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1 Waves in new directions
We have seen that a 1-dimensional wave may be described by

− 1

c2
∂2q

∂t2
+
∂2q

∂x2
= 0

In three dimensions, we need to replace the spatial derivative ∂2q
∂x2 with a combination of x, y and z derivatives.

Since we still expect to have 1-dimensional solutions, but in any direction it is natural to guess the form1

− 1

c2
∂2q

∂t2
+
∂2q

∂x2
+
∂2q

∂y2
+
∂2q

∂z2
= 0 (1)

where q = q (−→x , t). This lets us immediately write 1-dimensional solutions of the form

q = f (z − ct) + g (z + ct)

for x, y or z. This combination of spatial derivatives, called the Laplacian, is written as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

This simplifies writing the wave equation Eq.(1) to

− 1

c2
∂2q

∂t2
+∇2q = 0 (2)

This wave equation, in Cartesian, cylindrical, and spherical coordinates, will occupy us for some time.

2 Grad and div
There are three different geometric derivatives we will need:

1. The gradient, called grad.

2. The divergence, often simply called div.

3. The curl.

Each of these has definite geometric content. The gradient tells us the magnitude and direction of the change
in a function; the divergence tells us how strongly vectors spread out from any given point, while the curl
tells how much vectors circle around a point. We will discuss the gradient and divergence now, posponing
the curl until we need it.

1You might wonder about more general forms involving mixed derivatives. It turns out that by a proper choice of coordinates,
any constant mix of second derivatives may be transformed to this form.
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2.1 The gradient
Suppose we associate the direction of increase of a function with its derivative. For a function of one variable
we could write

î
df

dx
to indicate thatf is increasing in the x-direction when the derivative is positive, and the negative x-direction
when df

dx is negative. This makes more sense in a plane, where we might write

î
∂f

∂x
+ ĵ

∂f

∂y

for a function of two variables, f (x, y). This is now a vector in the plane, with components equal to the rate
of change of f in the corresponding directions.

x

y

(x, y)

∂ f
∂y

j

∂ f
∂x

i

fD

fDgrad f  =

The resulting vector is called the gradient, or grad f and written with an upside-down delta symbol called
del. The combination del f = grad f = −→∇f is a vector. In 3-dimensions, for any function f (x, y, z), we have
the obvious extension,

−→∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

Sometimes we refer to the gradient operator alone,

−→∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

We can use the gradient to find the total change of a function in any direction. If n̂ is a unit vector in
the desired direction then the usual dot product of two vectors

n̂ · −→∇f

is the directional derivative, that is, the rate of change of the function f in the n̂ direction. As with any
vector, n̂ · −→∇f gives the component of −→∇f in the n̂ direction. The operator

n̂ · −→∇
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is called a directional derivative operator.
If we find a vector n̂ orthogonal to grad f, the dot product gives zero. This n̂ gives a direction in which

the function f is not changing. The collection of all such directions gives the level surfaces of the function
f , surfaces on which f is constant.

2.2 The divergence
Suppose we have a vector field, −→v (−→x ), i.e., a vector assigned to each point of space in a smoothly changing
way. We may apply the del operator, −→∇, to a vector so that the derivatives operate on the vector field.
Instead of a directional derivative −→v · −→∇ we have the divergence,

div −→v =
−→∇ · −→v

Writing out the derivatives and the dot product, we have

−→∇ · −→v =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
·
(̂
ivx + ĵvy + k̂vz

)
Since the Cartesian unit vectors, î, ĵ, k̂ are the same at all points, their derivatives are zero. Carrying out
the dot product in the usual way we have

−→∇ · −→v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

The divergence tells us how much the vector field −→v moves away from a given point or region. This is
easily seen if we integrate it over some volume.

