
Fourier Analysis

October 10, 2019

1 Fourier series as normal mode solutions to an eigenvalue problem
We have seen how any bounded, piecewise continuous function may be written as a Fourier series. Now, we
return to our picture of solutions to the wave equation to place this statement in terms of normal modes
and eigenvectors.

On an interval [0, L] we begin with the wave equation

− 1

c2
∂2q

∂t2
+
∂2q

∂x2
= 0

and substitute a single frequency mode for the time dependence,

q (x, t) = ϕn (x) sin (ωnt+ ϕn)

This gives

− 1

c2
∂2

∂t2
(ϕn (x) sin (ωnt+ ϕn)) +

∂2

∂x2
(ϕn (x) sin (ωnt+ ϕn)) = 0

ω2
n

c2
ϕn (x) sin (ωnt+ ϕn) +

∂2ϕn (x)

∂x2
sin (ωnt+ ϕn) = 0

so cancelling the time dependence we have an eigenvalue equation,

∂2ϕn (x)

∂x2
= −ω

2
n

c2
ϕn (x)

As we found for coupled masses, the eigenvalues are minus the squares of the frequencies, −ω2
n. This time,

in place of an eigenvector, we have an eigenfunction, ϕn (x). We easily see that orthonormal solutions to
this eigenfunction equation are

ϕn = an sin
nπx

L
+ bn cos

nπx

L

Choosing an and bn to normalize to 1,
L̂

0

ϕ2
n (x) = 1

we have √
2

L
sin

nπx

L
,

√
2

L
cos

nπx

L

as the eigenfunctions, with normal mode frequencies coming from the eigenvalues as

ωn =
πnc

L
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A general solution to the wave equation is a linear superposition of the normal modes,

q (x, t) =

∞∑
n=0

(
an sin

nπx

L
+ bn cos

nπx

L

)
sin (ωnt+ ϕn) (1)

Thus, the solution to the wave equation may be described as linear combinations of a countably infinite sum
of simple harmonic oscillations.

1.1 Importance for finding time evolution
The normal mode form of solutions to a wide class of wave equations allows us to easily predict the time evo-
lution of a solution from an initial spatial distribution. Consider, for example, the 1-dimensional Schrödinger
equation,

− ~2

2m

∂2ψ

∂x2
+ V (x)ψ = i~

∂ψ

∂t
(2)

This equation has only a first time derivative instead of ∂
2ψ
∂t2 as for string. This has its roots in the uncertainty

principle. Because we cannot know both the initial time and initial position of a quantum particle exactly,
it is impossible to specify the two initial conditions required for a second order equation. Even though the
time derivative is only linear, this equation has wavelike solutions.

To apply the normal mode approach to this more general equation, we again assume single-frequency
solutions, setting

ψ (x, t) = ϕE (x) e−
i
~Et

for some constant E. Substituting into the Schrödinger equation,

− ~2

2m

∂2

∂x2

(
ϕE (x) e−

i
~Et
)
+ V (x)ϕE (x) e−

i
~Et = i~

∂

∂t

(
ϕE (x) e−

i
~Et
)

(
− ~2

2m

∂2ϕE (x)

∂x2
+ V (x)ϕE (x)

)
e−

i
~Et = EϕE (x) e−

i
~Et

and cancelling the time dependence, arrive at the stationary state Schrödinger equation,

− ~2

2m

d2ϕE (x)

dx2
+ V (x)ϕE (x) = EϕE (x) (3)

You may recognize this as an eigenvalue equation. On the left, we have a linear differential operator acting
on ϕ (x), and on the right a constant times ϕ (x). Indeed, the operator on the right is often replaced by a
matrix operator, depending on the problem. The solutions may no longer be simple sines and cosines, but
we have a simpler equation to solve.

Solutions to Eq.(3) may be either continuous, ϕk (x) , kreal, for unbound problems, or discrete, ϕn (x) , n =
1, 2, . . . for bound states. Suppose we have a bound state so that the eigenvalues may be labeled by an integer,
En. Then labelling the solutions as ϕn (x) the initial wave function is given by an arbitrary superposition,

ψ (x, 0) =

∞∑
n=0

anϕn (x)

where the constants an determined by the initial conditions.
The remarkable fact is that we can now immediately write the full time-dependent solution

