
Separation of variables: Spherical coordinates

1 The wave equation in spherical coordinates.
Perhaps the most important class of waves are represented in spherical coordinates. Any disturbance can
produce waves which travel outward in 3-dimensions, becoming more and more spherical as they propagate
outward. This is also true of scattering experiments in particle accelerators, where the outgoing state after
collision is treated as a spherical wave.

1.1 Spherical coordinates
The spherical coordinates are (r, θ, ϕ). r gives the distance from the origin, θ is the angle measured downward
from the z-axis, and ϕ is the same azimuthal angle as in cylindrical coordinates. The relation to Cartesian
coordinates given by

r =
√
x2 + y2 + z2 (1)

ϕ = tan−1
(y
x

)
(2)

θ = tan−1

(√
x2 + y2

z

)
(3)

while z remains the usual Cartesian coordinate. For the inverse transformation,

x = r sin θ cosϕ (4)
y = r sin θ sinϕ (5)
z = r cos θ (6)

These relations are not hard to see from a diagram:

y

z

j

r

r = r sin q

r̂ =  i cos j + j sin j^^

ĵ  = - i sin j + j cos j^^

x

q

j
ĵ  = - i sin j + j cos j^^

q̂  = r cos q – k sin q^^

r̂ =  k cos q + r sin q^^
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The relations of the various unit vectors are seen in the diagram above. Study the diagram until you can
see that

r̂ = î sin θ cosϕ+ ĵ sin θ sinϕ+ k̂ cos θ

θ̂ = î cos θ cosϕ+ ĵ cos θ sinϕ− k̂ sin θ

ϕ̂ = −î sinϕ+ ĵ cosϕ (7)

Exercise: Verify that the three vectors in Eq.(7) form an orthonormal set.

Exercise: Show from Eqs.(7) that the Cartesian unit vectors î, ĵ, k̂ are given in terms of r̂, θ̂, ϕ̂, by

î = r̂ sin θ cosϕ+ θ̂ cos θ cosϕ− ϕ̂ sinϕ

ĵ = r̂ sin θ sinϕ+ θ̂ cos θ sinϕ+ ϕ̂ cosϕ

k̂ = r̂ cos θ − θ̂ sin θ (8)

and check that they form an orthonormal set.

1.2 The gradient
Starting from the gradient operator in Cartesian coordinates,

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

the chain rule and relations between the basis vectors, Eqs.(8), allow us to write the gradient in spherical
coordinates

∇ = î
(
r̂, θ̂, ϕ̂

)(∂ρ
∂x

∂

∂ρ
+
∂θ

∂x

∂

∂θ
+
∂ϕ

∂x

∂

∂ϕ

)
+ĵ
(
r̂, θ̂, ϕ̂

)(∂ρ
∂y

∂

∂ρ
+
∂θ

∂y

∂

∂θ
+
∂ϕ

∂y

∂

∂ϕ

)
+k̂
(
r̂, θ̂, ϕ̂

)(∂ρ
∂z

∂

∂ρ
+
∂θ

∂z

∂

∂θ
+
∂ϕ

∂z

∂

∂ϕ

)
(9)

where the partial derivatives are given by

∂r

∂x
= sin θ cosϕ

∂r

∂y
= sin θ sinϕ

∂r

∂z
= cos θ (10)

∂θ

∂x
=

1

r
cos θ cosϕ

∂θ

∂y
=

1

r
cos θ sinϕ

∂θ

∂z
= −1

r
sin θ (11)

and

∂ϕ

∂x
= −1

ρ
sinϕ = − sinϕ

r sin θ
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∂ϕ

∂y
=

cosϕ

r sin θ

∂ϕ

∂z
= 0 (12)

Exercise: By substituting the partial derivatives and basis vectors, show that the gradient in spherical
coordinates is given by

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ
(13)

1.3 The Laplacian
We find the Laplacian of a function by taking the divergence of the gradient of the function,

∇2f = ∇ ·∇f

=

(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ

)
·
(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ

)
(14)

To carry out the divergence we will need the derivatives of the basis vectors.

Exercise: Using Eqs.(7), show that

∂

∂θ
r̂ = θ̂

∂

∂θ
θ̂ = −r̂

∂

∂ϕ
r̂ = ϕ̂ sin θ

∂

∂ϕ
θ̂ = ϕ̂ cos θ

∂

∂ϕ
ϕ̂ = −r̂ sin θ − θ̂ cos θ

Exercise: Carry out the divergence of the gradient of f , Eq.(14), to prove that the Laplacian is given by

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
(15)

Whew! Now let’s solve the Laplace and wave equations.