˚

V

−→∇ · −→v dx dy dz

To evaluate this over an arbitrary volume, we first start with a simple box with one corner at the origin and
sides of lengths a, b and c respectively. Then we have

˚

box

−→∇ · −→v dx dy dz =
aˆ

0

dx

bˆ

0

dy

cˆ

0

dz

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)

The trick here is choosing which integral to do first. Rearrange so that we do the x integral of ∂vx
∂x , the y

integral of ∂vy∂y and the z integral of ∂vz∂z first:

˚

box

−→∇ · −→v dx dy dz =

bˆ

0

dy

cˆ

0

dz

aˆ

0

dx
∂vx
∂x

+

aˆ

0

dx

cˆ

0

dz

bˆ

0

dy
∂vy
∂y

+

aˆ

0

dx

bˆ

0

dy

cˆ

0

dz
∂vz
∂z

=

bˆ

0

dy

cˆ

0

dz [vx (a, y, z)− vx (0, y, z)]

+

aˆ

0

dx

cˆ

0

dz [vy (x, b, z)− vy (x, 0, z)]

+

aˆ

0

dx

bˆ

0

dy [vz (x, y, c)− vz (x, y, 0)]
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Next, notice that the remaining integrals are over the boundary of the box. For example, the final double
integral

aˆ

0

dx

bˆ

0

dy [vz (x, y, c)− vz (x, y, 0)] =
aˆ

0

dx

bˆ

0

dy vz (x, y, c)−
aˆ

0

dx

bˆ

0

dy vz (x, y, 0)

is the difference between the z component of the vector at the top of the box, integrated over the top, minus
the z-component of the vector at the bottom of the box, integrated over the bottom. We can write the right
side of the equation as

aˆ

0

dx

bˆ

0

dy [vz (x, y, c)− vz (x, y, 0)] =
¨

top

d2x n̂ · −→v (x, y, c) +

¨

bottom

d2x n̂ · −→v (x, y, 0)

where we understand the unit vector n̂ to be the outward normal to the surface. By specifying outward, we
may change the sign of the integral over the bottom of the box. The remaining four terms may be written
in the same way, always understanding n̂ to be the outward normal and the vector −→v to be restricted to the
remaining surface of integration:

˚

box

−→∇ · −→v dx dy dz =
¨

surface

d2x n̂ · −→v

Now that we have the result for a box, we generalize to an arbitrary volume by dividing it into infinitesimal
boxes and adding the results. Wherever to boxes abut one another the integrals cancel because the outward
normals are in opposite directions, with the integrals over −→v being otherwise the same. The result is that
on the left, the sum of integrals over all the boxes gives the integral of the divergence over the whole volume,
while on the right the integral extends over exactly the unmatched part of the boundary. Thus, for any
volume V with surface S, ˚

V

−→∇ · −→v dx dy dz =
¨

S

d2x n̂ · −→v

where n̂ at any given point of S is the outward normal to S at that point. This is the divergence theorem.
The divergence theorem gives the best interpretation of the meaning of the divergence. The divergence of

a vector field summed over any volume is equal to the amount of the vector field crossing out of the volume
across its boundary.

2.3 The Laplacian
Using the divergence and the gradient together gives us the Laplacian. Starting with any function, f (x̂) we
first find the gradient,

−→∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

Since the gradient is a vector field, we may find its divergence,

−→∇ · −→∇f =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
·
(
î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

)
=

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

= ∇2f

The result is the Laplacian. Thus, the Laplacian tells us how much the change of a function is spreading
out from any point. You are now allowed to say “div grad equals del-squared”.
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3 Solutions to the wave equation
Now return to the wave equation, Eq.(2),

− 1

c2
∂2q

∂t2
+∇2q = 0

3.1 Plane waves
Generalizing our solution, q (x, t) = Aei(kx−ωt) for the 1-dimensional case, we introduce a vector −→k (the
wave vector) and write

q (x, t) = A exp i
(−→
k · −→x − ωt

)
Substituting into the wave equation, we find

0 = − 1

c2
∂2q

∂t2
+∇2q

0 = − 1

c2
∂2

∂t2

(
A exp i

(−→
k · −→x − ωt

))
+∇2

(
A exp i

(−→
k · −→x − ωt

))
= − 1

c2
(−iω)2A exp i

(−→
k · −→x − ωt

)
+

(
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)(
A exp i

(−→
k · −→x − ωt

))
= − 1

c2
(−iω)2A exp i

(−→
k · −→x − ωt

)
+
(
(ikx)