ψ (x, t) =

∞∑
n=0

anϕn (x) e
− i

~Ent

since each normal mode oscillates with the single frequency En

~ .
The method applies to a wide class of wave equations.
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1.2 Time evolution of wave solutions
As an example of finding the time evolution of an initial solution, suppose we deform a guitar string of unit
length with into a square initial pulse and release it from rest. We have already seen that the initial square
wave

f (x) =

{
1 a < x < b
0 elsewhere

may be written as the Fourier series

f (x) =
1

2
(b− a) + 2

π

∞∑
k=1

1

k
(− (cos kπb− cos kπa) sin kπx+ (sin kπb− sin kπa) cos kπx)

(We further reduced this to f (x) = 1
2 (b− a)+

1
π

∑∞
k=1

1
k ((sin kπ (x− a))− sin kπ (x− b)), but here we need

the pure sin kπx and cos kπx terms.)
To find the time evolution, we need only multiply the kth mode of the initial series by sin (ωkt+ ϕk),

then choose the phases ϕk to match the initial conditions. Therefore, the displacement of the guitar string
is given by

q (x, t) =
1

2
(b− a) + 2

π

∞∑
k=1

(
−1

k
(cos kπb− cos kπa) sin kπx+

1

k
(sin kπb− sin kπa) cos kπx

)
sin (ωkt+ ϕk)

For initial conditions, we require q (x, 0) = f (x). Therefore

sin (ωkt+ ϕk)|t=0 = sinϕk = 1

and we choose the phases to be ϕk = π
2 . Then sin

(
ωkt+

π
2

)
= cosωkt satisfies both the initial position and

velocity conditions, since the time derivative, ωk sinωkt, vanishes at t = 0.
Next, we write q (x, t) in terms of right and left moving waves. To do this, recall the addition formulas

sin a cos b =
1

2
(sin (a+ b) + sin (a− b))

cos a cos b =
1

2
(cos (a− b) + cos (a+ b))

Using these we have

q (x, t) =
1

2
(b− a) + 2

π

∞∑
k=1

1

k
(− (cos kπb− cos kπa) sin kπx cosωkt+ (sin kπb− sin kπa) cos kπx cosωkt)

=
1

2
(b− a) + 1

π

∞∑
k=1

1

k
(− (cos kπb− cos kπa) (sin kπ (x+ ct) + sin kπ (x− ct)))

+
1

π

∞∑
k=1

1

k
((sin kπb− sin kπa) (cos (kπ (x+ ct)) + cos kπ (x− ct)))

Collecting the right and left moving pieces, we have

q (x, t) =
1

4
(b− a) + 1

π

∞∑
k=1

1

k
(− (cos kπb− cos kπa) sin kπ (x+ ct) + (sin kπb− sin kπa) cos (kπ (x+ ct)))

+
1

4
(b− a) + 1

π

∞∑
k=1

1

k
(− (cos kπb− cos kπa) sin kπ (x− ct) + (sin kπb− sin kπa) cos kπ (x− ct))

Each part reproduces the original wave with half the amplitude. A half-height square wave moves off to the
left, and an idential half-height square wave moves off to the right.
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Exercise: Suppose we pluck a guitar string of length L and fixed ends by raising the center to form a
triangle, then releasing it from rest. We have already seen that the initial triangle wave

f (x) =

 x 0 < x < L
2

L− x L
2 < x < L

0 elsewhere

may be represented by a Fourier series,

f (x) =
4L

π2

∞∑
m=0

(−1)m

(2m+ 1)
2 sin

(2m+ 1)πx

L

1. Find the time evolution of the guitar string if we release the it at rest from its stretched triangular
position.

2. Write the solution as a sum of right moving and left moving waves.

3. Describe the resulting waves.

1.3 Equivalence to the integrated general solution
We would like to show that the general normal mode superpostion, Eq.(1), may be written as a sum of right-
and left-moving functions. Begin with the general Fourier series,

q (x, t) =

∞∑
n=0

(an sin knx+ bn cos knx) sin (ωnt+ ϕn)

=

∞∑
n=0

(an sin knx sin (ωnt+ ϕn) + bn cos knx sin (ωnt+ ϕn))

where kn = nπx
L and ωn = nπcx

L . Using sin (a+ b) = cos a sin b+ cos b sin a to separate the initial phases and
regrouping, the first (an) sum becomes
∞∑
n=0

an sin knx (cosωnt sinϕn + cosϕn sinωnt) =

∞∑
n=0

(an sinϕn (sin knx cosωnt) + an cosϕn (sin knx sinωnt))

with a similar result for the bn sum. Now, grouping the x and t dependent terms, we use the sum and
difference formulas to write each of the new products as a sum and difference, for example

sin knx cosωnt =
1

2

(
sin
(nπx
L

+ ωnt
)
− sin

(nπx
L
− ωnt

))
All the terms in the sum may be rewritten in this way, leading to

q (x, t) =

∞∑
n=0

(
an sin

nπx

L
sin (ωnt+ ϕn) + bn cos

nπx

L
sin (ωnt+ ϕn)

