
Final Exam Notes

December 9, 2019

I will include helpful formulas; these and/or others as needed:
Forms of the gradient:

∇ = î
∂

∂x
+ ĵ

∂

∂x
+ k̂

∂

∂z
(1)

∇ = ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ k̂

∂

∂z
(2)

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ
(3)

Laplacian:

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

∇2f =
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
+

1

ρ2
∂2f

∂ϕ2
+
∂2f

∂z2

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2

Spherical harmonics satisfy

1

sin θ

∂

∂θ

(
sin θ

∂Ylm
∂θ

)
+

1

sin2 θ

∂2Ylm
∂ϕ2

= −l (l + 1)Ylm

Ylm (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimϕPml (cos θ)

Basis vectors in terms of Cartesian:

ρ̂ = î cosϕ+ ĵ sinϕ

ϕ̂ = −î sinϕ+ ĵ cosϕ

r̂ = î sin θ cosϕ+ ĵ sin θ sinϕ+ k̂ cos θ

θ̂ = î cos θ cosϕ+ ĵ cos θ sinϕ− k̂ sin θ

ϕ̂ = −î sinϕ+ ĵ cosϕ

The spherical Bessel functions satisfy

∂

∂r

(
r2
∂jn (kr)

∂r

)
+ k2r2jn (kr) = 0
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Expect the following problems, modified so that you need to work
through them, on the final exam:

1. Find the eigenvalues and eigenvectors of a 2×2 matrix, such as
(

0 2
2 −3

)
, but with different entries.

ANSWER: To find the eigenvalues, we solve the eigenvalue equation

det (M − λ1) = 0

0 = det

[(
0 2
2 −3

)
−
(
λ 0
0 λ

)]
= det

(
−λ 2
2 −3− λ

)
= λ2 + 3λ− 4

= (λ− 1) (λ+ 4)

so the eigenvalues are λ = 1,−4. Solve the eigenvector equation for each one. For λ = 1,(
0 2
2 −3

)(
a
b

)
= 1

(
a
b

)
2b = a

2a− 3b = b

Both of these give the same value, b = a
2 , so the first eigenvector is

v1 = a

(
1
1
2

)
=
a

2

(
2
1

)
We can normalize this by choosing a = 2√

5
,

v̂1 =
1√
5

(
2
1

)
For the second eigenvector, set λ = −4,(

0 2
2 −3

)(
a
b

)
= −4

(
a
b

)
2b = −4a

2a− 3b = −4b

Both of these give b = −2a, so

v−4 = a

(
1
−2

)
and the normalized eigenvector is

v̂−4 =
1√
5

(
1
−2

)
2. Potential energy and small oscillations. Here’s an example. The Exam question will be simpler than

this and shorter to work. I’m doing a more complicated version to show you all the features that could
come up, but your potential will be more like the one in the first midterm, V = 2x2 − 5x4 which has
only one minimum at the origin.
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(a) Suppose we have a potential

V = x4 +
4

3
x3 − 4x2 +

5

3
Sketch the potential. Find the frequency of small oscillations of a mass m about the absolute
minimum. ANSWER: First, find all extrema by setting the first derivative to zero:

0 = V ′

= 4x3 + 4x2 − 8x

= 4x
(
x2 + x− 2

)
= 4x (x− 1) (x+ 2)

Therefore, the extrema are at x = −2, 0, 1. To find which are maxima and which are minima,
look at the sign of the second derivative of the potential at each of the three points. Positive V ′′
indicates a minimum, negative V ′′ indicates a maximum:

V ′′ (x) = 12x2 + 8x− 8

V ′′ (−2) = 8 > 0

V ′′ (0) = −8 < 0

V ′′ (1) = 12 > 0

This means that x = −2, 1 are minima and we can expect small oscillations around each. To find
which is the absolute minimum, we look at the value of the potential at those points:

V = x4 +
4

3
x3 − 4x2 +

5

3

V (−2) = (−2)4 + 4

3
(−2)3 − 4 (−2)2 + 5

3

= 16− 32

3
− 16 +

5

3
= −9

V (1) = (1)
4
+

4

3
(1)

3 − 4 (1)
2
+

5

3
= 0

Since V (−2) is lower, x = −2 is the absolute minimum, i.e., the very smallest value of the
potential. Next, expand the potential in a Taylor series around x = −2, that is, in powers of
(x+ 2). In general, the Taylor series of a function about a point x = x0 is given by

f (x) = f (x0) + f ′ (x0) (x− x0) +
1

2!
f ′′ (x0) (x− x0)2 + . . .

