Final Exam Notes

December 9, 2019

I will include helpful formulas; these and/or others as needed:

Forms of the gradient:

$$
\begin{align*}
\boldsymbol{\nabla} & =\hat{\mathbf{i}} \frac{\partial}{\partial x}+\hat{\mathbf{j}} \frac{\partial}{\partial x}+\hat{\mathbf{k}} \frac{\partial}{\partial z} \tag{1}\\
\boldsymbol{\nabla} & =\hat{\boldsymbol{\rho}} \frac{\partial}{\partial \rho}+\hat{\boldsymbol{\varphi}} \frac{1}{\rho} \frac{\partial}{\partial \varphi}+\hat{\mathbf{k}} \frac{\partial}{\partial z} \tag{2}\\
\boldsymbol{\nabla} & =\hat{\mathbf{r}} \frac{\partial}{\partial r}+\hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\boldsymbol{\varphi}} \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \tag{3}
\end{align*}
$$

Laplacian:

$$
\begin{aligned}
\nabla^{2} f & =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
\nabla^{2} f & =\frac{\partial^{2} f}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial f}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
\nabla^{2} f & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}
\end{aligned}
$$

Spherical harmonics satisfy

$$
\begin{aligned}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y_{l m}}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y_{l m}}{\partial \varphi^{2}} & =-l(l+1) Y_{l m} \\
Y_{l m}(\theta, \varphi) & =\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} e^{i m \varphi} P_{l}^{m}(\cos \theta)
\end{aligned}
$$

Basis vectors in terms of Cartesian:

$$
\begin{aligned}
\hat{\boldsymbol{\rho}} & =\hat{\mathbf{i}} \cos \varphi+\hat{\mathbf{j}} \sin \varphi \\
\hat{\boldsymbol{\varphi}} & =-\hat{\mathbf{i}} \sin \varphi+\hat{\mathbf{j}} \cos \varphi \\
\hat{\mathbf{r}} & =\hat{\mathbf{i}} \sin \theta \cos \varphi+\hat{\mathbf{j}} \sin \theta \sin \varphi+\hat{\mathbf{k}} \cos \theta \\
\hat{\boldsymbol{\theta}} & =\hat{\mathbf{i}} \cos \theta \cos \varphi+\hat{\mathbf{j}} \cos \theta \sin \varphi-\hat{\mathbf{k}} \sin \theta \\
\hat{\boldsymbol{\varphi}} & =-\hat{\mathbf{i}} \sin \varphi+\hat{\mathbf{j}} \cos \varphi
\end{aligned}
$$

The spherical Bessel functions satisfy

$$
\frac{\partial}{\partial r}\left(r^{2} \frac{\partial j_{n}(k r)}{\partial r}\right)+k^{2} r^{2} j_{n}(k r)=0
$$

Expect the following problems, modified so that you need to work through them, on the final exam:

1. Find the eigenvalues and eigenvectors of a 2×2 matrix, such as $\left(\begin{array}{cc}0 & 2 \\ 2 & -3\end{array}\right)$, but with different entries. ANSWER: To find the eigenvalues, we solve the eigenvalue equation

$$
\begin{aligned}
\operatorname{det}(M-\lambda 1) & =0 \\
0 & =\operatorname{det}\left[\left(\begin{array}{cc}
0 & 2 \\
2 & -3
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right] \\
& =\operatorname{det}\left(\begin{array}{cc}
-\lambda & 2 \\
2 & -3-\lambda
\end{array}\right) \\
& =\lambda^{2}+3 \lambda-4 \\
& =(\lambda-1)(\lambda+4)
\end{aligned}
$$

so the eigenvalues are $\lambda=1,-4$. Solve the eigenvector equation for each one. For $\lambda=1$,

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & 2 \\
2 & -3
\end{array}\right)\binom{a}{b} & =1\binom{a}{b} \\
2 b & =a \\
2 a-3 b & =b
\end{aligned}
$$

