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1 Coupled oscillators
Consider two mass-spring systems:

m m

k k
L

x1 x2

Suppose we have two identical mass-spring oscillators, each with mass m and spring constant k. (The
masses and spring constants don’t have to be the same, it just makes the example simpler) The oscillators
satisfy

mẍ1 + kx1 = 0

mẍ2 + kx2 = 0

with solutions that oscillate with frequency ω =
√

k
m . Here we choose x1 and x2 to be the displacement of

each respective mass to the right. Therefore, for positive x1 or x2 the force produced is to the left.
Now connect the two masses with a third spring of constant k′ as shown in the next picture.

1



m m

k k

x1 x2

L
k’

Each mass now feels two forces. We count forces to the left with a minus sign and to the right with a
plus. On the left mass, positive x1 produces a force to the left, −kx1, and when a force from the middle
spring of k′ (x2 − x1). This second force is to the right when x2 > x1 and to the left when x2 < x1 . The
equation of motion for the leftmost mass is therefore:∑

all forces

F = m
d2x1

dt2

−kx1 + k′ (x2 − x1) = m
d2x1

dt2

For the rightmost mass we have a similar equation,

−kx2 − k′ (x2 − x1) = m
d2x2

dt2

This gives us a pair of coupled oscillators. The motion of each mass depends on the position of both masses.
The resulting motion may look complicated, but we’ll see that there’s a simple way to understand it. The
trick is to take combinations of the two equations that decouple them so that we once again have equations
for simple harmonic motion.

The simplest route to a solution is to notice that the coupling cancels if we add the equations:

−kx1 − kx2 = m
d2x1

dt2
+m

d2x2

dt2

−k (x1 + x2) = m
d2 (x1 + x2)

dt2

The combined length Q = x1 + x2 oscillates with frequency ω =
√

k
m according to

Q = A sin (ωt+ θ0)
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This doesn’t yet solve both equations. However, if we subtract the two, we get a second simple harmonic
motion:

−k (x1 − x2) + 2k′ (x2 − x1) = m
d2 (x1 − x2)

dt2

− (k + 2k′) (x1 − x2) = m
d2 (x1 − x2)

dt2

Defining

q ≡ x1 − x2

ω̃ ≡
√
k + 2k′

m

=
√
ω2 + 2ω′2

where we set ω′ =
√

k′

m . The equation for a is now simply

d2q

dt2
+ ω̃2q = 0

so that the solution is
q = B sin (ω̃t+ ϕ0)

Since

Q = x1 + x2

q = x1 − x2

we have

x1 =
1

2
(Q+ q)

=
1

2
(A sin (ωt+ θ0) +B sin (ω̃t+ ϕ0))

x2 =
1

2
(Q− q)

=
1

2
(A sin (ωt+ θ0)−B sin (ω̃t+ ϕ0))

The position of each mass is a linear combination of two simple harmonic oscillations. Notice that the initial
position and initial velocity for each of the two masses exactly determine the four constants A,B, θ0, ϕ0 in
our solution.

2 A systematic approach
There is a more systematic way to go about this. We can write the original pair of equations as a single
matrix equation. Since the equations are linear, we can let the two positions form a vector and extract the
spring constants and derivatives as linear operators.

m
d2x1

dt2
+ kx1 − k′ (x2 − x1) = 0

m
d2x2

dt2
+ kx2 + k′ (x2 − x1) = 0
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The force terms take the form(
(k + k′)x1 − k′x2

−k′x1 + (k + k′)x2

)
=

(
k + k′ −k′
−k′ k + k′

)(
x1

x2

)

Then accelerations may be written as d2

dt2

(
x1

x2

)
and the pair of coupled equtions becomes

[
d2

dt2
+

1

m

(
k + k′ −k′
−k′ k + k′

)](
x1

x2

)
= 0

This has the general form1 (
d2

dt2
+M

)(
x1

x2

)
= 0

with

M =
1

m

(
k + k′ −k′
−k′ k + k′

)
=

1

m

(
k + k′ −k′
−k′ k + k′

)

