect of vectors apply to functions. We can even define a
squared norm such as

‖f‖2 =

L̂

0

|f (x)|2 dx

This choice is called the L2 norm, and we will see that it generalizes the Pythagorean theorem for functions
defined on the interval [0, L].

If f (x) and g (x) are complex valued functions (for example, eix) then the norm is taken with the complex
conjugate,

〈f, g〉 :=
1ˆ

0

f∗ (x) g (x) dx

This norm is used in quantum mechanics to find the probability of finding a particle in a volume V :

‖ψ‖2 =

ˆ

V

ψ∗ (x)ψ (x) d3x
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There are alternative norms. For polynomials on the double unit interval, it is more convenient to
normalize by setting

f (1) = 1

We will use this norm below.

2.1.2 Inner products

We will want to know when two of these infinite dimensional vectors are orthogonal, but for orthogonality
we need to know what we mean by the “dot product” of two functions.

Generalizing the result we found for 3-vectors,

−→u · −→v =
1

2

(
‖−→u +−→v ‖2 − ‖−→u ‖2 − ‖−→v ‖2

)
we can define an inner product for a function space from its norm. The L2 norm allows us to do this.
Consider the inner product of h (x) = f (x) + g (x) in the L2 norm:

‖f + g‖2 =

1ˆ

0

(f (x) + g (x))
2
dx

=

1ˆ

0

f (x)
2
+ g (x)

2
+ 2f (x) g (x) dx

= ‖f‖2 + ‖g‖2 + 2

1ˆ

0

f (x) g (x) dx

1ˆ

0

f (x) g (x) dx =
1

2

(
‖f + g‖2 − ‖f‖2 − ‖g‖2

)
We define this to be our inner product:

〈f, g〉 :=
1ˆ

0

f (x) g (x) dx

This method does not work for every norm. For example, if we had defined the L4 norm

‖f‖4 =

L̂

0

|f (x)|4 dx

then

‖f + g‖4 =

1ˆ

0

(f (x) + g (x))
4
dx

=

1ˆ

0

(
f4 + 4f3g + 6f2g2 + 4fg3 + g4

)
dx

= ‖f‖4 + ‖g‖4 +
1ˆ

0

(
4f3g + 6f2g2 + 4fg3

)
dx
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so although we could define

〈f, g〉 = ‖f + g‖4 − ‖f‖4 − ‖g‖4

=

1ˆ

0

(
4f3g + 6f2g2 + 4fg3

)
dx

this expression has little to recommend it. With more general definitions of the norm, it becomes impossible
to discern a meaningful inner product.

2.1.3 An orthonormal basis for a function space

For the vector space of power series, the basis 1, x, x2, . . . is not orthogonal. For example, on the interval
[−1, 1]„

1ˆ

−1

(
x2
)
·
(
x4
)
dx =

1

7
x7
∣∣1
−1 =

2

7

so that x2 and x4 are not orthogonal. Therefore, let us apply Gram-Schmidt orthogonalization to find an
orthogonal basis. For normalization we will choose to set f (1) = 1.

To find such a basis for a power series, it serves future purposes if we consider functions on the unit
interval, [−1, 1]. Then we begin with the simplest polynomial, a constant

P0 (x) = 1

and this already satisfies P0 (1) = 1. This is what we mean by a unit vector on this function space.
Next consider a linear polynomial,