2 The Laplace equation in spherical coordinates
Before moving to the wave equation, we consider the Laplace equation,

∇2f = 0

In spherical coordinates we may solve this with separation of variables, setting f = R (r) Θ (θ) Φ (ϕ). Sub-
stituting in the usual way gives

1

r2
d

dr

(
r2
dR

dr

)
ΘΦ +

1

r2 sin θ

d

dθ

(
sin θ

dΘ

dθ

)
RΦ +

1

r2 sin2 θ

d2Φ

dϕ2
RΘ = 0

Now divide by q = RΦΘ,

1

R

1

r2
d

dr

(
r2
dR

dr

)
+

1

Θ

1

r2 sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

r2 sin2 θ

1

Φ

d2Φ

dϕ2
= 0 (16)
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2.1 The equation for R

Multiplying Eq.(16) by r2 we see that the first term contains the only r dependence and must therefore be
constant,

1

R

d

dr

(
r2
dR

dr

)
= λ (λ+ 1)

where the constant is written as λ (λ+ 1) with some foreknowledge of the right answer.
Expanding the derivative and multiplying by R,

r2
d2R

dr2
+ 2r

dR

dr
− λ (λ+ 1)R = 0

Each term in this equation has the same dimensions in r. Where there is a first derivative (scaling as 1
r ),

there is a single r; where there is a second derivative there is a factor of r2. This means that the equation
can be solved by rσ, that is, by a power of r.

Exercise: Let Rλ (r) = rσ. Find two independent values for σ for any given λ.

Notice that at this point we have not assumed that λ is an integer.

2.2 Spherical harmonics
After separating R (r), the Laplace equation takes the form

λ (λ+ 1) +
1

Θ

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

sin2 θ

1

Φ

d2Φ

dϕ2
= 0

Multiplication by sin2 θ completes the separation, showing immediately that the azimuthal equation is

1

Φ

d2Φ

dϕ2
= β

With the full range of ϕ, we must choose β = −m2 as we did in cylindrical coordinates. This gives harmonic
solutions with solutions

Φ (ϕ) = eimϕ,m = ±1,±2,±3, . . .

There is no periodic solution for m = 0 other than Φ = constant.

2.2.1 The Legendre equation

The remaining equation for Θ (θ) is

1

sin θ

d

dθ

(
sin θ

dΘλ,m

dθ

)
+

(
λ (λ+ 1)− m2

sin2 θ

)
Θλ,m = 0

A change of variable helps with the solution. If we let x = cos θ, then

d

dθ
=

dx

dθ

d

dx

= − sin θ
d

dx
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Therefore, using sin2 θ = 1− cos2 θ = 1− x2, the derivative term becomes

1

sin θ

d

dθ

(
sin θ

dΘλ,m

dθ

)
=

1

sin θ

d

dθ

(
− sin2 θ

dΘ

dx

)
=

1

sin θ

(
− sin θ

d

dx

)(
−
(
1− x2

) dΘ

dx

)
=

d

dx

((
1− x2

) dΘ

dx

)
=

(
1− x2

) d2Θ

dx2
− 2x

dΘ

dx

and we have the associated Legendre equation,

(
1− x2

) d2Θ

dx2
− 2x

dΘ

dx
+

(
λ (λ+ 1)− m2

1− x2

)
Θλ = 0

Setting m = 0 now gives the Legendre equation,

(
1− x2

) d2Θ

dx2
− 2x

dΘ

dx
+ λ (λ+ 1) Θλ = 0 (17)

2.2.2 Solving the Legendre equation

To solve Eq.(17), we try a polynomial or power series,

Θλ =

∞∑
k=0

akx
k

Substituting and combining with the 1− x2 factor,

(
1− x2

) ∞∑
k=2

akk (k − 1)xk−2 − 2x

∞∑
k=1

kakx
k−1 + λ (λ+ 1)

∞∑
k=0

akx
k = 0

∞∑
k=2

akk (k − 1)xk−2 −
∞∑
k=2

akk (k − 1)xk −
∞∑
k=1

2kakx
k + λ (λ+ 1)

∞∑
k=0

akx
k = 0

we see that every term but the first has the same powers of x. We change the index on the first sum so make
it the same, but this changes the index on the coefficient. Let m = k − 2 so we can rewrite

