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1 Looking back: N coupled masses
We have seen how the seemingly complicated motion of a coupled system of N masses connected by springs
may be described as linear combinations of N simple harmonic oscillations. If these normal modes have
frequencies ωi, i = 1, 2, . . . , N and the eigenvectors describing the normal modes are −→u i then the most
general motion of the system is

−→x =

N∑
i=1

Ai−→u i sin (ωit+ ϕi)

Notice that the normal modes form a vector basis for the space of solutions.
The initial conditions for the position and velocity are

−→x (0) =

N∑
i=1

(Ai sinϕi)−→u i

−̇→x (0) =

N∑
i=1

ωi (Ai cosϕi)−→u i

Each of these conditions is an N -dimensional vector in the solution space, with components

−→x (0) ⇐⇒ (A1 sinϕ1, A2 sinϕ2, . . . AN sinϕN )
−̇→x (0) ⇐⇒ (A1ω1 cosϕ1, A2ω2 cosϕ2, . . . ANωN cosϕN )

in the −→u i basis.
We now show that the eigenvectors −→u i form an orthonormal basis.

Orthonormality of the eigenvector basis Recall how we derived the eigenvalue equation. Starting
from our original equation of motion

−̈→x +M−→x = 0

we performed a linear transformtion to a new set of vectors

−→q = A−→x

which satisfy
−̈→q +AMA−1−→q = 0

Since M is symmetric, we know that it can be diagonalized by an orthogonal transformation,

AMA−1 =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λN
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Replacing d2

dt2

(
−→q ie

i
√
λit
)
= −λi

(
−→q ie

i
√
λit
)
the time dependence drops out and we are left with

AMA−1−→q i = λi−→q i

Because AMA−1 is diagonal, we immediately solve with the n eigenvectors

−→q 1 =


1
0
...
0

 ,−→q 2 =


0
1
...
0

 , . . . ,−→q N =


0
0
...
1


Then we have N solutions −→q ie

i
√
λit for the new position vectors −→q .

These eigenvectors are clearly orthonormal. But since A−1 is an orthogonal transformation, the inner
product is preserved and the eigenvectors remain orthonormal in the original basis, that is,

−→u 1 = A−1−→q 1

−→u 2 = A−1−→q 2

...
...

...
−→uN = A−1−→q N

satisfy
〈−→u i,−→u j〉 = δij

The eigenvectors are therefore orthonormal.
Once we specify the two constant vectors, −→x (0) = (Ai sinϕi) and −̇→x (0) = (ωiAi cosϕi), we have uniquely

specified the motion of the system.

2 Vectors in the continuum limit
While we know that the general solution to the wave equation in the continuum limit is given by d’Alembert’s
formula, it is frequently more useful to divide the motion into normal modes. Despite the continuum limit,
we will find that this pattern of a vector description continues.

Considert the motion of a string with endpoints fixed at x = 0 and x = L. We have seen that we may
write solutions of the form

sin
nπx

L
sin

(
nπct

L
+ ϕn

)
and since this is simple harmonic motion at a single frequency, it is a normal mode.

More general solutions may be specified by taking linear combinations of normal modes, with a general
superposition giving a wide range of possible motions,

−→q =

∞∑
n=1

An sin
nπx

L
sin (ωnt+ ϕn) (1)

This is similar to our solution for N masses, but now the upper limit is infinite.
A striking difference between the general solution in the d’Alembert form

−→q (x, t) =
1

2

a (x− ct) + a (x+ ct) +
1

c

x+ctˆ

x−ct

g (x′) dx′

 (2)
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and Eq.(1) becomes evident when we look at the initial conditions. For d’Alembert’s formula we specify two
functions,

−→q (x, 0) = a (x)
−̇→q (x, 0) = b (x)

while for the mode expansion, it is sufficient to specify two infinite lists,

An sinϕn =⇒ −→q (x, 0) =

n∑
i=1

Ai sin
nπx

L
sinϕi

ωnAn cosϕn =⇒ −̇→q (x, 0) =

n∑
i=1

ωiAi sin
nπx

L
cosϕi

Our central problem task is to show that these are equivalent. Since we know that functions can be
expressed as power series, we know that such a relationship between infinite vectors and functions exists.
We need to show that the functions sin nπx

L provide a basis.

