Motion of a mass on a spring

August 22, 2019

We wish to study the one dimensional motion of a mass, m, attached to a spring of spring constant k.
The force on the mass is proportional to the stretch of the spring, as given by Hooke’s law,

F=—kx

Then, substituting this force into Newton’s second law, writing the acceleration as the second time derivative
of the position, and collecting terms we have:

F = ma
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Define w? = % so this takes the form
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Notice that w has units of frequency, sec™!.

How do we solve this? There is a standard trick to use whenever the force depends only on position.

Multiply by v = Z—f, and rewrite the acceleration as % = ‘C%’. Then we have
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dv dz ,
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Multiply by dt (but NEVER 0t!) and bring the dz term to the right:
vdv = —w xdx

Notice how we have now got dv times a function of v only, and similarly dz multiplying a function of x
alone. This means that we can now integrate. It’s best to make our integrals definite, with the initial values
xo = x (to) and vg = v (to) explicit:
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The integration is now easy, giving
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Rearrangement, putting expressions at time ¢ on one side and expressions at time ty on the other shows that
we have a constant of the motion,
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The particular form %vg + %w2x2 gives the same value whether we evaluate it at time ¢y, or any generic time
t, so we recognize it as a constant of the motion.

Now solve for the velocity
v=12E — w?z?
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and write v = 7F,
dx \/7
— = 2F — w?x?
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Once again, we multiply by dt. This time the dt stays on once side with dz on the other. We need to bring
the x dependent terms to one side before we can integrate.
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We use the same initial limits as for the first integration—z and t evaluated at t.
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We also have to replace dzx. Taking the differential of our substitution and solving for dz gives

= dt
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To integrate we use a trigonometric substitution: let x = sin @ so that the square root on the left

becomes simply a cosine,
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Putting it all together the integral becomes
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There are two ways we could have handled the limits:

1. Leave the limits in terms of . Then, after completing the ¢ integration, transform back to = before
evaluating at the limits.



2. Rewrite the limits in terms of ¢, where
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—x0 = sin
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This introduces a new constant, so I usually choose the first option. However, either is fine.

Continuing, we replace ¢ = sin~! 4/ %x then evaluate at the limits,
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Define two new constants:

¥o

This cleans up the result considerably,
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and finally
x (t) = Asin (wt + o)

The identities

sinacosb + sinbcos a

sin (a + b)

cos (a + b) cosacosb —sinasinb

let us write x (¢) in a variety of ways, for example

x (t) = Beoswt + C'sinwt

wt — wty + sin~?
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where the constants B and C' are related to A and ¢y in a definite way. Since this function is a solution to
Newton’s second law in one dimension, we know that there will always be two constants, determined by the

initial position and the initial velocity.