∞∑
k=2

akk (k − 1)xk−2 =

∞∑
m=0

am+2 (m+ 2) (m+ 1)xm

It doesn’t matter what we call the summation index, so we can rename m as k so that all indices are the
same:

∞∑
k=0

ak+2 (k + 2) (k + 1)xk −
∞∑
k=2

akk (k − 1)xk −
∞∑
k=1

2kakx
k + λ (λ+ 1)

∞∑
k=0

akx
k = 0

Finally notice that we can start all of the summations at k = 0 because the first two terms (i.e., k = 0 and
k = 1) of

∞∑
k=2

akk (k − 1)xk =
∞∑
k=0

akk (k − 1)xk
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vanish, and the first term of
∑∞
k=1 2kakx

k =
∑∞
k=0 2kakx

k vanishes. Therefore, we may combine everything
as a single sum,

∞∑
k=0

(
ak+2 (k + 2) (k + 1)− akk (k − 1)− 2kakx

k + λ (λ+ 1) ak
)
xk = 0

Since different powers of x are independent, each coefficient must vanish separately. Setting each coefficient
to zero

ak+2 (k + 2) (k + 1)− akk (k − 1)− 2kakx
k + λ (λ+ 1) ak = 0

and solving for ak+2 gives a recursion relation:

ak+2 =
(k (k + 1)− λ (λ+ 1))

(k + 2) (k + 1)
ak (18)

This allows us to solve for all even ak once a0 is given, and for all odd ak once a1 is given. These two (a0
and a1) remain as an overall scale.

Different choices of λ give distinct solutions, and we can see that the series terminates in a polynomial
if we choose λ to be an integer. The resulting polynomials are the Legendre polynomials. Let Pn (x) be the
solution with λ = n.

Look at the first two values for k. When k = 0 or k = 1, we have λ = 0 or λ = 1 respectively. Since the
recursion gives no higher terms we must have

0 =
−λ (λ+ 1)

2
a0

0 =
2− λ (λ+ 1)

2
a1

and it is clear that for λ = 0, a1 = 0 while a0 is undetermined, while for λ = 1 it is a0 that must vanish while
a1 is arbitrary. This holds in general–exactly one of a0, a1 can be nonzero, leading to polynomials with only
even or odd powers of x, respectively.

For λ = 0, the series terminates immediately and we have

P0 (x) = a0

It is conventional and convenient to choose the normalization so that Pn (1) = 1, so we set

P0 (x) = 1

For λ = 1, there is also only a single term, a1, so the polynomial is P1 (x) = a1x. Normalizing gives

P1 (x) = x

For λ = 2, we finally get a second term. Starting with a0, we see that

a2 =
0 (0 + 1)− 2 (2 + 1)

(0 + 2) (0 + 1)
a0

= −3a0

while a4 = 0. Therefore,
P2 (x) = −3a0x

2 + a0

and our convention requires a0 = − 1
2 :

P2 (x) =
1

2

(
3x2 − 1

)
We recognize the same series we constructed when we started to build an orthogonal set of polynomials

from the powers of x. With the recursion relation, Eq.(18), the process is much easier.

Exercise: Construct P4 (x) , P5 (x) , and P6 (x) from the recursion relations, choosing a0 or a1 so that
Pn (1) = 1.
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2.2.3 Associated Legendre polynomials

When m 6= 0, we have the associated Legendre polynomials, satisfying

(
1− x2

) d2Pml (x)

dx2
− 2x

dPml (x)

dx
+

(
l (l + 1)− m2

1− x2

)
Pml (x) = 0

This is solved by

Pml (x) =
(
1− x2

)m
2
dm

dxm
Pl (x) (19)

where m may take on any of 2l+1 values, m = −l,−l+1, . . .−1, 0, 1, . . . , l−1, l. Notice that with x = cos θ,
the derivatives will depend on both cos θ and sin θ.

2.2.4 Spherical harmonics

If we fix the r-dependence for a moment, we see that the solution of the Laplace equation at fixed r

1

sin θ

d

dθ

(
sin θ

dY

dθ

)
+

1

sin2 θ

d2Y

dϕ2
+ l (l + 1)Y = 0

is given by the spherical harmonics,

Ylm (θ, ϕ) = Alme
imϕPml (cos θ)

If we choose the constants

Alm =

√
2l + 1

4π

(l −m)!