Both of these give the same value, $b=\frac{a}{2}$, so the first eigenvector is

$$
\mathbf{v}_{1}=a\binom{1}{\frac{1}{2}}=\frac{a}{2}\binom{2}{1}
$$

We can normalize this by choosing $a=\frac{2}{\sqrt{5}}$,

$$
\hat{\mathbf{v}}_{1}=\frac{1}{\sqrt{5}}\binom{2}{1}
$$

For the second eigenvector, set $\lambda=-4$,

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & 2 \\
2 & -3
\end{array}\right)\binom{a}{b} & =-4\binom{a}{b} \\
2 b & =-4 a \\
2 a-3 b & =-4 b
\end{aligned}
$$

Both of these give $b=-2 a$, so

$$
\mathbf{v}_{-4}=a\binom{1}{-2}
$$

and the normalized eigenvector is

$$
\hat{\mathbf{v}}_{-4}=\frac{1}{\sqrt{5}}\binom{1}{-2}
$$

2. Potential energy and small oscillations. Here's an example. The Exam question will be simpler than this and shorter to work. I'm doing a more complicated version to show you all the features that could come up, but your potential will be more like the one in the first midterm, $V=2 x^{2}-5 x^{4}$ which has only one minimum at the origin.
(a) Suppose we have a potential

$$
V=x^{4}+\frac{4}{3} x^{3}-4 x^{2}+\frac{5}{3}
$$

Sketch the potential. Find the frequency of small oscillations of a mass m about the absolute minimum. ANSWER: First, find all extrema by setting the first derivative to zero:

$$
\begin{aligned}
0 & =V^{\prime} \\
& =4 x^{3}+4 x^{2}-8 x \\
& =4 x\left(x^{2}+x-2\right) \\
& =4 x(x-1)(x+2)
\end{aligned}
$$

Therefore, the extrema are at $x=-2,0,1$. To find which are maxima and which are minima, look at the sign of the second derivative of the potential at each of the three points. Positive $V^{\prime \prime}$ indicates a minimum, negative $V^{\prime \prime}$ indicates a maximum:

$$
\begin{aligned}
V^{\prime \prime}(x) & =12 x^{2}+8 x-8 \\
V^{\prime \prime}(-2) & =8>0 \\
V^{\prime \prime}(0) & =-8<0 \\
V^{\prime \prime}(1) & =12>0
\end{aligned}
$$

This means that $x=-2,1$ are minima and we can expect small oscillations around each. To find which is the absolute minimum, we look at the value of the potential at those points:

$$
\begin{aligned}
V & =x^{4}+\frac{4}{3} x^{3}-4 x^{2}+\frac{5}{3} \\
V(-2) & =(-2)^{4}+\frac{4}{3}(-2)^{3}-4(-2)^{2}+\frac{5}{3} \\
& =16-\frac{32}{3}-16+\frac{5}{3} \\
& =-9 \\
V(1) & =(1)^{4}+\frac{4}{3}(1)^{3}-4(1)^{2}+\frac{5}{3} \\
& =0
\end{aligned}
$$

Since $V(-2)$ is lower, $x=-2$ is the absolute minimum, i.e., the very smallest value of the potential. Next, expand the potential in a Taylor series around $x=-2$, that is, in powers of $(x+2)$. In general, the Taylor series of a function about a point $x=x_{0}$ is given by

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n} f}{d x^{n}}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

We only need up to second order to find small oscillations,

$$
\begin{aligned}
V(x) & =V(-2)+V^{\prime}(-2)(x-(-2))+\frac{1}{2!} V^{\prime \prime}(-2)(x+2)^{2}+\ldots \\
& =-9+0+\frac{1}{2!} 8(x+2)^{2}+\ldots
\end{aligned}
$$