=

∞∑
n=0

1

n!

dnf

dxn
(x− x0)n

We only need up to second order to find small oscillations,

V (x) = V (−2) + V ′ (−2) (x− (−2)) + 1

2!
V ′′ (−2) (x+ 2)

2
+ . . .

= −9 + 0 +
1

2!
8 (x+ 2)

2
+ . . .

This is enough to find the Hooke’s law approximation to the force:

F = −V ′

= −8 (x+ 2)
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so the equation of motion is
mẍ+ 8 (x+ 2) = 0

Let y = x+ 2. Then
mÿ + 8y = 0

and the frequency of oscillations is

ω =

√
8

m

The full solution is

x (t) = y (t)− 2

= A cosωt+B sinωt− 2

3. Find the divergence of the vector field

v (ρ, ϕ, z) =
ρ

z2
ρ̂

ANSWER:(
ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ k̂

∂

∂z

)
ρ̂ ·
( ρ
z2
ρ̂
)

= ρ̂ρ̂ · ∂
∂ρ

( ρ
z2
ρ̂
)
+ ϕ̂ · 1

ρ

∂

∂ϕ

( ρ
z2
ρ̂
)
+ k̂ · ∂

∂z

( ρ
z2
ρ̂
)

= ρ̂ · 1
z2
ρ̂+ ϕ̂ · 1

ρ

ρ

z2
ϕ̂+ k̂ ·

(
−2ρ

z3
ρ̂

)
=

2

z2

4. What is the divergence of f∇g? Look at other simple identities involving the del operator as well.
ANSWER:

∇ · (f∇g) = ∇f ·∇g + f∇2g

5. Use the divergence theorem to evaluate the volume integral over a sphere of radius R,

I =

R̂

0

π
2ˆ

0

2πˆ

0

∇ ·w r2 sin θdrdθdϕ

if the vector field w is given by

w = w (ρ, ϕ, z) = r sin θr̂+
r sin θ

cos2 ϕ
θ̂ + r cosϕϕ̂

ANSWER: I went through this in class.

6. Use separation of variables to write ordinary differential equations in spherical coordinates for

v ·∇ψ = 0

where v = v0 î is a constant vector field in the y-direction. Do not try to solve the equations during
the test. ANSWER: I went through this in class.
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7. Spherical harmonics, Y ml (θ, ϕ). The solution to the Laplace equation in spherical coordinates may be
written as

ψ (r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(
Almr

l +
Blm
rl+1

)
Ylm (θ, ϕ)

Find the solution to the Laplace equation inside a sphere of radius R if

ψ (R, θ) = V0 cos θ = V0P1 (θ)

(Hint: it makes it very easy if we can write ψ (R, θ) in terms of Pl or Y ml (x) like this!) The final exam
might have any simple value on the right, expressed in terms of Pl (cos θ) or Y ml (θ, ϕ). The technique
is the same.

8. If you did not already know the solutions to

d2f

dx2
+ f = 0

then you might try a power series solution. Find the solution using a power series of the form

f (x) =

∞∑
n=0

anx
n

and find the recursion relation for the coefficients an. ANSWER: First, DO you know the solutions?!
It’s just the harmonic equation we’ve been working with all semester, so the general solution is

f (x) = A cosx+B sinx

Notice that the wave vector here is just 1. To find the recursion, substitute the whole series into the
equation and take the derivatives,

d2

dx2

( ∞∑
n=0

anx
n

)
+

∞∑
n=0

anx
n = 0

∞∑
n=0

ann (n− 1)xn−2 +

∞∑
n=0

anx
n = 0

Notice that anything that depends on n must stay inside the summation. Next, rewrite the first sum
so that there is a simple index for the powers. Here, let m = n − 2. Then we replace all the ns by
n = m+ 2,

∞∑
m=0

am+2 (m+ 2) (m+ 1)xm

Don’t forget to change the index on an! We can start the sum at m = 0 since the values m = −1,−2
give zero anyway. Write the second sum with the same letter,