(l +m)!

then the spherical harmonics are orthonormal,

π̂

0

sin θdθ

2πˆ

0

dϕY ∗lm (θ, ϕ)Yl′m′ (θ, ϕ) = δll′δmm′

where Y ∗lm (θ, ϕ) = Alme
−imϕPml (cos θ) is the complex conjugate. Any piecewise continuous, bounded

function f (θ, ϕ) defined on a sphere may be expanded in spherical harmonics. They are very important for
describing radiation patterns or the quantum states of atoms.

2.3 Solutions to the Laplace equation
In terms of the spherical harmonics, we now have a complete solution to the Laplace equation in spherical
coordinates:

f (r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(
Almr

l +
Blm
rl+1

)
Ylm (θ, ϕ) (20)

Here, the spherical harmonics satisfy

1

sin θ

d

dθ

(
sin θ

dYlm
dθ

)
+

1

sin2 θ

d2Ylm
dϕ2

+ l (l + 1)Ylm = 0 (21)
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2.4 Example of the use of spherical harmonics
Consider an orange, with its many sections running from the north pole to the south. Let’s define a function
that oscillates between +1 and −1 with alternate quadrants of the orange:

f (θ, ϕ) =

{
+1 2mπ

2 < ϕ < (2m+1)π
2

−1 (2m+1)π
2 < ϕ < (2m+2)π

2

for m = 0, 1, (or N
2 − 1 if we set 2mπ

N/2 < ϕ < (2m+1)π
N/2 ) for a total of 4 (or N) sections. Since this is a function

on a sphere, we can expand it in spherical harmonics. Let

f (θ, ϕ) =

∞∑
l=0

l∑
m=−l

AlmYlm (θ, ϕ) (22)

If we try to figure out in advance which values of l and m we will need, we see an immediate problem–it
seems like we need eimϕ for m increasing in increments of 4, while there is no θ dependence. But we cannot
have nonzero values of m without nonzero values of l!

The way around the problem is to rotate the coordinates so that the function is

f (θ, ϕ) =


+1 0 < ϕ < π; 0 < θ < π

2
−1 π < ϕ < 2π; 0 < θ < π

2
+1 π < ϕ < 2π; π2 < θ < π
−1 0 < ϕ < π; π2 < θ < π

It’s the same physical problem, but now it depends on both θ and ϕ.
Now, multiplying Eq.(22) by Y ∗kq (θ, ϕ) and integrating over all angles,

∞∑
l=0

l∑
m=−l

Alm

2πˆ

0

dϕ

π̂

0

sin θdθ Ylm (θ, ϕ)Y ∗kq (θ, ϕ) =

2πˆ

0

dϕ

π̂

0

sin θdθ f (θ, ϕ) Y ∗kq (θ, ϕ)

We can immediately evaluate the integrals on the left, since the spherical harmonics are orthonormal. We
must divide the right side into the four regions,

∞∑
l=0

l∑
m=−l

Almδlkδmq =

π̂

0

dϕ

π
2ˆ

0

sin θ dθ Y ∗kq (θ, ϕ)−
2πˆ

π

dϕ

π
2ˆ

0

sin θ dθ Y ∗kq (θ, ϕ)

+

2πˆ

π

dϕ

π̂

π
2

sin θ dθ Y ∗kq (θ, ϕ)−
π̂

0

dϕ

π̂

π
2

sin θ dθ Y ∗kq (θ, ϕ)

The Kronecker deltas reduce the sums on the left to a single term. For the right side, we break the spherical
harmonics into ϕ and θ parts, writing the Legendre polynomials as functions of x = cos θ.

Akq =

√
2k + 1

4π

(k − q)!
(k + q)!

 π̂

0

dϕe−iqϕ
1ˆ

0

dxP qk (x)−
2πˆ

π

dϕe−iqϕ
1ˆ

0

P qk (x)


+

√
2k + 1

4π

(k − q)!
(k + q)!

 2πˆ

π

dϕe−iqϕ
0ˆ

−1

P qk (x)−
π̂

0

dϕe−iqϕ
0ˆ

−1

P qk (x) dx
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=

√
2k + 1

4π

(k − q)!
(k + q)!

( (−1)
q − 1

−iq

) 1ˆ

0

dxP qk (x)−
(

1− (−1)
q

−iq

) 1ˆ

0

P qk (x)


+

√
2k + 1

4π

(k − q)!
(k + q)!