2.1 Change of basis

Suppose we change the vector of position values X =

(
x1

x2

)
by taking two linear combinations,

(
Q
q

)
≡ AX =

(
a b
c d

)(
x1

x2

)
where A is now some invertible matrix. Then by inserting 1 = A−1A, our original equation may be changed
to

A

(
d2

dt2
+M

)
A−1A

(
x1

x2

)
= 0

Since A is constant, the derivative term is unaltered, A
(

d2

dt2

)
A−1 = d2

dt2 . Defining the transformed force
matrix,

M̃ ≡ AMA−1

the equation of motion has the same form as before, but in the new variables:(
d2

dt2
+ M̃

)(
Q
q

)
= 0

2.2 Diagonalization
The advantage of the change of basis is that it allows us to choose the transformation A so that M̃ is diagonal.
Then, with

M̃ =

(
ω2

1 0
0 ω2

2

)
1Strictly speaking, we should write the acceleration as 1 d2

dt2
, where 1 is the 2 × 2 identity matrix. Then

(
1 d2

dt2
+M

)
is a

matrix operator.
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the equations for Q and q take the simple harmonic form,

d2Q

dt2
+ ω2

1Q = 0

d2q

dt2
+ ω2

2q = 0

and we have an immediate solution.
We have reduced the problem of solving the coupled pair of differential equations to the easier problem

of diagonalizing a matrix.
The new dynamical variables Q, q oscillate with frequencies ω1, ω2 called the normal mode frequencies.
Diagonalizing a matrix amounts to solving the equation

AMA−1 = M̃

M̃

(
Q
q

)
=

(
ω2

1 0
0 ω2

2

)(
Q
q

)
=

(
ω2

1Q
ω2

2q

)
We may write this as two equations

M̃

(
Q
0

)
= ω2

1

(
Q
0

)
M̃

(
0
q

)
= ω2

2

(
0
q

)
If we write (

Q
0

)
= Q

(
1
0

)
(

0
q

)
= q

(
0
1

)
we see that the magnitudes Q, q cancel, so M̃ also satisfies

M̃

(
1
0

)
= ω2

1

(
1
0

)
M̃

(
0
1

)
= ω2

2

(
0
1

)

This shows the existence of two eigenvectors,
(
Q
0

)
and

(
0
q

)
such that the action of M̃ reproduces a

multiple of the same vector. The multipliers, ω2
1 and ω2

2 , are called the eigenvalues. The useful fact to notice
is that this remains true in the original basis, since, acting with A−1 on the first equation and using the
definition M̃ = AMA−1 gives

A−1M̃

(
1
0

)
= ω2

1A
−1

(
1
0

)
A−1AMA−1

(
1
0

)
= ω2

1A
−1

(
1
0

)
MA−1

(
1
0

)
= ω2

1A
−1

(
1
0

)
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and similarly

MA−1

(
0
1

)
= ω2

2A
−1

(
0
1

)
Define

u =

(
u1

u2

)
≡ A−1

(
1
0

)
v =

(
v1

v2

)
≡ A−1

(
0
1

)
Notice that u is the first column of the matrix A−1, and v is the second column. Therefore, if we can find
u,v, we know the transformation A−1, and inverting, A.

In terms of the original matrix M we now have

Mu = ω2
1u

Mv = ω2
2v

These are called eigenvector equations. The eigenvectors u,v determine the transformation A−1 , and the
eigenvalues ω1, ω2 are the normal mode frequencies. SinceM is symmetric, we can show that A is orthogonal,

and therefore has unit determinant. This means that u and v will be unit vectors, since
(

1
0

)
and

(
0
1

)
are unit vectors and orthogonal transformations preserve lengths of vectors.

