Motion of a mass on a spring

August 22, 2019

We wish to study the one dimensional motion of a mass, m, attached to a spring of spring constant k. The force on the mass is proportional to the stretch of the spring, as given by Hooke's law,

$$F = -kx$$

Then, substituting this force into Newton's second law, writing the acceleration as the second time derivative of the position, and collecting terms we have:

$$F = ma$$
$$-kx = m\frac{d^2x}{dt^2}$$
$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

Define $\omega^2 \equiv \frac{k}{m}$ so this takes the form

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

Notice that ω has units of frequency, sec^{-1} .

How do we solve this? There is a standard trick to use whenever the force depends only on position. Multiply by $v = \frac{dx}{dt}$, and rewrite the acceleration as $\frac{d^2x}{dt^2} = \frac{dv}{dt}$. Then we have

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$
$$v\frac{dv}{dt} + \frac{dx}{dt}\omega^2 x = 0$$

Multiply by dt (but NEVER ∂t) and bring the dx term to the right:

$$vdv = -\omega^2 x dx$$

Notice how we have now got dv times a function of v only, and similarly dx multiplying a function of x alone. This means that we can now integrate. It's best to make our integrals definite, with the initial values $x_0 = x(t_0)$ and $v_0 = v(t_0)$ explicit:

$$\int_{v_0}^{v(t)} v dv = -\int_{x_0}^{x(t)} \omega^2 x dx$$

The integration is now easy, giving

$$\frac{1}{2}v^2 - \frac{1}{2}v_0^2 = -\frac{1}{2}\omega^2 x^2 + \frac{1}{2}\omega^2 x_0^2$$

Rearrangement, putting expressions at time t on one side and expressions at time t_0 on the other shows that we have a constant of the motion,

$$\frac{1}{2}v^2 + \frac{1}{2}\omega^2 x^2 = \frac{1}{2}v_0^2 + \frac{1}{2}\omega^2 x_0^2$$
$$\equiv \frac{E}{m} = constant!$$

The particular form $\frac{1}{2}v^2 + \frac{1}{2}\omega^2 x^2$ gives the same value whether we evaluate it at time t_0 , or any generic time t, so we recognize it as a constant of the motion.

Now solve for the velocity

$$v=\sqrt{2E-\omega^2 x^2}$$

and write $v = \frac{dx}{dt}$,

$$\frac{dx}{dt} = \sqrt{2E - \omega^2 x^2}$$

Once again, we multiply by dt. This time the dt stays on once side with dx on the other. We need to bring the x dependent terms to one side before we can integrate.

$$\begin{aligned} \frac{dx}{\sqrt{2E - \omega^2 x^2}} &= dt\\ \int\limits_{x_0}^{x(t)} \frac{dx}{\sqrt{1 - \frac{\omega^2}{2E} x^2}} &= \sqrt{2E} \int\limits_{t_0}^t dt \end{aligned}$$

We use the same initial limits as for the first integration -x and t evaluated at t_0 .

To integrate we use a trigonometric substitution: let $\sqrt{\frac{\omega^2}{2E}}x = \sin \varphi$ so that the square root on the left becomes simply a cosine,

$$\sqrt{1 - \frac{\omega^2}{2E}x^2} = \sqrt{1 - \sin^2 \varphi} = \cos \varphi$$

We also have to replace dx. Taking the differential of our substitution and solving for dx gives

$$\sqrt{\frac{\omega^2}{2E}} dx = d(\sin \varphi)$$
$$dx = \frac{\sqrt{2E}}{\omega} \cos \varphi \, d\varphi$$

Putting it all together the integral becomes

$$\frac{\sqrt{2E}}{\omega} \int_{x_0}^{x(t)} \frac{\cos \varphi d\varphi}{\sqrt{1 - \sin^2 \varphi}} = \sqrt{2E} \int_{t_0}^t dt$$
$$\frac{1}{\omega} \int_{x_0}^{x(t)} d\varphi = (t - t_0)$$
$$\varphi |_{x_0}^{x(t)} = \omega (t - t_0)$$

There are two ways we could have handled the limits:

1. Leave the limits in terms of x. Then, after completing the φ integration, transform back to x before evaluating at the limits.

2. Rewrite the limits in terms of φ , where

$$\sqrt{\frac{\omega^2}{2E}}x_0 = \sin\varphi_0$$

This introduces a new constant, so I usually choose the first option. However, either is fine. Continuing, we replace $\varphi = \sin^{-1} \sqrt{\frac{\omega^2}{2E}} x$ then evaluate at the limits,

$$\sin^{-1} \sqrt{\frac{\omega^2}{2E}} x \Big|_{x_0}^{x(t)} = \omega (t - t_0)$$

$$\sin^{-1} \sqrt{\frac{\omega^2}{2E}} x - \sin^{-1} \sqrt{\frac{\omega^2}{2E}} x_0 = \omega (t - t_0)$$

$$\sin^{-1} \sqrt{\frac{\omega^2}{2E}} x = \omega t - \omega t_0 + \sin^{-1} \sqrt{\frac{\omega^2}{2E}} x_0$$

Define two new constants:

$$\varphi_0 \equiv \sin^{-1} \sqrt{\frac{\omega^2}{2E}} x_0 - \omega t_0$$
$$A \equiv \frac{\sqrt{2E}}{\omega}$$

This cleans up the result considerably,

$$\sqrt{\frac{\omega^2}{2E}}x = \sin \left[\omega t + \varphi_0\right]$$
$$x(t) = \frac{\sqrt{2E}}{\omega}\sin \left(\omega t + \varphi_0\right)$$

and finally

$$x(t) = A\sin\left(\omega t + \varphi_0\right)$$

The identities

$$\sin (a + b) = \sin a \cos b + \sin b \cos a$$

$$\cos (a + b) = \cos a \cos b - \sin a \sin b$$

let us write x(t) in a variety of ways, for example

$$x(t) = B\cos\omega t + C\sin\omega t$$

where the constants B and C are related to A and φ_0 in a definite way. Since this function is a solution to Newton's second law in one dimension, we know that there will always be two constants, determined by the initial position and the initial velocity.