(1− (−1)
q

−iq

) 0ˆ

−1

P qk (x)−
(

(−1)
q − 1

−iq

) 0ˆ

−1

P qk (x) dx


Recursion relations or power series for the associated Legendre polynomials could be used to evaluate the
final two integrals. The symmetry of the associated Legendre polynomials is given by

Pml (−x) = (−1)
l+m

Pml (x)

so letting y = −x, we may write

0ˆ

−1

P qk (x) dx =

0ˆ

1

P qk (−y) d (−y)

= (−1)
k+q

1ˆ

0

P qk (y) dy

and since the factor 1− (−1)
q is nonzero only for odd q we may write

0ˆ

−1

P qk (x) dx = − (−1)
k

1ˆ

0

P qk (x) dx

and combine the last two integrals as one. The final integral may be evaluated using further identities, for
example, by integrating the power series term by term.

Therefore, the coefficients become

Akq = −2i

q
(1− (−1)

q
)
(

1 + (−1)
k
)√2k + 1

4π

(k − q)!
(k + q)!

1ˆ

0

P qk (x) dx

The final series therefore involves even only k and odd q. The full solution is

f (θ, ϕ) = −2i

∞∑
l=0

l∑
m=−l

1

q
(1− (−1)

q
)
(

1 + (−1)
k
)√2k + 1

4π

(k − q)!
(k + q)!

 1ˆ

0

P qk (x) dx

Ylm (θ, ϕ)

3 The wave equation in spherical coordinates

3.1 The wave equation

We may immediately write the wave equation − 1
c2
∂2q
∂t2 +∇2q = 0 in spherical coordinates

− 1

c2
∂2q

∂t2
+

1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
= 0 (23)

Exercise: Use separation of variables to reduce the 3-dimensional wave equation in spherical coordinates
to four ordinary differential equations.
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3.2 Separation of variables
Rather than going directly to separation of variables, we observe that the angular portion of the wave
equation is still satisfied by spherical harmonics. Therefore, we write

q (x, t) = T (t)R (r)Ylm (θ, ϕ)

Substituting, the partial derivatives become ordinary derivatives,

− 1

c2
d2T

dt2
RYlm +

1

r2
d

dr

(
r2
dR

dr

)
YlmT +

RT

r2

(
1

sin θ

d

dθ

(
sin θ

dYlm
dθ

)
+

1

sin2 θ

d2Ylm
dϕ2

)
= 0

Using Eq.(21) for the spherical harmonics, we get the simpler expression(
− 1

c2
d2T

dt2
R+

1

r2
d

dr

(
r2
dR

dr

)
T − l (l + 1)

RT

r2

)
Ylm = 0

Dividing by q = RTYlm yields

− 1

c2
1

T

d2T

dt2
+

1

R

1

r2
d

dr

(
r2
dR

dr

)
+

1

r2
l (l + 1) = 0 (24)

and we find that r and t have separated.

3.2.1 Solve for T first

The first term clearly depends only on t, with no time dependence elsewhere in the wave equation. Therefore,
we set

− 1

c2
1

T

d2T

dt2
= k2

so that T satisfies the harmonic equation

d2T

dt2
+ k2c2T = 0

We immediately have any of the alternative solutions

T = A cos (kc (t− t0))

T = A cos (kct) +B sin (kct)

T = Aeikct +Be−ikct

T = Aeikct

where A,B are real and A complex.
Substituting this equation into the wave equation, gives the Helmholz equation,(

∇2 + k2
)
q = 0

and when substituted into Eq.(24) leaves the radial equation,

d

dr

(
r2
dR

dr

)
+
(
l (l + 1) + k2r2

)
R = 0
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3.2.2 Solving for R

Expanding the derivatives,

r2
d2R

dr2
+ 2r

dR

dr
+
(
k2r2 − l (l + 1)

)
R = 0 (25)

As we did for the Bessel equation, we let x = kr, so the equation become

x2
d2R

dx2
+ 2x

dR

dx
+
(
x2 − l (l + 1)

)
R = 0

This is very similar to the Bessel equation, and the solutions are called spherical Bessel functions. These are
related to the Bessel functions by

jn (x) =

√
π

2

1√
x
Jn+ 1

2
(x) (26)

where Jn+ 1
2

(x) is the Bessel function satisfying

x2
d2

dx2
Jn+ 1

2
+ x

d

dx
Jn+ 1

2
+

(
x2 −

(
n+

1

2

)2
)
Jn+ 1

2
= 0 (27)

Note the factor of 2 difference for the middle term.