2.1 Orthonormality of the sine and cosine

The normal modes on the interval [0, L] are given by sin nπx
L . Taking the L2 inner product,

´ L
0
sin nπx

L sin mπx
L dx

we add and subtract cos nπxL cos mπxL and use the expressions for the cosine of sums and differences.

L̂

0

sin
nπx

L
sin

mπx

L
dx =

1

2

L̂

0

[(
sin

nπx

L
sin

mπx

L
+ cos

nπx

L
cos

mπx

L

)
+
]
dx

+
1

2

L̂

0

(
sin

nπx

L
sin

mπx

L
− cos

nπx

L
cos

mπx

L

)
dx

=
1

2

L̂

0

[
cos

(n−m)πx

L
+ cos

(n+m)πx

L

]
dx

For n 6= m, the integrals are

L̂

0

sin
nπx

L
sin

mπx

L
dx =

1

2

L̂

0

[
cos

(n−m)πx

L
+ cos

(n+m)πx

L

]
dx

=
1

2

L

(n−m)π
sin

(n−m)πx

L

∣∣∣∣L
0

+
1

2

L

(n+m)π
sin

(n+m)πx

L

∣∣∣∣L
0

=
1

2

L

(n−m)π
sin

(n−m)πL

L
+

1

2

L

(n+m)π
sin

(n+m)πL

L

= 0

Therefore,
{
sin nπx

L

∣∣n = 1, 2, . . .
}
form an orthogonal set. For the case when m = n, we have

L̂

0

sin
nπx

L
sin

nπx

L
dx =

L̂

0

sin2
nπx

L
dx

=
1

2

L̂

0

[
cos 0 + cos

2nπx

L

]
dx
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=
1

2

(
x− L

2nπ
sin

2nπx

L

)∣∣∣∣L
0

=
L

2

Therefore, the functions {√
2

L
sin

nπx

L

∣∣∣∣∣n = 1, 2, . . .

}
form an orthonormal set.

It makes no difference here that we have chosen the interval [0, L]. A linear change of the independent
variable

y =
b− a
L

x+ a

x =
L (y − a)
b− a

changes the interval to [a, b] and the normal mode series becomes

−→q =

∞∑
n=1

An sin
nπ

b− a
(y − a) sin (ωnt+ ϕn)

The new amplitudes may be written as

sin
nπ

b− a
(y − a) = cos

nπa

b− a
sin

nπy

b− a
+ sin

nπa

b− a
cos

nπy

b− a
= an sin

nπy

b− a
+ bn cos

nπy

b− a
and we need only show that orthonormality extends to cosines.

Exercise : Complete the proof that
{√

2
L sin nπy

L ,
√

2
L cos nπyL

∣∣∣n = 0, 1, 2, . . .
}
is an orthonormal set by

showing that

2

L

L̂

0

sin
nπx

L
cos

mπx

L
dx = δnm

2

L

L̂

0

cos
nπx

L
cos

mπx

L
dx = δnm

Exercise : Show that the complex Fourier modes,
{

1√
2π
eikx

∣∣∣ k = 0,±1,±2, . . .
}
, are orthonormal on the

interval [−π, π], using the complex inner product 〈f, g〉 =
´ π
−π f

∗g dx.

While this shows that we have an orthonormal basis, we do not yet know whether the class of functions
we can write as Fourier series,

f (x) =

√
2

L

∞∑
k=0

ak sin
kπx

L

is as general as specifying the arbitrary functions a (x) , b (x) for initial conditions. To know this, we must
prove completeness of the basis. It turns out to be simpler to allow general boundary conditions and write
the series as (the real or imaginary part of)

f (x) =
1√
2L

∞∑
k=−∞

αke
ikπx
L

for complex constants αk.
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3 Completeness
By completeness of the Fourier basis we mean that we can write any L2 function as a Fourier series. Suppose
f (x) is square integrable, twice differentiable, and periodic on the interval [−π, π]. We would like to show
that we can find constants αk such that

f (x) =
1√
2π

∞∑
k=−∞

αke
ikx (3)

