Topics for third exam

November 13, 2019

1 Mathematical methods

- 1. Divergence (div)
- 2. Gradient (grad, del)
- 3. Divergence theorem
- 4. Laplacian $(\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} f = \nabla^2 f)$
- 5. Change of coordinates
 - (a) Chain rule
 - (b) Implicit differentiation
- 6. Separation of variables
- 7. Special functions:
 - (a) Fourier modes (e^{ikx})
 - (b) Bessel functions $(J_n(x))$
 - (c) Legendre polynomials $(P_l(x))$
 - (d) Associated Legendre polynomials $P_{l}^{m}\left(x\right)$
 - (e) Spherical Bessel functions $(j_n(x))$
 - (f) Spherical harmonics, $Y_{l}^{m}\left(\theta,\varphi\right)$
- 8. Power series solution to differential equations

2 Physical applications

- 1. Normal mode solutions; functions as vectors in an orthonormal basis
- 2. Time dependence of normal modes
- 3. Plane waves
- 4. Laplace equation (eg., electrostatics in 2 and 3 dimensions)
- 5. Cylindrical waves (2 and 3 dimensions)
- 6. Spherical waves; radiation
- 7. Laplace, Helmholz, Schrödinger

3 List of topics discussed

Cartesian coordinates:

- 1. Three dimensional wave equation
- 2. div and grad
- 3. Divergence theorem
- 4. Laplacian
- 5. Plane waves (solutions in Cartesian coordinates)
- 6. General solution in Cartesian coordinates
- 7. Initial conditions for the general solution
- 8. Separation of variables (Cartesian)

Cylindrical coordinates

- 1. Change of coordinates; new basis vectors
- 2. Gradient
- 3. Laplacian
- 4. Separation of variables
- 5. Solving for R, Φ, Z
- 6. Bessel functions
- 7. Relations between separation constants
- 8. Solutions to the cylindrical wave equation

Spherical coordinates

- 1. Spherical coordinates and basis vectors
- 2. Gradient
- 3. Laplacian
- 4. The Laplace equation in spherical coordinates
- 5. Solving for R, Θ, Φ ; spherical harmonics
- 6. Legendre polynomials; series solution
- 7. Associated Legendre polynomials
- 8. Spherical harmonics
- 9. Solutions to the Laplace equation
- 10. Separation of variables
- 11. Solutions for T, R; spherical Bessel functions
- 12. Solutions to the wave equation (Helmholz equation)
- 13. Dipole waves