)
=

1

2

∞∑
n=0

an sinϕn

(
sin
(nπx
L

+ ωnt
)
− sin

(nπx
L
− ωnt

))
+
1

2

∞∑
n=0

an cosϕn

(
− cos

(nπx
L

+ ωnt
)
+ cos

(nπx
L
− ωnt

))
+
1

2

∞∑
n=0

bn sinϕn

(
cos
(nπx
L

+ ωnt
)
+ cos

(nπx
L
− ωnt

))
+
1

2

∞∑
n=0

bn cosϕn

(
sin
(nπx
L

+ ωnt
)
+ sin

(nπx
L
− ωnt

))
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Collecting the right- and left-moving modes, we have

q (x, t) =
1

2

∞∑
n=0

(
(an sinϕn + bn cosϕn) sin

(nπx
L

+ ωnt
)
+ (bn sinϕn − an cosϕn) cos

(nπx
L

+ ωnt
))

+
1

2

∞∑
n=0

(
(bn cosϕn − an sinϕn) sin

(nπx
L
− ωnt

)
+ (bn sinϕn + an cosϕn) cos

(nπx
L
− ωnt

))
Now define

An = an sinϕn + bn cosϕn

Bn = bn sinϕn − an cosϕn
Cn = bn cosϕn − an sinϕn
Dn = bn sinϕn + an cosϕn

and notice that these four linear combinations of an, bn and sinϕn, cosϕn are independent. Therefore,

q (x, t) =
1

2

∞∑
n=0

(
An sin

(nπx
L

+ ωnt
)
+Bn cos

(nπx
L

+ ωnt
))

+
1

2

∞∑
n=0

(
Cn sin

(nπx
L
− ωnt

)
+Dn cos

(nπx
L
− ωnt

))
Because An and Bn are independent constants, 1

2

∑∞
n=0

(
An sin

(
nπx
L + ωnt

)
+Bn cos

(
nπx
L + ωnt

))
is an

arbitrary function of nπxL +ωnt. Similarly, the independence of Cn and Dnmake the second sum an arbitrary
function of nπxL − ωnt. Calling these functions f and g respectively,

q (x, t) = f
(nπx
L

+ ωnt
)
+ g

(nπx
L
− ωnt

)
in agreement with our direct integration of the wave equation. Furthermore, we have shown that f and g
may be any piecewise continuous functions.

2 Fourier transform
We have seen how to represent a wide class of functions on a bounded interval, [−L,L]. Now we look at
what happens when we let the interval expand to the whole real line.

Start with the Fourier series for a function f (x) on a symmetric interval, written as the real or imaginary
part of

f (x) =
1√
2π

∞∑
n=−∞

Ane
iknx

The wave vector kn is restricted to the normal modes, kn = nπ
2L and the frequencies to ωn = knc =

nπc
L .

The spacing between adjacent wave numbers kn is

kn+1 − kn =
(n+ 1)π

L
− nπ

L

=
π

L

This spacing vanishes as we take the limit L −→ ∞. This means that every wave number k is allowed. In
the same limit, the sum over integers becomes an integral over all wave vectors k. Since kn is proportional
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to n we may think of the constants An as dependent on kn, An = A (kn). As k becomes continuous, An
becomes a continuous complex function, A (k). Then the Fourier series becomes a Fourier integral,

f (x) =
1√
2π

∞̂

−∞

dk A (k) eikx

We will show that knowing the function A (k) is equivalent to knowing f (x). Because of this, we often give
them related names, such as f (x) and f̃ (k),

f (x) =
1√
2π

∞̂

−∞

dk f̃ (k) eikx (4)

The new function f̃ (k) is called the Fourier transform of f (x).
To see that a function and its Fourier transform are equivalent, we need to show that we may invert

Eq.(4), solving for f̃ (k) in terms of f (x). It is not unreasonable to guess that we can do this the same way
we found the coefficients in the Fourier series–multiplying by 1√

2π
e−iqx and integrating over x. This leads

to a somewhat odd requirement which is nonetheless correct:

1√
2π

∞̂

−∞

f (x) e−iqxdx =
1

2π

∞̂

−∞

dk f̃ (k) ei(k−q)x

If this is to give the Fourier transform f̃ (q), we must have

f̃ (q) =
1

2π

∞̂

−∞

dk f̃ (k) ei(k−q)x

This is the defining property of the Dirac delta function, δ (k − q). We need to digress to define this new
object.