More precisely we show that
lim
N→∞

fN (x) = f (x)

where fN (x) is given by the partial sums

fN (x) =
1√
2π

N∑
k=−N

αke
ikx

3.1 Determining the constants
The first step is to determine the choice for the constants αk. Using orthonormality, we multiply both sides
of Eq.(3) by 1√

2L
e−

inπx
L and integrate over the range [−L,L]. This just gives the inner product of f with

the basis vector,

〈
1√
2L
einx, f (x)

〉
=

1√
2π

π̂

−π

e−inxf (x) dx

=
1

2π

π̂

−π

e−inx
∞∑

k=−∞

αke
ikxdx

=

∞∑
k=−∞

αkδkn

= αn

so the components are given by the integrals

αn =
1√
2π

π̂

−π

e−inxf (x) dx

This is just how we usually find the components of a finite vector–taking the dot product with the ith basis
vector,

〈−→v , êi〉 = vi

Now we study the partial sums fN (x). Including the specification of the constants αk = 1√
2π

´ π
−π e

−inyf (y) dy,
these become

fN (x) =
1√
2π

N∑
k=−N

 1√
2π

π̂

−π

e−ikyf (y) dy

 eikx

=
1

2π

π̂

−π

dyf (y)

N∑
k=−N

eik(x−y)
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3.2 Evaluating the sum

The sum is just depends on sums of powers,
∑N
k=−N e

ik(x−y) =
∑N
k=−N

[
ei(x−y)

]k
, so consider such sums in

general,
N∑
k=1

xk

Notice that

(1− x)
(
1 + x+ x2 + · · ·+ xN

)
=

(
1 + x+ x2 + · · ·+ xN

)
− x

(
1 + x+ x2 + · · ·+ xN

)
= 1 + x+ x2 + · · ·+ xN −

(
x+ x2 + · · ·+ xN+1

)
= 1− xN+1

Therefore,
N∑
k=0

xk =
1− xN+1

1− x

For the sum from −N we can write

N∑
k=−N

xk = x−N
2N∑
k=0

xk

= x−N
1− x2N+1

1− x

=
x−N − xN+1

1− x

=
x1/2

x1/2
x−(N−

1
2 ) − x(N+ 1

2 )

x−1/2 − x1/2

=
x(N+ 1

2 ) − x−(N−
1
2 )

x1/2 − x−1/2

Therefore, replacing x with ei(x−y),

N∑
k=−N

eik(x−y) =
ei(N+ 1

2 )(x−y) − e−i(N−
1
2 )(x−y)

xi(x−y)/2 − x−i(x−y)/2

=
sin
(
2N+1

2 (x− y)
)

sin
(
x−y
2

)
3.3 Evaluating the limit
Adding and subtracting f (x) inside the integral, the N th approximation now becomes

fN (x) =
1

2π

π̂

−π

f (y)
sin
(
N + 1

2

)
(x− y)

sin x−y
2

dy

=
1

2π
f (x)

π̂

−π

sin
(
N + 1

2

)
(x− y)

sin x−y
2

dy +
1

2π

π̂

−π

(f (y)− f (x))
sin
(
N + 1

2

)
(x− y)

sin x−y
2

dy
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Suppose our original function is a constant, α0. Then every partial sum equals just the zeroth term, so
fN (x) = α0 and f (y) = α0. The second term above drops out leaving

α0 =
1

2π
α0

π̂

−π

sin
(
N + 1

2

)
(x− y)

sin x−y
2

dy

showing that the first integral is 1. Therefore, returning to the general case,

fN (x) = f (x) +
1

2π

π̂

−π

(f (y)− f (x))
sin
[(
N + 1

2

)
(x− y)

]
sin x−y

2

dy

= f (x) +
1

2π

π̂

−π

[
(f (y)− f (x))

sin x−y
2

]
sin

[(
N +

1

2

)
(x− y)

]
dy

Define
h (y) :=

(f (y)− f (x))
sin x−y

2

and notice that

h (π) =
f (π)− f (x)

sin x−π
2

=
f (π)− f (x)

sin x
2 cos π2 − sin π

2 cos x2

= −f (π)− f (x)
cos x2

while

h (−π) =
f (−π)− f (x)

sin x+π
2

=
f (−π)− f (x)

sin x
2 cos π2 + sin π

2 cos x2

=
f (π)− f (x)

cos x2

where we use the periodicity of the boundary conditions, f (π) = f (−π). We conclude that h (π) = −h (−π).
Now integrate the second term by parts,

fN (x) = f (x) +
1

2π

π̂

−π

h (y) sin

[(
N +

1

2

)
(z − y)