3.2.3 Proof that the spherical Bessel functions solve the radial equation

We show that the spherical Bessel functions of Eq.(26) solve the radial equation.
The factor of

√
π
2 is merely a constant normalization of jn (x), and is common to every term. We may

therefore drop it from the proof and show that

jn (x) =
1√
x
Jn+ 1

2
(x)

solves the radial equation.
The first two derivatives of jn (x) are

djn
dx

=
d

dx

(
x−

1
2 Jn+ 1

2

)
= −1

2
x−

3
2 Jn+ 1

2
+ x−

1
2
d

dx
Jn+ 1

2

and

d2jn
dx2

=
d

dx

(
−1

2
x−

3
2 Jn+ 1

2
+ x−

1
2
d

dx
Jn+ 1

2

)
=

3

4
x−

5
2 Jn+ 1

2
− 1

2
x−

3
2
d

dx
Jn+ 1

2
− 1

2
x−

3
2
d

dx
Jn+ 1

2
+ x−

1
2
d2

dx2
Jn+ 1

2

=
3

4
x−

5
2 Jn+ 1

2
− x− 3

2
d

dx
Jn+ 1

2
+ x−

1
2
d2

dx2
Jn+ 1

2

Now substuting jn (x) and its derivatives into Eq.(25) we find

x2
d2jn
dx2

+ 2x
djn
dx

+
(
x2 − l (l + 1)

)
jn = x2

(
3

4
x−

5
2 Jn+ 1

2
− x− 3

2
d

dx
Jn+ 1

2
+ x−

1
2
d2

dx2
Jn+ 1

2

)
+2x

(
−1

2
x−

3
2 Jn+ 1

2
+ x−

1
2
d

dx
Jn+ 1

2

)
+
(
x2 − l (l + 1)

) (
x−

1
2 Jn+ 1

2

)

11



=
3

4
x−

1
2 Jn+ 1

2
− xx− 1

2
d

dx
Jn+ 1

2
+ x−

1
2x2

d2

dx2
Jn+ 1

2

+

(
−x− 1

2 Jn+ 1
2

+ x−
1
2 2x

d

dx
Jn+ 1

2

)
+
(
x2 − l (l + 1)

) (
x−

1
2 Jn+ 1

2

)
= x−

1
2

(
x2

d2

dx2
Jn+ 1

2
+ x

d

dx
Jn+ 1

2

)
+

3

4
jn − jn +

(
x2 − l (l + 1)

)
jn

Now, using the Bessel equation for n+ 1
2 , (Eq.(27)) we replace the derivative terms,

x2
d2jn
dx2

+ 2x
djn
dx

+
(
x2 − n (n+ 1)

)
jn =

√
π

2
x−

1
2

(
−

(
x2 −

(
n+

1

2

)2
)
Jn+ 1

2

)

+
3

4
jn − jn +

(
x2 − n (n+ 1)

)
jn

=

(
3

4
− 1 + x2 − n (n+ 1)− x2 + n2 + n+

1

4

)
jn

= 0

We may now restore the normalization without affecting the result. Similar results hold for the second
solution and other forms of the Bessel functions.

The spherical Bessel functions have the general form

jn (x) = P

(
1

x

)
sinx+Q

(
1

x

)
cosx

where P and Q are polynomials in 1
x .

3.3 Solutions to the wave equation
Suppose we have a source oscillating at a single frequency ω = kc. Then we have found the solution

q (r, θ, ϕ, t) = T (t)R (r)Ylm (θ, ϕ)

=

∞∑
l=0

l∑
m=−l

(Alm (k) cos (kct) +Blm (k) sin (kct)) jl (kr)Ylm (θ, ϕ)

to the wave equation in spherical coordinates. More complicated sources can be handled by letting the
coefficients depend on k, Alm (k) , Blm (k) and including a sum or integral over k.

Let initial conditions be given at time t = 0, on the sphere r = R, by

q (R, θ, ϕ, 0) = 0

q̇ (R, θ, ϕ, 0) = f (θ, ϕ)

The coefficients now satisfy

0 = q (R, θ, ϕ, 0) =

∞∑
l=0

l∑
m=−l

Almjl (kR)Ylm (θ, ϕ)

=

∞∑
l=0

l∑
m=−l

Almjl (kR)Ylm (θ, ϕ)

f (θ, ϕ) = q (R, θ, ϕ, 0) = kc

∞∑
l=0

l∑
m=−l

Blmjl (kR)Ylm (θ, ϕ)

