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We wish to study the one dimensional motion of a mass, m, attached to a spring of spring constant k.
The force on the mass is proportional to the stretch of the spring, as given by Hooke’s law,

F = −kx

Then, substituting this force into Newton’s second law, writing the acceleration as the second time derivative
of the position, and collecting terms we have:

F = ma

−kx = m
d2x

dt2

d2x

dt2
+

k

m
x = 0

Define ω2 ≡ k
m so this takes the form

d2x

dt2
+ ω2x = 0

Notice that ω has units of frequency, sec−1.
How do we solve this? There is a standard trick to use whenever the force depends only on position.

Multiply by v = dx
dt , and rewrite the acceleration as d2x

dt2 = dv
dt . Then we have

d2x

dt2
+ ω2x = 0

v
dv

dt
+

dx

dt
ω2x = 0

Multiply by dt (but NEVER ∂t!) and bring the dx term to the right:

vdv = −ω2xdx

Notice how we have now got dv times a function of v only, and similarly dx multiplying a function of x
alone. This means that we can now integrate. It’s best to make our integrals definite, with the initial values
x0 = x (t0) and v0 = v (t0) explicit:

v(t)ˆ

v0

vdv = −
x(t)ˆ

x0

ω2xdx

The integration is now easy, giving

1

2
v2 − 1

2
v20 = −1

2
ω2x2 +

1

2
ω2x2

0
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Rearrangement, putting expressions at time t on one side and expressions at time t0 on the other shows that
we have a constant of the motion,

1

2
v2 +

1

2
ω2x2 =

1

2
v20 +

1

2
ω2x2

0

≡ E

m
= constant!

The particular form 1
2v

2+ 1
2ω

2x2 gives the same value whether we evaluate it at time t0, or any generic time
t, so we recognize it as a constant of the motion.

Now solve for the velocity
v =

√
2E − ω2x2

and write v = dx
dt ,

dx

dt
=

√
2E − ω2x2

Once again, we multiply by dt. This time the dt stays on once side with dx on the other. We need to bring
the x dependent terms to one side before we can integrate.

dx√
2E − ω2x2

= dt

x(t)ˆ

x0

dx√
1− ω2

2Ex2
=
√
2E

tˆ

t0

dt

We use the same initial limits as for the first integration–x and t evaluated at t0.
To integrate we use a trigonometric substitution: let

√
ω2

2Ex = sinϕ so that the square root on the left
becomes simply a cosine, √

1− ω2

2E
x2 =

√
1− sin2 ϕ = cosϕ

We also have to replace dx. Taking the differential of our substitution and solving for dx gives√
ω2

2E
dx = d (sinϕ)

dx =

√
2E

ω
cosϕdϕ

Putting it all together the integral becomes

√
2E

ω

x(t)ˆ

x0

cosϕdϕ√
1− sin2 ϕ

=
√
2E

tˆ

t0

dt

1

ω

x(t)ˆ

x0

dϕ = (t− t0)

ϕ|x(t)x0
= ω (t− t0)

There are two ways we could have handled the limits:

1. Leave the limits in terms of x. Then, after completing the ϕ integration, transform back to x before
evaluating at the limits.
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2. Rewrite the limits in terms of ϕ, where √
ω2

2E
x0 = sinϕ0

This introduces a new constant, so I usually choose the first option. However, either is fine.

Continuing, we replace ϕ = sin−1
√

ω2

2Ex then evaluate at the limits,

sin−1

√
ω2

2E
x

∣∣∣∣∣
x(t)

x0

= ω (t− t0)

sin−1

√
ω2

2E
x− sin−1

√
ω2

2E
x0 = ω (t− t0)

sin−1

√
ω2

2E
x = ωt− ωt0 + sin−1

√
ω2

2E
x0

Define two new constants:

ϕ0 ≡ sin−1

√
ω2

2E
x0 − ωt0

A ≡
√
2E

ω

This cleans up the result considerably,√
ω2

2E
x = sin [ωt+ ϕ0]

x (t) =

√
2E

ω
sin (ωt+ ϕ0)

and finally
x (t) = A sin (ωt+ ϕ0)

The identities

sin (a+ b) = sin a cos b+ sin b cos a

cos (a+ b) = cos a cos b− sin a sin b

let us write x (t) in a variety of ways, for example

x (t) = B cosωt+ C sinωt

where the constants B and C are related to A and ϕ0 in a definite way. Since this function is a solution to
Newton’s second law in one dimension, we know that there will always be two constants, determined by the
initial position and the initial velocity.
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