Motion of a mass on a spring

August 22, 2019

We wish to study the one dimensional motion of a mass, m, attached to a spring of spring constant k. The force on the mass is proportional to the stretch of the spring, as given by Hooke's law,

$$
F=-k x
$$

Then, substituting this force into Newton's second law, writing the acceleration as the second time derivative of the position, and collecting terms we have:

$$
\begin{aligned}
F & =m a \\
-k x & =m \frac{d^{2} x}{d t^{2}} \\
\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x & =0
\end{aligned}
$$

Define $\omega^{2} \equiv \frac{k}{m}$ so this takes the form

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0
$$

Notice that ω has units of frequency, $\sec ^{-1}$.
How do we solve this? There is a standard trick to use whenever the force depends only on position. Multiply by $v=\frac{d x}{d t}$, and rewrite the acceleration as $\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}$. Then we have

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x & =0 \\
v \frac{d v}{d t}+\frac{d x}{d t} \omega^{2} x & =0
\end{aligned}
$$

Multiply by $d t$ (but NEVER $\partial t!$) and bring the $d x$ term to the right:

$$
v d v=-\omega^{2} x d x
$$

Notice how we have now got $d v$ times a function of v only, and similarly $d x$ multiplying a function of x alone. This means that we can now integrate. It's best to make our integrals definite, with the initial values $x_{0}=x\left(t_{0}\right)$ and $v_{0}=v\left(t_{0}\right)$ explicit:

$$
\int_{v_{0}}^{v(t)} v d v=-\int_{x_{0}}^{x(t)} \omega^{2} x d x
$$

The integration is now easy, giving

$$
\frac{1}{2} v^{2}-\frac{1}{2} v_{0}^{2}=-\frac{1}{2} \omega^{2} x^{2}+\frac{1}{2} \omega^{2} x_{0}^{2}
$$

Rearrangement, putting expressions at time t on one side and expressions at time t_{0} on the other shows that we have a constant of the motion,

$$
\begin{aligned}
\frac{1}{2} v^{2}+\frac{1}{2} \omega^{2} x^{2} & =\frac{1}{2} v_{0}^{2}+\frac{1}{2} \omega^{2} x_{0}^{2} \\
& \equiv \frac{E}{m}=\text { constant }!
\end{aligned}
$$

The particular form $\frac{1}{2} v^{2}+\frac{1}{2} \omega^{2} x^{2}$ gives the same value whether we evaluate it at time t_{0}, or any generic time t, so we recognize it as a constant of the motion.

Now solve for the velocity

$$
v=\sqrt{2 E-\omega^{2} x^{2}}
$$

and write $v=\frac{d x}{d t}$,

$$
\frac{d x}{d t}=\sqrt{2 E-\omega^{2} x^{2}}
$$

Once again, we multiply by $d t$. This time the $d t$ stays on once side with $d x$ on the other. We need to bring the x dependent terms to one side before we can integrate.

$$
\begin{aligned}
\frac{d x}{\sqrt{2 E-\omega^{2} x^{2}}} & =d t \\
\int_{x_{0}}^{x(t)} \frac{d x}{\sqrt{1-\frac{\omega^{2}}{2 E} x^{2}}} & =\sqrt{2 E} \int_{t_{0}}^{t} d t
\end{aligned}
$$

We use the same initial limits as for the first integration $-x$ and t evaluated at t_{0}.
To integrate we use a trigonometric substitution: let $\sqrt{\frac{\omega^{2}}{2 E}} x=\sin \varphi$ so that the square root on the left becomes simply a cosine,

$$
\sqrt{1-\frac{\omega^{2}}{2 E} x^{2}}=\sqrt{1-\sin ^{2} \varphi}=\cos \varphi
$$

We also have to replace $d x$. Taking the differential of our substitution and solving for $d x$ gives

$$
\begin{aligned}
\sqrt{\frac{\omega^{2}}{2 E}} d x & =d(\sin \varphi) \\
d x & =\frac{\sqrt{2 E}}{\omega} \cos \varphi d \varphi
\end{aligned}
$$

Putting it all together the integral becomes

$$
\begin{aligned}
\frac{\sqrt{2 E}}{\omega} \int_{x_{0}}^{x(t)} \frac{\cos \varphi d \varphi}{\sqrt{1-\sin ^{2} \varphi}} & =\sqrt{2 E} \int_{t_{0}}^{t} d t \\
\frac{1}{\omega} \int_{x_{0}}^{x(t)} d \varphi & =\left(t-t_{0}\right) \\
\left.\varphi\right|_{x_{0}} ^{x(t)} & =\omega\left(t-t_{0}\right)
\end{aligned}
$$

There are two ways we could have handled the limits:

1. Leave the limits in terms of x. Then, after completing the φ integration, transform back to x before evaluating at the limits.
2. Rewrite the limits in terms of φ, where

$$
\sqrt{\frac{\omega^{2}}{2 E}} x_{0}=\sin \varphi_{0}
$$

This introduces a new constant, so I usually choose the first option. However, either is fine.
Continuing, we replace $\varphi=\sin ^{-1} \sqrt{\frac{\omega^{2}}{2 E}} x$ then evaluate at the limits,

$$
\begin{aligned}
\left.\sin ^{-1} \sqrt{\frac{\omega^{2}}{2 E}} x\right|_{x_{0}} ^{x(t)} & =\omega\left(t-t_{0}\right) \\
\sin ^{-1} \sqrt{\frac{\omega^{2}}{2 E}} x-\sin ^{-1} \sqrt{\frac{\omega^{2}}{2 E}} x_{0} & =\omega\left(t-t_{0}\right) \\
\sin ^{-1} \sqrt{\frac{\omega^{2}}{2 E}} x & =\omega t-\omega t_{0}+\sin ^{-1} \sqrt{\frac{\omega^{2}}{2 E}} x_{0}
\end{aligned}
$$

Define two new constants:

$$
\begin{aligned}
\varphi_{0} & \equiv \sin ^{-1} \sqrt{\frac{\omega^{2}}{2 E}} x_{0}-\omega t_{0} \\
A & \equiv \frac{\sqrt{2 E}}{\omega}
\end{aligned}
$$

This cleans up the result considerably,

$$
\begin{aligned}
\sqrt{\frac{\omega^{2}}{2 E}} x & =\sin \left[\omega t+\varphi_{0}\right] \\
x(t) & =\frac{\sqrt{2 E}}{\omega} \sin \left(\omega t+\varphi_{0}\right)
\end{aligned}
$$

and finally

$$
x(t)=A \sin \left(\omega t+\varphi_{0}\right)
$$

The identities

$$
\begin{aligned}
\sin (a+b) & =\sin a \cos b+\sin b \cos a \\
\cos (a+b) & =\cos a \cos b-\sin a \sin b
\end{aligned}
$$

let us write $x(t)$ in a variety of ways, for example

$$
x(t)=B \cos \omega t+C \sin \omega t
$$

where the constants B and C are related to A and φ_{0} in a definite way. Since this function is a solution to Newton's second law in one dimension, we know that there will always be two constants, determined by the initial position and the initial velocity.