]

= f (x) +
1

2π

π̂

−π

h (y)

(
−1

N + 1
2

d

dy
cos

[(
N +

1

2

)
(z − y)

])

= f (x)− 1

N + 1
2

1

2π

π̂

−π

d

dy

(
h (y) cos

[(
N +

1

2

)
(z − y)

])

+
1

N + 1
2

1

2π

π̂

−π

dh (y)

dy
cos

[(
N +

1

2

)
(z − y)

]
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The integral of a total derivative gives a boundary term,

− 1

N + 1
2

1

2π

(
h (y) cos

[(
N +

1

2

)
(z − y)

])∣∣∣∣π
−π

= − 1

N + 1
2

1

2π

(
h (π) cos

(
2N + 1

2
z − 2N + 1

2
π

)
− h (−π) cos

(
2N + 1

2
z +

2N + 1

2
π

))
Using the cos (a± b) = cos a cos b∓ sin a sin b we see that the cosine also changes sign

cos

(
2N + 1

2
z − 2N + 1

2
π

)
= (−1)N sin

(
2N + 1

2
z

)
cos

(
2N + 1

2
z +

2N + 1

2
π

)
= − (−1)N sin

(
2N + 1

2
z

)
The product of the odd cosine terms with the odd h (π) = −h (−π), gives the same value at ±π and the
surface term is zero, (

h (y) cos

[(
N +

1

2

)
(z − y)

])∣∣∣∣π
−π

= 0

We are left with

fN (x) = f (x) +
1

N + 1
2

1

2π

π̂

−π

dh (y)

dy
cos

[(
N +

1

2

)
(z − y)

]

The only remaining concern is the possible divergence of h (y) at y = x, since

h (y) =
(f (y)− f (x))

sin x−y
2

However, for x near y, we let x = y + ξ and expand

h (ξ) =
f (y)− f ′ (y) ξ − f (x)

1
2ξ

= −f ′ (y)

and therefore h′ just gives the second derivative. The integrand is bounded, the limit of 1
N+ 1

2

is zero, and
we have

lim
N→∞

fN (x) = f (x)

4 Fourier series as vectors
Since only second derivatives were assumed in our completeness proof, the result is already more general
than the existence of Taylor series, which requires all derivatives. The result can be strengthened further,
to show that any bounded, piecewise continuous function on a finite interval may be expanded in a Fourier
series. By repeating the interval, the result applies to periodic functions as well.

To summarize, we have shown that like n coupled masses, general solutions of the wave equation may be
broken into a sum of simple harmonic motions of normal modes. Solutions may be represented as a elements
of a vector space with the normal modes forming an orthonormal basis. The principal difference from the n
coupled masses is that the vector space is now infinite dimensional.

We conclude with some examples.
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4.1 Example: a square wave
For any 0 < a < b < 1 let

f (x) =

{
1 a < x < b
0 elsewhere

Write f (x) as a Fourier series on the interval [0, 1].
Since L = 1 we may write the series in the general form

f (x) =
1

2
b0 +

√
2

∞∑
k=1

(ak sin kπx+ bk cos kπx)

where the zero mode is just proportional to cos (0) = 1 (the 1
2 gives the correct weighting) and find the

coefficients. Multiplying by
√
2 sinnπx and using orthonormality, we have

an =
√
2

1ˆ

0

f (x) sinnπx dx

=
√
2

bˆ

a

sinnπx dx

= −
√
2

nπ
(cosnπb− cosnπa)

and multiplying by
√
2 cosnπx and integrating,

bn =
√
2

1ˆ

0

f (x) cosnπx dx

=
√
2

bˆ

a

cosnπx dx

=

√
2

nπ
(sinnπb− sinnπa)

For n = 0 we need to check b0 separately. so a = 1.

b0 =

1ˆ

0

f (x) · 1 dx

=

bˆ

a

dx

= b− a

Therefore,

f (x) =
1

2
(b− a) +

√
2

∞∑
k=1

(
−
√
2

kπ
(cos kπb− cos kπa) sin kπx+

√
2

kπ
(sin kπb− sin kπa) cos kπx

)