12



Since the spherical harmonics Ylm (θ, ϕ) are all independent and complete, we must have Alm = 0 for all l,m
. To find the Blm we need multiply by Y ∗kq (θ, ϕ) and integrate:

π̂

0

sin θdθ

2πˆ

0

dϕf (θ, ϕ)Y ∗kq (θ, ϕ) = kc

∞∑
l=0

l∑
m=−l

Blmjl (kR)

π̂

0

sin θdθ

2πˆ

0

dϕY ∗kq (θ, ϕ)Ylm (θ, ϕ)

= kc

∞∑
l=0

l∑
m=−l

Blmjl (kR) δklδmq

= kcjl (kR)Bkq

so (changing the name of the eigenvalues back to l,m) the Blm are given by

Blm =
1

kc

1

jl (kR)

π̂

0

sin θdθ

2πˆ

0

dϕf (θ, ϕ)Y ∗lm (θ, ϕ)

and the full wave solution is

q (r, θ, ϕ, t) =

∞∑
l=0

l∑
m=−l

 π̂

0

sin θ′dθ′
2πˆ

0

dϕ′f (θ′, ϕ′)Y ∗lm (θ′, ϕ′)

Ylm (θ, ϕ)
jl (kr)

jl (kR)
ω sin (ωt)

We give an example below.

4 Example

4.1 Spherical shell at constant potential
Use the general solution in spherical coordinates to find the electric potential inside and outside a charged
spherical shell of radius R, held at a constant potential, φ = V .

Except on the sphere itself, the electric potential satisfies the Laplace equation,

∇2φ = 0

for which we have the general solution given in Eq.(20),

φ (r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(
Almr

l +
Blm
rl+1

)
Ylm (θ, ϕ)

Since there is no angular dependence, we have only solutions with l = 0 and m = 0, hence proportional to
Y00 = 1√

4π
,

φ (r, θ, ϕ) =
1√
4π

(
A00 +

B00

r

)
For the region outside the sphere, we need the potential at infinity to go to zero, so we require A00 = 0.
Then, at r = R, the potential must approach V so we have

V =
1√
4π

B00

R

Solving for B00,
B00 =

√
4πRV

13



Therefore
φoutside (r, θ, ϕ) = V

R

r

For the interior region, we have the same expansion but new constants. Now the boundary condition is
that φ must be finite at the origin, r = 0. With

φ (r, θ, ϕ) =
1√
4π

(
A00 +

B00

r

)
we therefore need B00 = 0 and the potential is constant. Using the boundary condition at r = R we have
A00 =

√
4πV .

The full solution is
φ (r) =

{
V r < R
RV
r r > R

4.2 Spherical dipole
Now suppose we have a sphere of radius R with a potential +V on the upper hemisphere and −V on the
lower. Find the potential outside the sphere.

This is still independent of ϕ, but now depends on θ. There is no m dependence and our general solution
to the Laplace equation becomes

φ (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Yl0 (θ)

Since the solution must extend to infinity, we cannot have the terms that grow with rso φ reduces further to

φ (r, θ) =

∞∑
l=0

Bl
rl+1

Yl0 (θ, )

Finally, the spherical harmonics are just proportional to Legendre polynomials,

Yl0 (θ) =

√
2l + 1

4π
Pl (cos θ)

Because the potential is odd, we expect only odd l. To check, and to find the remaining coefficients, we
set r = R and φ = φ (R, θ), then multiply both sides by Y ∗k0 (θ) = Yk0 (θ) and integrate:

π̂

0

φ (R, θ)Y ∗k0 (θ) sin θdθ =

∞∑
l=0

Bl
Rl+1

π̂

0

Yl0 (θ)Y ∗k0 (θ) sin θdθ

V

π
2ˆ

0

Y ∗k0 (θ) sin θdθ − V
π̂

π
2

Y ∗k0 (θ) sin θdθ =

∞∑
l=0

Bl
Rl+1

δlk

The Kronecker delta on the right makes the sum collapse to the single term with l = k. For the integrals on
the right we need a recursion formula. It can be shown that

Pn (x) =
1

2n+ 1

d

dx
(Pn+1 (x)− Pn−1 (x))
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Rewriting the integrals in terms of x using dx = d (cos θ) = − sin θdθ, the sign is absorbed by exchanging
the limits:

π
2ˆ

0

Pk (cos θ) sin θdθ =

0ˆ

1

Pk (x) (−dx)