2.3 Normal mode frequencies
If all we desire is to find the normal mode frequencies, the problem is even easier. The general form of the
eigenvalue equation is

Mu = λu

for some number λ, with a similar equation for v. Rewrite this as

(M − λ1)u = 0

so the matrix M − λ1 annihilates u.
Now suppose (M − λ1) has and inverse N . Then N (M − λ1) = 1 so that the eigenvalue equation implies

0 = N (M − λ1)u = u

and there is no nontrivial eigenvector. Therefore, we must demand that M − λ1 is not invertible. This is
the case if and only if its determinant vanishes

det (M − λ1) = 0

In our example, this equation is quadratic,

det

(
1

m

(
k + k′ −k′
−k′ k + k′

)
− λ1

)
= det

1

m

(
k + k′ − λ −k′
−k′ k + k′ − λ

)
=

((
1

m
(k + k′)− λ

)(
1

m
(k + k′)− λ

)
−
(
k′

m

)2
)

= λ2 − 2

m
λ (k + k′) +

1

m2
(k + k′)

2 −
(
k′

m

)2

= λ2 − 2

m
λ (k + k′) +

1

m2

(
k2 + 2kk′

)
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Setting this to zero,

λ2 − 2

m
λ (k + k′) +

1

m2

(
k2 + 2kk′

)
= 0

we write the solutions using the quadratic formula,

λ± =
1

2

(
2

m
(k + k′)±

√
4

m2
(k + k′)

2 − 4
4

m2
(k2 + 2kk′)

)

=
1

m

[
(k + k′)±

√
k2 + 2kk′ + k′2 − k2 − 2kk′

]
=

1

m

[
(k + k′)±

√
k′2
]

λ+ =
k + 2k′

m
= ω̃2

λ− =
k

m
= ω2

We see that the eigenvalues of the force matrix are the squares of the normal mode frequencies.
The same techniques work if we couple together more oscillators. The only difference is that if we have

n oscillators, M will be an n × n matrix so the vanishing determinant is an nth order polynomial equation
for the eigenvalues. Therefore, there will be n normal modes and n normal mode frequencies.

2.4 Normal modes
Now that we know the normal mode frequencies, we find the normal modes themselves. These are described
by the eigenvectors, so we must solve each of the equations

Mu = λ−u

Mv = λ+v

Letting

u =

(
u1

u2

)
and substituting in M , the first becomes

1

m

(
k + k′ −k′
−k′ k + k′

)(
u1

u2

)
= ω2

(
u1

u2

)
This vector equation is really two coupled equations, on for each component of the vector. Multiplying out
the matrix,

1

m
(k + k′)u1 −

k′

m
u2 = ω2u1

−k
′

m
u1 +

1

m
(k + k′)u2 = ω2u2

Solving the first for u2,

1

m
(k + k′)u1 −

k′

m
u2 =

k

m
u1

k′

m
u2 =

1

m
(k + k′)u1 −

k

m
u1

k′u2 = (k + k′ − k)u1

u2 = u1
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If we put this result into the second equation, it reduces to an identity:

−k
′

m
u1 +

1

m
(k + k′)u2 = ω2u2

−k
′

m
u1 +

1

m
(k + k′)u1 =

k

m
u1

−k
′

m
u1 +

1

m
(k + k′)u1 =

k′

m
u1

u1 = u1

All we can say is that the first eigenvector has the form

u = u1

(
1
1

)
but this is expected because the eigenvector equation does not determine the overall magnitude of the
eigenvectors. We may choose u1 any way we please.

For the second eigenvalue equation we have

1

m

(
k + k′ −k′
−k′ k + k′

)(
v1

v2

)
= ω̃2

(
v1

v2

)
and therefore, with ω̃2 = k+2k′

m ,

1

m
(k + k′) v1 −

k′

m
v2 =

k + 2k′

m
v1

−k
′

m
v1 +

1

m
(k + k′) v2 =

k + 2k′

m
v2

From the first,

1

m
(k + k′) v1 −

k′

m
v2 =

k + 2k′

m
v1

(k + k′) v1 − (k + 2k′) v1 = k′v2

(k + k′ − k − 2k′) v1 = k′v2

−v1 = v2

and therefore
v = v1

(
1
−1

)
Finally, choose u1 = v1 = 1√

2
so that

u =
1√
2

(
1
1

)
v =

1√
2

(
1
−1

)
are unit eigenvectors.