=
1

2
(b− a) + 2

π

∞∑
k=1

1

k
(− cos kπb sin kπx+ cos kπa sin kπx+ sin kπb cos kπx− sin kπa cos kπx)
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=
1

2
(b− a) + 2

π

∞∑
k=1

1

k

(
1

2
(cos kπa sin kπx− sin kπa cos kπx) +

1

2
(sin kπb cos kπx− cos kπb sin kπx)

)

=
1

2
(b− a) + 1

π

∞∑
k=1

1

k
((sin kπ (x− a))− sin kπ (x− b))

Exercise : For the square wave solution above, let a = 1
3 and b = 2

3 . Plot the partial sums,

fN (x) =
1

2
(b− a) + 1

π

N∑
k=1

1

k
((sin kπ (x− a))− sin kπ (x− b))

for N = 2, 5, 10, 100, and 1000 to see how the series approaches a unit step.
Exercise : Prove that the only Fourier series that gives the zero function, f (x) = 0, has all zero

coefficients.
Exercise : Using the previous exercise, and without integrating to calculate any of the coefficients, prove

that any symmetric function, f (−x) = f (x), on a symmetric interval ( you may take [−π, π] ) may be
written as a cosine series and that any odd function, f (−x) = −f (x) on the same interval may be written
as a sine series.

4.2 Example: A triangle wave
Expand the function

f (x) =

 x 0 < x < L
2

L− x L
2 < x < L

0 elsewhere

on the interval [0, L] in a Fourier series.
Here we can take advantage of the preceeding symmetry exercises to write

f (x) =

√
2

L

∞∑
k=0

ak sin
kπx

L

Notice that f (x) = f (L− x). If we look at the sine on the second half,

sin
kπ (L− x)

L
= sin

(
kπ − x

L

)
= sin kπ cos

x

L
− sin

x

L
cos kπ

= − (−1)k sin x
L

Therefore, for even k, sin kπ(L−x)
L is odd on [0, L], while for k odd, sin kπ(L−x)

L is even. Since f (x) is even
on this interval, we expect only odd k,

f (x) =

√
2

L

∞∑
m=0

a2m+1 sin
(2m+ 1)πx

L

and the coefficients are

a2m+1 =

√
2

L

L̂

0

f (x) sin
(2m+ 1)πx

L
dx

= 2

√
2

L

L
2ˆ

0

x sin
(2m+ 1)πx

L
dx
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Now integrate by parts,

a2m+1 = 2

√
2

L

L
2ˆ

0

(
x

(
− L

(2m+ 1)π

d

dx
cos

(2m+ 1)πx

L

))
dx

= 2

√
2

L

(
− L

(2m+ 1)π
x cos

(2m+ 1)πx

L

)∣∣∣∣L2
0

+
2L

(2m+ 1)π

√
2

L

L
2ˆ

0

cos
(2m+ 1)πx

L
dx

= 2

√
2

L

(
− L2

2 (2m+ 1)π
cos

(2m+ 1)πL

2L

)
+

2L

(2m+ 1)π

√
2

L

L

(2m+ 1)π
sin

(2m+ 1)πL

2L

= − L2

(2m+ 1)π

√
2

L
cos

(2m+ 1)π

2
+

√
2

L

2L2

(2m+ 1)
2
π2

sin
(2m+ 1)π

2

= (−1)m
√

2

L

2L2

(2m+ 1)
2
π2

Therefore,

f (x) =
4L

π2

∞∑
m=0

(−1)m

(2m+ 1)
2 sin

(2m+ 1)πx

L

Exercise : We argued by symmetry that the even terms in the Fourier series of

f (x) =

 x 0 < x < L
2

L− x L
2 < x < L

0 elsewhere

on the interval [0, L] must vanish. Compute the coefficients of the even terms

a2m =

√
2

L

L̂

0

f (x) sin
2mπx

L
dx

explicitly to show that they do indeed all vanish.
Exercise : Compute the Fourier series of the function

f (x) =

{
A
(
x− L

2

)2
0 < x < L

0 elsewhere

on the interval [0, L].
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