2
+ (iky)

2
+ (ikz)

2
)(

A exp i
(−→
k · −→x − ωt

))
=

(
ω2

c2
−−→k

2
)(

A exp i
(−→
k · −→x − ωt

))
Therefore, we have a solution as long as the magnitude of −→k equals ω

c . If we write −→k = kn̂ then the unit
vector n̂ gives the direction of the wave vector and the magnitude satisfies

ω = kc

This solution is called a plane wave, because in any of the planes defined by
−→
k · −→x = kn̂ · −→x = 0

all points simply oscillate in unison. For example, if we choose n̂ = ĵ then the wave moves in the y-direction.
Points on the y = 0 plane all have the solution

q (x, 0, z, t) = Ae−iωt

independently of x, z. The same is true for any fixed value y = y0.

3.2 General solution
Plane waves are normal mode solutions. We may take superpositions in three dimensions in much the same
way as for simpler systems. If the waves extend over all space, this leads to a Fourier transform. It is
instructive to perform the transformation of all four variables, x, y, z, t. Writing this out in exquisite detail,
we may write any real function of (x, t) as

q (x, t) =
1(√
2π
)4

∞̂

−∞

dkx

∞̂

−∞

dky

∞̂

−∞

dkz

∞̂

−∞

dω
[
A (k, ω) ei(k·x−ωt) +A∗ (k, ω) e−i(k·x−ωt)

]

=
1

4π2

∞̂

−∞

d3k dω
[
A (k, ω) ei(k·x−ωt) +A∗ (k, ω) e−i(k·x−ωt)

]
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To restrict this general expression to solve the wave equation we apply the wave equation to both sides,
demanding

0 = − 1

c2
∂2q

∂t2
(x, t) +∇2q (x, t)

=

(
− 1

c2
∂2

∂t2
+∇2

)
1

4π2

∞̂

−∞

dkx

∞̂

−∞

dky

∞̂

−∞

dkz

∞̂

−∞

dω
[
A (k, ω) ei(k·x−ωt) +A∗ (k, ω) e−i(k·x−ωt)

]
Interchanging the order of integration and differentiation and taking the derivatives leads to

0 =
1

4π2

∞̂

−∞

d3k dω

(
− 1

c2
∂2

∂t2
+∇2

)[
A (k, ω) ei(k·x−ωt) +A∗ (k, ω) e−i(k·x−ωt)

]

=
1

4π2

∞̂

−∞

d3k dω

[(
− (−iω)2

c2
+ (ik)

2

)
A (k, ω) ei(k·x−ωt) +

(
− (iω)

2

c2
+ (−ik)2

)
A∗ (k, ω) e−i(k·x−ωt)

]

=
1

4π2

∞̂

−∞

d3k dω

(
ω2

c2
− k2

)[
A (k, ω) ei(k·x−ωt) +A∗ (k, ω) e−i(k·x−ωt)

]
The equation is satisfied if we require ω2

c2 −k2. To go further, we need to restrict the frequency in the general
expression to ω = kc. We can do this with a Dirac delta function. Then

q (x, t) =
1

(2π)
3/2

∞̂

−∞

d3k dω
[
A (k, ω) ei(k·x−ωt) +A∗ (k, ω) e−i(k·x−ωt)

]
δ (ω − kc)

is a general solution to the wave equation. Notice that we omit one factor of 1√
2π

because the delta function
is already normalized to one.