3 The Dirac delta function
The Dirac delta function is, curiously, not a function at all but a distribution. For our purposes, a distribution
is the limit of an infinite sequence of functions, and will have meaning only under an integral sign. The same
distribution may be written in many different ways as a sequence of functions; what is important is how the
limit behaves in integrals. Once we understand how the Dirac delta function works in integrals, we usually
do not need to write it as a limit of functions.

It is not wrong to think of the Dirac delta function as a continuous generalization of the Kronecker delta,
in the following sense. Just as a sum of a series with a Kronecker delta pulls out a particular element of the
sum,

∞∑
n=0

αnδkn = αk

because δknis zero unless k = n, the Dirac delta singles out a particular value from an integral

∞̂

−∞

f (x) δ (x− x0) dx = f (x0) (5)
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In a vague sense, the delta function vanishes except at x = x0 but is so large there that its integral is 1.
Notice that if we set f (x) = 1 in Eq.(5), we get that the integral of the Dirac delta is 1,

∞̂

−∞

δ (x− x0) dx = 1

However, over any interval not containing the point x = x0, the integral gives zero. For any a > 0,

x0−aˆ

−∞

δ (x− x0) dx = 0

∞̂

x0+a

δ (x− x0) dx = 0

We need to write δ (x) as the limit of a series to make these ideas well-defined.
We define the Dirac delta function as the limit of any sequence of functions hn (x) such that for any

smooth function f (x) which vanishes outside a bounded region (called a test function)

lim
n−→∞

∞̂

−∞

hn (x) f (x) dx = f (0)

The functions hn (x) may be any ones with this property. Loosely, we write

δ (x) = lim
n−→∞

hn (x)

but we must remember that this only has meaning when we integrate it.

3.1 Gaussian representation of the Dirac delta function
One series that gives a nice intuitive picture of the Dirac delta is as a limit of normalized Gaussians (see
Section 3 in the Lecture notes on Solutions to the wave equation). Let

f (x) =
1√
2πσ2

exp

(
− x2

2σ2

)
This satisfies

1√
2πσ2

∞̂

−∞

exp

(
− x2

2σ2

)
dx = 1

for any σ. The number σ characterizes the width of the Gaussian, and also the height since f (0) = 1√
2π

1
σ .

As we take σsmaller and smaller, our Gaussian grows taller and narrower, but always encloses unit area
beneath its curve. Define a sequence of functions given by setting σ = 1

n .

hn (x) =
n√
2π

exp

(
−1

2
n2x2

)
For large n, the maximum of hn increases without bound, but because the exponential decays with n2, hn
drops to negligible values very quickly. To see that

δ (x) = lim
n−→∞

hn (x)
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we integrate with a test function and evaluate the limit,

lim
n−→∞

∞̂

−∞

hn (x) f (x) dx = lim
n−→∞

∞̂

−∞

n√
2π

exp

(
−1

2
n2x2

)
f (x) dx

Choose n large enough such that f (x) changes very little for x ∈
(
− 1
n ,

1
n

)
. Since f (x) is continuous, no

matter how fast f (x) is changing, we can always find nlarge enough that the change in f (x) is as small as
we like on

(
− 1
n ,

1
n

)
. Concretely, continuity means that for any δ > 0 we can find sufficiently large n such

that for all x ∈
(
− 1
n ,

1
n

)
, we have f (x) ∈ (f (0)− δn, f (0) + δn). We may therefore write

f (x) = f (0 + δng (x))

on the entire interval x ∈
(
− 1
n ,

1
n

)
, where |g (x)| < 1. Moreover, as n −→ ∞, δn −→ 0. The Gaussian

integral may be written as

lim
n−→∞

∞̂

−∞

hn (x) f (x) dx = lim
n−→∞

f (0)

∞̂

−∞

n√
2π

exp

(
−1

2
n2x2

)
dx

= lim
n−→∞

f (0) ∞̂
−∞

n√
2π

exp

(
−1

2
n2x2

)
dx+ δn

∞̂

−∞

n√
2π

exp

(
−1

2
n2x2

)
g (x) dx


Since the Gaussians are all normalized to 1 and |g (x)| < 1,

δn

∞̂

−∞

n√
2π

exp

(
−1

2
n2x2

)
g (x) dx < δn

∞̂

−∞

n√
2π

exp

(
−1

2
n2x2

)
|g (x)| dx

≤ δn

∞̂

−∞

n√
2π

exp

(
−1

2
n2x2

)
dx

= δn

Because
lim

n−→∞
δn = 0

the second term vanishes in the limit. The Gaussian integral multiplying f (0) gives 1, and we have

lim
n−→∞

∞̂

−∞

hn (x) f (x) dx = f (0)