P1 (x) = ax+ b

We first make it orthogonal to ϕ0,

0 = 〈P0, P1〉

=

1ˆ

−1

1 · (ax+ b) dx

=

(
1

2
ax2 + bx

)∣∣∣∣1
−1

=

(
1

2
a+ b

)
−
(
1

2
a− b

)
= 2b

Evaluating at x = 1, we require
1 = P1 (1) = a

so we need a = 1 to give the final form
P1 (x) = x

For P2, set P2 (x) = ax2 + bx+ c, and require

〈P0, P2〉 = 0

〈P1, P2〉 = 0

‖P2‖2 = 1
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For the first

0 = 〈P0, P2〉

=

1ˆ

−1

1 ·
(
ax2 + bx+ c

)
dx

=

(
1

3
ax3 +

1

2
bx2 + cx

)∣∣∣∣1
−1

=
1

3
a+

1

2
b+ c−

(
−1

3
a+

1

2
b− c

)
=

2

3
a+ 2c

so that
c = −1

3
a

Next,

0 = 〈P1, P2〉

=

1ˆ

−1

(2x− 1) ·
(
ax2 + bx+ c

)
dx

=

1ˆ

−1

(
2ax3 + 2bx2 + 2cx− ax2 − bx− c

)
dx

=

1ˆ

−1

(
2ax3 + (2b− a)x2 + (2c− b)x− c

)
dx

=
1

2
a+

2

3
b− 1

3
a− 1

2
b−

(
1

4
2a− 1

3
(2b− a) + 1

2
(2c− b) + c

)
=

1

2
a+

2

3
b− 1

3
a− 1

2
b− 1

2
a+

1

3
(2b− a)− 1

2
(2c− b)− c

= −1

3
a− 1

3
a+

2

3
b− 1

2
b+

2

3
b+

1

2
b− 2c

= −2

3
a+

4

3
b− 2c

= −2

3
a+

4

3
b+

2

3
a

b = 0

Now we have

P2 (x) = a

(
x2 − 1

3

)
P2 (1) = a

(
2

3

)
so we choose a = 3

2 . Thus

P2 (x) =
1

2

(
3x2 − 1

)
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The polynomials generated in this way are called the Legendre polynomials. They form an orthonormal basis
for power series on the interval [−1, 1]. (We will discover them again when we study the Laplace equation in
spherical coordinates–the angle θ varies from 0 to π, so that cos θ varies from −1 to 1 and we can use them
so express any function of θ.)

Exercise: Find P3 (x)
Because these polynomials are orthogonal, inner products only depend on the their norms. There is a

general formula for the L2 norm of Pn. For the three we have,

〈P0, P0〉 =

1ˆ

−1

1 · 1dx

= 2

〈P1, P1〉 =

1ˆ

−1

x · xdx

=
2

3

〈P2, P2〉 =

1ˆ

−1

1

2

(
3x2 − 1

)
· 1
2

(
3x2 − 1

)
dx

=
1

4

1ˆ

−1

(
9x4 − 6x2 + 1

)
dx

=
1

4

(
9

5
x5 − 6

3
x3 + x

)∣∣∣∣1
−1

=
2

4

(
9

5
− 6

3
+ 1

)
=

2

5

In general it can be shown that the L2 norm of Pn (x) is

〈Pn, Pn〉 =
2

2n+ 1

2.1.4 Expanding functions in Legendre polynomials

Because of the orthonormality, it often turns out to be convenient to write a power series in terms of Legendre
polynomials instead of simply powers of x,

f (x) =

∞∑
n=0

anϕn (x)

As an example, consider the polynomial

f (x) = a+ bx+ cx2

We may rewrite this by first replacing x2 with a multiple of P2 (x),

P2 (x) =
1

2

(
3x2 − 1

)
2P2 (x) = 3x2 − 1

x2 =
1

3
(2P2 (x) + 1)
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Using this

f (x) = a+ bx+
c

3
(2P2 (x) + 1)

=
(
a+

c

3

)
+ bx+

2c

3
P2 (x)

Now replace x by P1 (x) and write the constant as a multiple of P0 (x) = 1,

f (x) =
(
a+

c

3

)
P0 (x) + bP1 (x) +

2c

3
P2 (x)

Computations become much easier in this form. For instance, if we want to compute the L2 norm of f ,

‖f (x)‖2 =

1ˆ

−1

((
a+

c

3

)
P0 (x) + bP1 (x) +

2c

3
P2 (x)

)((
a+

c

3

)
P0 (x) + bP1 (x) +

2c

3
P2 (x)

)
This would be complicated as a power series, giving us nine integrals to perform, but orthogonality eliminates
all but three integrals, and we already know their values,

‖f (x)‖2 =

1ˆ

−1

((
a+

c

3

)
P0 (x) + bP1 (x) +

2c

3
P2 (x)

)((
a+

c

3

)
P0 (x) + bP1 (x) +

2c

3
P2 (x)

)

=
(
a+

c

3

)2
〈P0 (x) , P0 (x)〉+ b2 〈P1 (x) , P1 (x)〉+

4c

9
〈P2 (x) , P2 (x)〉

=
(
a+

c

3

)2
2 + b2

2

3
+

4c

9

2

5

= 2a2 +
4

3
ac+

2

9
c2 +

2

3
b2 +

8

45
c

More generally, suppose we have two functions expanded in Legendre polynomials,

f (x) =

∞∑
n=0

anPn (x)

g (x) =

∞∑
m=0

bmPm (x)

Then their L2 inner product is

〈f (x) , g (x)〉 =

1ˆ

−1

f (x) g (x) dx

=
∞∑
n=0

an

∞∑
m=0

bm

1ˆ

−1

Pn (x)Pm (x) dx

=

∞∑
n=0

∞∑
m=0

anbm

(
2

2n+ 1
δnm

)
and since δmn is zero except when m = n we can do one of the sums, just changing m to n,

〈f (x) , g (x)〉 =

∞∑
n=0

∞∑
m=0

anbm
2

2n+ 1
δnm

=
∞∑
n=0

2anbn
2n+ 1

We’ve just performed an infinite number of integrals!
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