We can immediately integrate over ω, because the Dirac delta simply replaces all the ωs with kc. If we
write k = kn for a unit vector n, we have a complete solution.

q (x, t) =
1

(2π)
3/2

∞̂

−∞

d3k
[
A (k) eik(n·x−ct) +A∗ (k) e−ik(n·x−ct)

]
(3)

3.3 Initial conditions
The initial conditions follow from the general solution, Eq.(3) in two steps. First, take the time derivative
to find the velocity at each point,

q̇ (x, t) =
ic

(2π)
3/2

∞̂

−∞

d3k
[
−kA (k) eik(n·x−ct) + kA∗ (k) e−ik(n·x−ct)

]
Second, set the time to zero. If we are given

q (x, 0) = a (x)

q̇ (x, 0) = b (x)

Then at t = 0 we find

a (x) =
1

(2π)
3/2

∞̂

−∞

d3k
[
A (k) eik·x +A∗ (k) e−ik·x

]
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b (x) = − ic

(2π)
3/2

∞̂

−∞

d3k
[
kA (k) eik(k·x) − kA∗ (k) e−ik·x

]
These are ordinary Fourier transforms of a (x) and b (x). We may invert the transforms to solve for A (k)
and its conjugate A∗ (k) in terms of the initial conditions.

4 Separation of variables
While we were able to guess solutions to the wave equation in Cartesian coordinates, we still need to develop
techniques that will let us solve the equation in other coordinate systems. One very powerful technique is
separation of variables.

Consider the wave equation, Eq.(1), again,

− 1

c2
∂2q

∂t2
+
∂2q

∂x2
+
∂2q

∂y2
+
∂2q

∂z2
= 0

We wish to find normal mode solutions, so we may assume a single frequency, q (x, t) = q (x) eiωt. Eq.(1)
becomes

ω2

c2
q (x) +

∂2q (x)

∂x2
+
∂2q (x)

∂y2
+
∂2q (x)

∂z2
= 0

Now notice that the x, y and z derivatives are in distinct terms. This makes it possible to assume a solution
of the product form

q (x) = X (x)Y (y)Z (z)

Substituting, the partial derivatives become ordinary derivatives,

ω2

c2
XY Z + Y Z

d2X

dx2
+XZ

d2Y

dy2
+XY

d2Z

dz2
= 0

Now divide by XY Z,
ω2

c2
+

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
= 0 (4)

Although the full equation still depends on x, y and z, each term now depends on a single independent
variable. Consider the partial derivative of the whole equation with respect to x:

∂

∂x

[
ω2

c2
+

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2

]
= 0

d

dx

[
1

X

d2X

dx2

]
= 0

Since 1
X
d2X
dx2 depends only on x, the vanishing derivative means that the term in brackets must be constant,

1

X

d2X

dx2
= ∓α2

We may also take derivatives with respect to y, z to show that

1

Y

d2Y

dy2
= ∓β2

1

Z

d2Z

dz2
= ∓γ2
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Substituting these constants into the original equation, Eq.(4), we see that

ω2

c2
∓ α2 ∓ β2 ∓ γ2 = 0

Each of these sign choices is independent. Which sign we choose for each constant depends on the boundary
conditions. If we want a purely wavelike solution, we choose the upper sign for each, giving

d2X

dx2
+ α2X = 0

d2Y

dy2
+ β2Y = 0

d2Z

dz2
+ γ2Z = 0

where

ω2

c2
= α2 + β2 + γ2

The solutions are immediate,

X = X0e
iαx

Y = Y0e
iβy

Z = Z0e
iγz

and we recognize α, β, γ as the components of the wave vector. Setting

k = (α, β, γ) = (k1, k2, k3)

the reassembled answer XY Z is just the normal mode solution we guessed,

q (x, t) = Aei(k·x−ωt)

where the three constants combine into a single complex amplitude, A = X0Y0Z0. We have a solution of
this form for each choice of wave vector k, leading to the same Fourier integral found previously.

When we consider the wave equation in cylindrical and spherical coordinates, this separation technique
will be essential.
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