We may write

δ (x) = lim
n−→∞

n√
2π

exp

(
−1

2
n2x2

)

3.2 Properties of the Dirac delta function
For any (reasonable) function f (x),

∞̂

−∞

δ (x) f (x) dx = f (0)
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The singular point of δ (x) occurs when its argument is zero, but we could make this happen at any point
by setting

δ (x− x0) = lim
n−→∞

n√
2π

exp

(
−1

2
n2 (x− x0)2

)
Then

∞̂

−∞

δ (x− x0) f (x) dx = f (x0)

Now consider δ (ax) for any constant a. A change of variable makes the result clear. With y = ax,
∞̂

−∞

δ (ax) f (x) dx =

∞̂

−∞

δ (y) f (ay) (ady)

= a

∞̂

−∞

δ (y) f (ay) dy

= af (0)

We can even make the argument of δ into a function. The function x2 − 4 = (x− 2) (x+ 2) has zeros at
±2. If we write

δ
(
x2 − 4

)
there will be two points where the Dirac delta becomes infinite. The effect of integrating f (x) with δ

(
x2 − 4

)
is equivalent to having two delta functions,

δ
(
x2 − 4

)
= αδ (x− 2) + βδ (x+ 2)

but we need to know the relative weights. To find them, we look in a small neighborhood of one of the roots,
say x ∈ (2− ε, 2 + ε). Then

2+εˆ

2−ε

δ
(
x2 − 4

)
f (x) dx = α

2+εˆ

2−ε

δ (x− 2) f (x) dx

2+εˆ

2−ε

δ
(
x2 − 4

)
f (x) dx = αf (2)

Again we change variable, letting y = x2 − 4. Then dy = 2xdx so that

dx =
dy

2x

= +
dy

2
√
y + 4

Therefore,

2+εˆ

2−ε

δ
(
x2 − 4

)
f (x) dx =

2+εˆ

2−ε

δ (y) f
(
+
√
y + 4

) dy

2
√
y + 4

=
f
(
+
√
y + 4

)
2
√
y + 4

∣∣∣∣∣
y=0

=
f (2)

4
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Exercise: By studying
´
δ (g (x)) f (x) dx in a sufficiently small neighborhood of each zero, prove that for

any smooth function g (x) with isolated simple zeros at points xi, i = 1, 2, . . . , n,

δ (g (x)) =

n∑
i=1

1

|g′ (xi)|
δ (x− xi)

where g′ (xi) is the first derivative of g (x) evaluated at the ith pole.

3.3 Derivatives of the Dirac delta
The derivative of a Dirac delta function is defined by using integration by parts. For any test function f (x),

∞̂

−∞

(
d

dx
δ (x)

)
f (x) dx =

∞̂

−∞

d

dx
(δ (x) f (x)) dx−

∞̂

−∞

δ (x)
d

dx
f (x) dx

= (δ (x) f (x))|∞−∞ −
∞̂

−∞

δ (x)
d

dx
f (x) dx

= −
∞̂

−∞

δ (x)
d

dx
f (x) dx

= − df
dx

(0)

where the surface term vanishes because test functions f (x) vanish at ±∞. Higher derivatives of the Dirac
delta function are defined in the same way.

3.4 Fourier representation of the Dirac delta
Consider the series of functions

fN (x) =
1

2π

N̂

−N

dk eikx

Carrying out the integration,

fN (x) =
1

2π

N̂

−N

dk eikx

=
1

2π

1

ix
eikx

∣∣N
−N

=
1

2πi

1

x

(
eiNx − e−iNx

)
=

sinNx

πx

To show that this series defines a delta function, we need to compute limN→∞
´∞
−∞

sinNx
πx f (x) dx for an

arbitrary test function f (x). The integral requires contour integration in the complex plane.

10



4 Contour integration and the residue theorem
In our discussion of complex numbers we noted that any analytic function of x (that is, a function with a
convergent power series) has a complex extension. If f (x) is given in some region by

f (x) =

∞∑
k=0

akx
k

then the analytic extension is

f (z) =

∞∑
k=0

akz
k

where z = x+ iy.
Suppose we wish to integrate a function f (z) along a curve in any region where this power series converges.

Then we can show that the value of the integral does not change if we shift the curve continuously within
the region, holding the endpoints fixed.