This is enough to find the Hooke's law approximation to the force:

$$
\begin{aligned}
F & =-V^{\prime} \\
& =-8(x+2)
\end{aligned}
$$

so the equation of motion is

$$
m \ddot{x}+8(x+2)=0
$$

Let $y=x+2$. Then

$$
m \ddot{y}+8 y=0
$$

and the frequency of oscillations is

$$
\omega=\sqrt{\frac{8}{m}}
$$

The full solution is

$$
\begin{aligned}
x(t) & =y(t)-2 \\
& =A \cos \omega t+B \sin \omega t-2
\end{aligned}
$$

3. Find the divergence of the vector field

$$
\mathbf{v}(\rho, \varphi, z)=\frac{\rho}{z^{2}} \hat{\boldsymbol{\rho}}
$$

ANSWER:

$$
\begin{aligned}
\left(\hat{\boldsymbol{\rho}} \frac{\partial}{\partial \rho}+\hat{\boldsymbol{\varphi}} \frac{1}{\rho} \frac{\partial}{\partial \varphi}+\hat{\mathbf{k}} \frac{\partial}{\partial z}\right) \hat{\boldsymbol{\rho}} \cdot\left(\frac{\rho}{z^{2}} \hat{\boldsymbol{\rho}}\right) & =\hat{\boldsymbol{\rho}} \hat{\boldsymbol{\rho}} \cdot \frac{\partial}{\partial \rho}\left(\frac{\rho}{z^{2}} \hat{\boldsymbol{\rho}}\right)+\hat{\boldsymbol{\varphi}} \cdot \frac{1}{\rho} \frac{\partial}{\partial \varphi}\left(\frac{\rho}{z^{2}} \hat{\boldsymbol{\rho}}\right)+\hat{\mathbf{k}} \cdot \frac{\partial}{\partial z}\left(\frac{\rho}{z^{2}} \hat{\boldsymbol{\rho}}\right) \\
& =\hat{\boldsymbol{\rho}} \cdot \frac{1}{z^{2}} \hat{\boldsymbol{\rho}}+\hat{\boldsymbol{\varphi}} \cdot \frac{1}{\rho} \frac{\rho}{z^{2}} \hat{\boldsymbol{\varphi}}+\hat{\mathbf{k}} \cdot\left(-\frac{2 \rho}{z^{3}} \hat{\boldsymbol{\rho}}\right) \\
& =\frac{2}{z^{2}}
\end{aligned}
$$

4. What is the divergence of $f \nabla g$? Look at other simple identities involving the del operator as well. ANSWER:

$$
\boldsymbol{\nabla} \cdot(f \nabla g)=\nabla f \cdot \nabla g+f \nabla^{2} g
$$

5. Use the divergence theorem to evaluate the volume integral over a sphere of radius R,

$$
I=\int_{0}^{R} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} \boldsymbol{\nabla} \cdot \mathbf{w} r^{2} \sin \theta d r d \theta d \varphi
$$

if the vector field \mathbf{w} is given by

$$
\mathbf{w}=\mathbf{w}(\rho, \varphi, z)=r \sin \theta \hat{\mathbf{r}}+\frac{r \sin \theta}{\cos ^{2} \varphi} \hat{\boldsymbol{\theta}}+r \cos \varphi \hat{\boldsymbol{\varphi}}
$$

ANSWER: I went through this in class.
6. Use separation of variables to write ordinary differential equations in spherical coordinates for

$$
\mathbf{v} \cdot \boldsymbol{\nabla} \psi=0
$$

where $\mathbf{v}=v_{0} \hat{\mathbf{i}}$ is a constant vector field in the y-direction. Do not try to solve the equations during the test. ANSWER: I went through this in class.
7. Spherical harmonics, $Y_{l}^{m}(\theta, \varphi)$. The solution to the Laplace equation in spherical coordinates may be written as

$$
\psi(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left(A_{l m} r^{l}+\frac{B_{l m}}{r^{l+1}}\right) Y_{l m}(\theta, \varphi)
$$