=

1ˆ

0

Pk (x) dx

Substituting the recursion relation, the coefficient is therefore given by

Bk
Rk+1

= V

π
2ˆ

0

Y ∗k0 (θ) sin θdθ − V
π̂

π
2

Y ∗k0 (θ) sin θdθ

=

√
2k + 1

4π
V

1ˆ

0

Pk (x) dx− V
0ˆ

−1

Pk (x) dx

=
1√
4π

V√
2k + 1

1ˆ

0

(
d

dx
(Pk+1 (x)− Pk−1 (x))

)
dx

− 1√
4π

V√
2k + 1

0ˆ

−1

(
d

dx
(Pk+1 (x)− Pk−1 (x))

)
dx

=
1√
4π

V√
2k + 1

[Pk+1 (1)− Pk−1 (1)− Pk+1 (0) + Pk−1 (0)]

− 1√
4π

V√
2k + 1

[Pk+1 (0)− Pk−1 (0)− Pk+1 (−1) + Pk−1 (−1)]

Since Pn (1) = 1 and Pn (−1) = (−1)
n the first and last terms cancel, leaving

Bk =
1√
4π

2V Rk+1

√
2k + 1

[Pk−1 (0)− Pk+1 (0)]

There are various power series expansions that reduce to simple combinatoric factors when x = 0, but it is
simplest to just leave it this way. The potential is therefore

φ (r, θ) = −2V

∞∑
l=0

1

2k + 1
[Pk+1 (0)− Pk−1 (0)]

(
R

r

)l+1

Pl (cos θ)

φ (r, θ) =

∞∑
l=0

Bl
rl+1

Yl0 (θ, )

φ (r, θ) =

∞∑
l=0

1√
4π

2V√
2l + 1

[Pk−1 (0)− Pk+1 (0)]

(
R

r

)l+1
√

2l + 1

4π
Pl (cos θ)

= V
2π

∞∑
l=0

[Pk−1 (0)− Pk+1 (0)]

(
R

r

)l+1

Pl (cos θ)
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4.3 Dipole waves
Suppose this same potential at r = R oscillates harmonically at frequency ω = kc,

φ (θ) =

{
V θ < π

2
−V θ > π

2

φ (θ, t) = φ (θ) sinωt

Find the resulting waves for r > R.
We need to solve the wave equation in spherical coordinates, Eq.(23) with this time-dependent boundary

condition. We found the solution to be of the form

q (r, θ, ϕ, t) =

∞∑
l=0

l∑
m=−l

(Alm cos (kct) +Blm sin (kct)) jl (kr)Ylm (θ, ϕ)

and since we are given the time dependence as sinωt, we only need the Blm terms,

q (r, θ, ϕ, t) =

∞∑
l=0

l∑
m=−l

Blm sin (kct) jl (kr)Ylm (θ, ϕ)

Now fit the boundary condition at time t = π
2ω (so that the sin (ωt) term gives 1). then we must have

φ (θ) =

∞∑
l=0

l∑
m=−l

Blm sin
(π

2

)
jl (kR)Ylm (θ, ϕ)

=

∞∑
l=0

l∑
m=−l

Blmjl (kR)Ylm (θ, ϕ)

and we have effectively solved this above with R2l+1 now replaced by jl (kR). We have m = 0 because there
is no ϕ dependence. Then

Bl0jl (kR) =
1√
4π

2V√
2l + 1

[Pl−1 (0)− Pl+1 (0)]

and we write

q (r, θ, ϕ, t) =
2V√
4π

∞∑
l=0

1√
2l + 1

[Pl−1 (0)− Pl+1 (0)] sin (kct)
jl (kr)

jl (kR)
Ylm (θ, ϕ)

Since the series contains only odd terms, and is dominated by the lowest value of l, we may approximate
the series far from the source by the l = 1 term:

lim
r>>R

q (r, θ, ϕ, t) =
2V√
4π

∞∑
l=0

1

3
[P0 (0)− P2 (0)] sin (kct)

j1 (kr)

j1 (kR)
Y10 (θ, ϕ)

=
2V√
4π

∞∑
l=0

1

3
[P0 (0)− P2 (0)] sin (kct)

j1 (kr)

j1 (kR)

1

2

√
3

π
cos θ

=
V

2
√

3π

∞∑
l=0

(
P0 (0)− P2 (0)

j1 (kR)

)
j1

(ωr
c

)
cos θ sin (ωt)

This is the potential for a dipole field. (Image from Wikipedia)
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