A complex function fails to be integrable if it has poles–points where the value becomes undefined. This
can happen when the function is given by a Laurent series,

f (z) =

∞∑
k=−n

akz
k

Since the series starts at some −n < 0, there are terms which diverge,

f (z) =
a−n
zn

+
a−n+1

zn−2
+ . . .

and we ask what happens in an otherwise well-behaved region if our curve of integration encloses one of these
poles. Since the region is analytic all around the pole, we may deform the curve to a small circle around the
pole. Then the integral of the Laurent series takes the form

˛
f (z) dz =

∞∑
k=−n

akz
kdz

=

∞∑
k=−n

ak

˛
zkdz

Writing z = εeiθ and dz = εieiθdθ where ε is the constant radius of our circle, this becomes

˛
f (z) dz =

∞∑
k=−n

akε
k

˛
eikθiεeiθdθ

=

∞∑
k=−n

akiε
k+1

˛
ei(k+1)θdθ

=

∞∑
k=−n

akε
k+1 1

k + 1
ei(k+1)θ

∣∣∣2π
0

=

∞∑
k=−n

akε
k+1 1

k + 1

(
e2πi(k+1) − 1

)
= 0
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even for negative powers, except when k = −1. Surprisingly, most orders of pole contribute nothing to closed
integrals. The one exception is the simple pole, a−1

z . For this, we find
˛
a−1
z
dz =

a−1
ε

˛
e−iθiεeiθdθ

= ia−1

˛
dθ

= 2πia−1

The number a−1 is called the residue of the integrand. It is all of the integrand evaluated at the singular
point, except for the 1

z of the simple pole. For example, if f (z) is analytic at a point z0 and we wish to
integrate ˛

f (z)

z − z0
dz

The residue is f (z) evaluated at the pole, i.e., f (z0). The value of the integral is
˛

f (z)

z − z0
dz = 2πiRes

(
f (z)

z − z0

)
= 2πi f (z0)

4.1 Example
Suppose we which to integrate

I =

∞̂

−∞

eikx

x2 + 4
dx

This integrand has a Laurent series expansion, so we can look at the analytic extension to

I =

∞̂

−∞

eikz

z2 + 4
dz

If we choose, we can deform the path of integration away from the real axis as long as we do not cross a
pole. To see the poles clearly, we rewrite

1

z2 + 4
=

1

(z − 2i) (z + 2i)

=
1

4i

(
1

z − 2i
− 1

z + 2i

)
There are simple poles at 2i and −2i.

To make use of the residue theorem, we need a closed curve. Consider curves that include the real axis
along the interval [−R,R] then form a half circle in the upper half plane from (R, 0) counterclockwise along
the arc Reiθ as θ runs from 0 to π. This forms a closed contour. The integral along this contour may be
written as

I =
1

4i

R̂

−R

(
eikz

z − 2i
− eikz

z + 2i

)
dz +

1

4i

π̂

0

(
eikz

z − 2i
− eikz

z + 2i

)
iReiθdθ

Now look at the integrand in the second integral. Writing z = x+ iy in the exponential,(
eikz

z − 2i
− eikz

z + 2i

)
iReiθ =

(
1

z − 2i
− 1

z + 2i

)
iReiθeikxe−ky

12



Since the half circle always has positive y, it is suppressed by e−ky. As the radius of the circle increases to
infinity, y does as well, and since the rest of the integral is bounded, tends to zero. Therefore, in the limit
as R → ∞, the second integral vanishes, while the first part becomes the original integral I. The integral
around the closed loop therefore equals I:

I =
1

4i

˛ (
eikz

z − 2i
− eikz

z + 2i

)
dz

The closed curve in the upper half plane encloses one of the poles, at z = 2i. The second term has no pole
in the upper half plane and therefore gives zero. The residue theorem immediately gives the final result,

I =
1

4i

˛ (
eikz

z − 2i
− eikz

z + 2i

)
dz

=
1

4i

˛
eikz

z − 2i
dz

= 2πiRes

[
1

4i

eikz

z − 2i

]
= 2πi

[
1

4i
eikz

]
2i

=
π

2
e−2k

Pure magic!
Exercise: Compute the integral

∞̂

−∞

eikx

x2 − ix
dx

using contour integration.