∑∞
n=0 anx

n =
∑∞
m=0 amx

m so we can
collect it all in one sum:

∞∑
m=0

am+2 (m+ 2) (m+ 1)xm +

∞∑
m=0

amx
m = 0

∞∑
m=0

(am+2 (m+ 2) (m+ 1) + am)xm = 0

Now (and only now) we use the independence of different powers of x to say that each coefficient must
vanish separately,

(am+2 (m+ 2) (m+ 1) + am) = 0
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This gives a recursion relation, that is, a relation giving one of the am in terms of the previous one(s).
In this case, we solve for am+2 in terms of am:

am+2 = − 1

(m+ 1) (m+ 2)
am

To see what function this describes, compute some coefficients. If we start with a0 we set m = 0 and
find

a2 = − 1

(0 + 1) (0 + 2)
a0

= −1

2
a0

Then, (since we have a1 = 0) we go up by 2. With m = 2,

a4 = − 1

(2 + 1) (2 + 2)
a2

= − 1

3 · 4
a2

=
1

2 · 3 · 4
a0

=
1

4!
a0

Pretty soon, you spot the pattern and guess that

a2k =
(−1)k

(2k)!
a0

To prove this (this part will not be on the Exam) we can use induction. Suppose a2k = (−1)k
(2k)! a0. Then

with m = 2k,

a2k+2 = − 1

(2k + 1) (2k + 2)
a2k

= − 1

(2k + 1) (2k + 2)

(−1)k

(2k)!
a0

=
(−1)k+1

(2k + 2)!
a0

and this proves the general case. Therefore,

f (x) =

∞∑
n even

anx
n

=

∞∑
k=0

a2kx
2k

= a0

∞∑
k=0

(−1)k

(2k)!
x2k

and we recognize the Taylor series for the cosine,

f (x) = a0 cosx

The odd terms give the sine and we recover the general solution.
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9. Fourier series

(a) Find the Fourier series for the step function

f (x) =

{
−1 −L < x < 0
+1 0 < x < L

on the interval [−L,L]. ANSWER:

f (x) = b0 +

∞∑
n=1

(
an sin

nπx

L
+ bn cos

nπx

L

)
Since f (x) is odd, f (−x) = −f (x) we need bn = 0 for all n. Then multiply by sin kπx

L and
integrate,

L̂

−L

f (x) sin
kπx

L
dx = b0 +

∞∑
n=1

an L̂

−L

sin
nπx

L
sin

kπx

L


We know that the right side vanishes unless n = k so

0ˆ

−L

(−1) sin kπx
L

dx+

L̂

0

(+1) sin
kπx

L
dx = ak

L̂

−L

sin2
kπx

L
dx

L

kπ

(
1− cos

kπ (−L)
L

)
− L

kπ

(
cos

kπL

L
− 1

)
=

1

2
ak2L

L

kπ

(
1− (−1)k

)
− L

kπ

(
(−1)k − 1

)
=

1

2
ak2L

2L

kπ

(
1− (−1)k

)
= akL

ak =

{
4
kπ k odd
0 k even

Therefore,

f (x) =
4

π

∞∑
m=1

1

2m+ 1
sin

(2m+ 1)πx

L

(b) Let q (x, t) satisfy the 2-dimensional wave equation − 1
c2
∂2q(x,t)
∂t2 + ∂2q(x,t)

∂x2 = 0, and suppose that
at time t = 0

q (x, 0) = f (x)

q̇ (x, 0) = 0

with f (x) as given in part (a). Using your answer to part (a), write q (x, t).

q (x, t) =
4

π

∞∑
m=1

1

2m+ 1
sin

(2m+ 1)πx

L
(a cosωt+ b sinωt)

The initial velocity will vanish if b = 0; the initial position will be f (x) if a = 1, so

q (x, t) =
4

π

∞∑
m=1

1

2m+ 1
sin

(2m+ 1)πx

L
cosωt

(c) This can be written as a sum of right and left moving waves each with half the original shape.
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10. One possibility to test your understanding of the continuity equation: The continuity equation is

∂ρ

∂t
+∇ · J = 0

Use the divergence theorem to prove that the time rate of change in the quantity S, given by

S =

ˆ

V

ρ d3x

equals the rate at which the current flows out of the volume V .
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