Find the solution to the Laplace equation inside a sphere of radius R if

$$
\psi(R, \theta)=V_{0} \cos \theta=V_{0} P_{1}(\theta)
$$

(Hint: it makes it very easy if we can write $\psi(R, \theta)$ in terms of P_{l} or $Y_{l}^{m}(x)$ like this!) The final exam might have any simple value on the right, expressed in terms of $P_{l}(\cos \theta)$ or $Y_{l}^{m}(\theta, \varphi)$. The technique is the same.
8. If you did not already know the solutions to

$$
\frac{d^{2} f}{d x^{2}}+f=0
$$

then you might try a power series solution. Find the solution using a power series of the form

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

and find the recursion relation for the coefficients a_{n}. ANSWER: First, DO you know the solutions?! It's just the harmonic equation we've been working with all semester, so the general solution is

$$
f(x)=A \cos x+B \sin x
$$

Notice that the wave vector here is just 1. To find the recursion, substitute the whole series into the equation and take the derivatives,

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\sum_{n=0}^{\infty} a_{n} x^{n} & =0 \\
\sum_{n=0}^{\infty} a_{n} n(n-1) x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n} & =0
\end{aligned}
$$

Notice that anything that depends on n must stay inside the summation. Next, rewrite the first sum so that there is a simple index for the powers. Here, let $m=n-2$. Then we replace all the $n s$ by $n=m+2$,

$$
\sum_{m=0}^{\infty} a_{m+2}(m+2)(m+1) x^{m}
$$

Don't forget to change the index on a_{n} ! We can start the sum at $m=0$ since the values $m=-1,-2$ give zero anyway. Write the second sum with the same letter, $\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{m=0}^{\infty} a_{m} x^{m}$ so we can collect it all in one sum:

$$
\begin{aligned}
\sum_{m=0}^{\infty} a_{m+2}(m+2)(m+1) x^{m}+\sum_{m=0}^{\infty} a_{m} x^{m} & =0 \\
\sum_{m=0}^{\infty}\left(a_{m+2}(m+2)(m+1)+a_{m}\right) x^{m} & =0
\end{aligned}
$$

Now (and only now) we use the independence of different powers of x to say that each coefficient must vanish separately,

$$
\left(a_{m+2}(m+2)(m+1)+a_{m}\right)=0
$$

This gives a recursion relation, that is, a relation giving one of the a_{m} in terms of the previous one(s). In this case, we solve for a_{m+2} in terms of a_{m} :

$$
a_{m+2}=-\frac{1}{(m+1)(m+2)} a_{m}
$$

To see what function this describes, compute some coefficients. If we start with a_{0} we set $m=0$ and find

$$
\begin{aligned}
a_{2} & =-\frac{1}{(0+1)(0+2)} a_{0} \\
& =-\frac{1}{2} a_{0}
\end{aligned}
$$

Then, (since we have $a_{1}=0$) we go up by 2 . With $m=2$,

$$
\begin{aligned}
a_{4} & =-\frac{1}{(2+1)(2+2)} a_{2} \\
& =-\frac{1}{3 \cdot 4} a_{2} \\
& =\frac{1}{2 \cdot 3 \cdot 4} a_{0} \\
& =\frac{1}{4!} a_{0}
\end{aligned}
$$

Pretty soon, you spot the pattern and guess that

$$
a_{2 k}=\frac{(-1)^{k}}{(2 k)!} a_{0}
$$

To prove this (this part will not be on the Exam) we can use induction. Suppose $a_{2 k}=\frac{(-1)^{k}}{(2 k)!} a_{0}$. Then with $m=2 k$,

$$
\begin{aligned}
a_{2 k+2} & =-\frac{1}{(2 k+1)(2 k+2)} a_{2 k} \\
& =-\frac{1}{(2 k+1)(2 k+2)} \frac{(-1)^{k}}{(2 k)!} a_{0} \\
& =\frac{(-1)^{k+1}}{(2 k+2)!} a_{0}
\end{aligned}
$$