4.2 Returning to the Fourier integral
Now return to our Fourier integral,

I = lim
N→∞

∞̂

−∞

sinNx

πx
f (x) dx

and consider the analytic continuation. Writing sinNx = eiNx−e−iNx

2i and letting x→ z,

I = lim
N→∞

∞̂

−∞

eiNz − e−iNz

2πiz
f (z) dz

The first step is to displace the pole off the real axis,

I = lim
N→∞

lim
ε→0

∞̂

−∞

eiNz − e−iNz

2πi (z − iε)
f (z) dz

then to split the integral into two

I = lim
N→∞

lim
ε→0

∞̂

−∞

eiNz

2πi (z − iε)
f (z) dz − lim

N→∞
lim
ε→0

∞̂

−∞

e−iNz

2πi (z − iε)
f (z) dz

13



We can complete the first integral in the upper half-plane as above, since for positive y, eiNz = eiNxe−Ny

converges. For the second integral, the sign in the exponent requires us to close the contour in the lower half
plane. However, since the pole is in the upper half plane, the second integral then vanishes. We are left with

I = lim
N→∞

lim
ε→0

˛
eiNz

2πi (z − iε)
f (z) dz

= lim
N→∞

lim
ε→0

2πiRes

[
eiNz

2πi (z − iε)
f (z)

]
= lim

N→∞
lim
ε→0

2πi

[
eiNz

2πi (z − iε)
f (z)

]
z=iε

= lim
N→∞

lim
ε→0

(
e−Nεf (iε)

)
= lim

N→∞
f (0)

= f (0)

Therefore, combining

1

2π

∞̂

−∞

dk eikx = lim
N→∞

fN (x)

with

lim
N→∞

∞̂

−∞

fN (x) f (x) dx = f (0)

we may write

1

2π

∞̂

−∞

dk eikx = δ (x)

This is the Fourier representation of the Dirac delta function.

4.3 Completeness
At last, we have the tools to invert the Fourier transform. Given

f (x) =
1√
2π

∞̂

−∞

dk f̃ (k) eikx

we multiply both sides by 1√
2π
e−iqx and integrate over x,

1√
2π

∞̂

−∞

e−iqxf (x) dx =
1

2π

∞̂

−∞

dx e−iqx
∞̂

−∞

dk f̃ (k) eikx

=
1

2π

∞̂

−∞

dk f̃ (k)

∞̂

−∞

dx ei(k−q)x

=

∞̂

−∞

dk f̃ (k) δ (k − q)

= f̃ (q)
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Therefore, given any f (x) we can solve for the transform f̃ (k) and given f̃ (k) we can find f (x). The two
are equivalent.

Exercise : Show that f (x) = 0 if and only if its Fourier transform f̃ (k) vanishes.

It is peculiar that the real function f (x) can be equivalent to a complex function, f̃ (k). Indeed, there is
a constraint on f̃ (k). Since f (x) is its own complex conjugate, f∗ (x) = f (x), we must have

f∗ (x) = f (x)

1√
2π

∞̂

−∞

dk f̃∗ (k) e−ikx =
1√
2π

∞̂

−∞

dk f̃ (k) eikx

Changing the variable on the left from k to −k,

1√
2π

∞̂

−∞

dk f̃∗ (k) e−ikx =
1√
2π

−∞ˆ

+∞

d (−k) f̃∗ (−k) eikx

=
1√
2π

∞̂

−∞

dk f̃∗ (−k) eikx

The reality of f (x) then requires

1√
2π

∞̂

−∞

dk f̃∗ (−k) eikx =
1√
2π

∞̂

−∞

dk f̃ (k) eikx

0 =
1√
2π

∞̂

−∞

dk f̃ (k) eikx − 1√
2π

∞̂

−∞

dk f̃∗ (−k) eikx

0 =
1√
2π

∞̂

−∞

dk
(
f̃ (k)− f̃∗ (−k)

)
eikx

The right hand side is just the Fourier transform of f̃ (k)− f̃∗ (−k) and since transforms are invertible, the
vanishing of the transform implies

f̃ (k)− f̃∗ (−k) = 0

Exercise: Find the Fourier transform of the function

f (x) =

{
eax x < 0
e−ax x ≥ 0

where a is a positive real number. Verify that f̃ (k) = f̃∗ (−k).

5 Using the Fourier transform
We may use Fourier transforms to solve differential equations.

5.1 Harmonic source
As an example, consider the 2-dimensionsal wave equation,

− 1

c2
∂2q

∂t2
+
∂2q

∂x2
= 0
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It is possible to add a driving force, F (x, t) to the right side of the equation,

− 1

c2
∂2q

∂t2
+
∂2q

∂x2
= F (x, t)

We suppose the driving force is given. This could correspond to pushing in various ways on a guitar string,
or sending a sound wave through a modulated medium.

To keep the problem simple, suppose we study a single frequency mode. Let the driving force be harmonic,

F (x, t) = f (x) eiω0t

Then we suppose q (x, t) responds at this same frequency (a particular solution), to which we may add any
solution to the sourceless (homogeneous) equation,

q (x, t) = q (x) eiω0t + g (x− ct) + h (x+ ct)

Then the the g and h parts vanish from the wave equation when we substitute in, leaving(
ω2
0

c2
q (x) +

∂2q (x)

∂x2

)
eiω0t = f (x) eiω0t

∂2q (x)

∂x2
+
ω2
0

c2
q (x) = f (x)

Now substitute the Fourier transforms,

q (x) =
1√
2π

∞̂

−∞

dk q̃ (k) eikx

F (x) =
1√
2π

∞̂

−∞

dk f̃ (k) eikx

We find

∂2

∂x2

 1√
2π

∞̂

−∞

dk q̃ (k) eikx

+
ω2
0

c2

 1√
2π

∞̂

−∞

dk q̃ (k) eikx

 =
1√
2π

∞̂

−∞

dk f̃ (k) eikx

Taking the x-derivatives and collecting terms,

∞̂

−∞

dk
(
−k2

)
q̃ (k) eikx +

ω2
0

c2

∞̂

−∞

dk q̃ (k) eikx =

∞̂

−∞

dk f̃ (k) eikx

∞̂

−∞

dk

(
−k2q̃ (k) + ω2

0

c2
q̃ (k)− f̃ (k)

)
eikx = 0

This is just the Fourier transform of the terms in parentheses; since the transform is invertible the integrand
must vanish,

−k2q̃ (k) + ω2
0

c2
q̃ (k)− f̃ (k) = 0

We assume the driving force is given so that its transform f̃ (k) is known. Then solving for q̃ (k)

q̃ (k) =
c2f̃ (k)

ω2
0 − c2k2
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we invert to find q (x),

q (x) =
c2√
2π

∞̂

−∞

dk
f̃ (k)

ω2
0 − c2k2

eikx

and the full solution for q (x, t), adding the homogeneous solution to this particular one, is

q (x, t) = eiω0t
c2√
2π

∞̂

−∞

dk
f̃ (k)

ω2
0 − c2k2

eikx + g (x− ct) + h (x+ ct)

Notice that the form of the remaining integral may often be solved using contour integration!

5.2 Double Fourier integral
The same procedure works even if the driving force depends on both x and t because we may use the Fourier
transform on more than one variable at a time. In the present case for a general forcing function F (x, t) we
may solve solve by writing q (x, t) and F (x, t) in terms Fourier transforms of both x and of t,

q (x, t) =
1√
2π

∞̂

−∞

dk
1√
2π

∞̂

−∞

dω h (k, ω) ei(kx−ωt)

=
1

2π

∞̂

−∞

∞̂

−∞

dkdω h (k, ω) ei(kx−ωt)

F (x, t) =
1√
2π

∞̂

−∞

dk
1√
2π

∞̂

−∞

dω j (k, ω) ei(kx−ωt)

where, since F (x, t) is given, j (k, ω) may also be found.
Substituting into the wave equation, and take the derivatives

− 1

c2
∂2

∂t2

 1

2π

∞̂

−∞

∞̂

−∞

dkdω h (k, ω) ei(kx−ωt)

+
∂2

∂x2

 1

2π

∞̂

−∞

∞̂

−∞

dkdω h (k, ω) ei(kx−ωt)

 =
1

2π

∞̂

−∞

∞̂

−∞

dkdω j (k, ω) ei(kx−ωt)

1

2π

∞̂

−∞

∞̂

−∞

dkdω h (k, ω)

(
ω2

c2
− k2

)
ei(kx−ωt) =

1

2π

∞̂

−∞

∞̂

−∞

dkdω j (k, ω) ei(kx−ωt)

Combining the two sides together,

1

2π

∞̂

−∞

∞̂

−∞

dkdω

(
h (k, ω)

(
ω2

c2
− k2

)
− j (k, ω)

)
ei(kx−ωt) = 0

This is just a (double) Fourier transform, which we may invert to show that the term in parentheses vanishes,

h (k, ω)

(
ω2

c2
− k2

)
− j (k, ω) = 0

Since we know j (k, ω) is known, we may solve immediately for h (k, ω):

h (k, ω) =
c2j (k, ω)

ω2 − k2c2
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and the solution to our problem is given by substituting this into the Fourier transform for q (x, t),

q (x, t) =
1

2π

∞̂

−∞

∞̂

−∞

dkdω h (k, ω) ei(kx−ωt)

=
1

2π

∞̂

−∞

∞̂

−∞

dkdω
c2j (k, ω) ei(kx−ωt)

ω2 − k2c2

This may or may not be simple, depending on the form of the driving force, but it reduces solving the
differential equation to a pair of integrals.
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