and this proves the general case. Therefore,

$$
\begin{aligned}
f(x) & =\sum_{n \text { even }}^{\infty} a_{n} x^{n} \\
& =\sum_{k=0}^{\infty} a_{2 k} x^{2 k} \\
& =a_{0} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
\end{aligned}
$$

and we recognize the Taylor series for the cosine,

$$
f(x)=a_{0} \cos x
$$

The odd terms give the sine and we recover the general solution.
9. Fourier series
(a) Find the Fourier series for the step function

$$
f(x)=\left\{\begin{array}{cc}
-1 & -L<x<0 \\
+1 & 0<x<L
\end{array}\right.
$$

on the interval $[-L, L]$. ANSWER:

$$
f(x)=b_{0}+\sum_{n=1}^{\infty}\left(a_{n} \sin \frac{n \pi x}{L}+b_{n} \cos \frac{n \pi x}{L}\right)
$$

Since $f(x)$ is odd, $f(-x)=-f(x)$ we need $b_{n}=0$ for all n. Then multiply by $\sin \frac{k \pi x}{L}$ and integrate,

$$
\int_{-L}^{L} f(x) \sin \frac{k \pi x}{L} d x=b_{0}+\sum_{n=1}^{\infty}\left(a_{n} \int_{-L}^{L} \sin \frac{n \pi x}{L} \sin \frac{k \pi x}{L}\right)
$$

We know that the right side vanishes unless $n=k$ so

$$
\begin{aligned}
\int_{-L}^{0}(-1) \sin \frac{k \pi x}{L} d x+\int_{0}^{L}(+1) \sin \frac{k \pi x}{L} d x & =a_{k} \int_{-L}^{L} \sin ^{2} \frac{k \pi x}{L} d x \\
\frac{L}{k \pi}\left(1-\cos \frac{k \pi(-L)}{L}\right)-\frac{L}{k \pi}\left(\cos \frac{k \pi L}{L}-1\right) & =\frac{1}{2} a_{k} 2 L \\
\frac{L}{k \pi}\left(1-(-1)^{k}\right)-\frac{L}{k \pi}\left((-1)^{k}-1\right) & =\frac{1}{2} a_{k} 2 L \\
\frac{2 L}{k \pi}\left(1-(-1)^{k}\right) & =a_{k} L \\
a_{k} & =\left\{\begin{array}{cc}
\frac{4}{k \pi} & \text { k odd } \\
0 & k \text { even }
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
f(x)=\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{1}{2 m+1} \sin \frac{(2 m+1) \pi x}{L}
$$

(b) Let $q(x, t)$ satisfy the 2-dimensional wave equation $-\frac{1}{c^{2}} \frac{\partial^{2} q(x, t)}{\partial t^{2}}+\frac{\partial^{2} q(x, t)}{\partial x^{2}}=0$, and suppose that at time $t=0$

$$
\begin{aligned}
q(x, 0) & =f(x) \\
\dot{q}(x, 0) & =0
\end{aligned}
$$

with $f(x)$ as given in part (a). Using your answer to part (a), write $q(x, t)$.

$$
q(x, t)=\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{1}{2 m+1} \sin \frac{(2 m+1) \pi x}{L}(a \cos \omega t+b \sin \omega t)
$$

The initial velocity will vanish if $b=0$; the initial position will be $f(x)$ if $a=1$, so

$$
q(x, t)=\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{1}{2 m+1} \sin \frac{(2 m+1) \pi x}{L} \cos \omega t
$$

(c) This can be written as a sum of right and left moving waves each with half the original shape.
10. One possibility to test your understanding of the continuity equation: The continuity equation is

$$
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{J}=0
$$

Use the divergence theorem to prove that the time rate of change in the quantity S, given by

$$
S=\int_{V} \rho d^{3} x
$$

equals the rate at which the current flows out of the volume V.