The two unit eigenvectors, u,v are the columns of the inverse transformation matrix, A−1, so

A−1 =
1√
2

(
1 1
1 −1

)
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This is the matrix that connects our original oscillator positions, x = (x1, x2) to the normal mode positions
(Q, q) according to (

Q
q

)
= A

(
x1

x2

)
or (

x1

x2

)
= A−1

(
Q
q

)
(
x1

x2

)
=

1√
2

(
1 1
1 −1

)(
Q
q

)
Carrying out the matrix multiplication,(

x1

x2

)
=

1√
2

(
Q+ q
Q− q

)
or simply,

x1 =
1√
2

(Q+ q)

x2 =
1√
2

(Q− q)

This relationship holds at all times, and we know the time dependence of Q (t) and q (t) is simple harmonic
with the normal frequencies. We may write the solutions as:

Q (t) = A sin (ωt+ ϕ0)

q (t) = B sin (ω̃t+ θ0)

Therefore, the general solution for the positions of the two oscillators is

x1 (t) =
1√
2

(A sin (ωt+ ϕ0) +B sin (ω̃t+ θ0))

x2 (t) =
1√
2

(A sin (ωt+ ϕ0)−B sin (ω̃t+ θ0))

where the four constants A,B,ϕ0, θ0 are determined by the initial position and initial velocity for each of
the two oscillators.

To find the motions that characterize the normal modes of the spring system, we may look at what
happens when B = 0 or when A = 0. With B = 0, the motion is purely of frequency ω,

x1 (t) =
A√
2

sin (ωt+ ϕ0)

x2 (t) =
A√
2

sin (ωt+ ϕ0)

This describes a situation where both masses move back and forth together at the natural frequency, ω =√
k
m . Notice that if the two move together there is no stretching or contraction of the middle spring, so k′

does not enter the answer. For the motion of the second normal mode, we set A = 0 to find

x1 (t) =
B√

2
sin (ω̃t+ θ0)

x2 (t) = − B√
2

sin (ω̃t+ θ0)

Now one mass moves right while the other moves left, and vice versa. This mode maximally stretches and
compresses the middle spring, while also stretching or compressing the original springs. This is why the
frequency ω̃2 = k+2k′

m depends on both spring constants.
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3 N oscillators
Suppose we couple a large number, N , of oscillators. Then each mass is affected by two springs. Let all
masses and spring constants be equal, and let the displacement from equilibrium of the ith mass be qi. Then
the equation of motion for the ith mass is

m
d2qi
dt2
− k (qi+1 − qi) + k (qi − qi−1) = 0

To find the normal mode frequencies of this system, we assume that, for each normal mode, each mass
oscillates as

qi = Aie
iΩt

where Ai = aie
iϕi . This means that in that normal mode, each mass oscillates with the same frequency but

possible different phase, ϕi. Substituting into each equation of motion, the eiΩt factor cancels, leaving

−mΩ2Ai − k (Ai+1 −Ai) + k (Ai −Ai−1) = 0

This is a recursion relation, giving Ai+1 in terms of Ai and Ai−1. Letting ω2 = k
m ,

ω2Ai+1 = −Ω2Ai + ω2Ai + ω2Ai − ω2Ai−1

Ai+1 = −Ω2

ω2
Ai + 2Ai −Ai−1

Let η = Ω2

ω2 so that
Ai+1 = (2− η)Ai −Ai−1

we define α = 2− η to get the simple form

Ai+1 = αAi −Ai−1

If we start with initial conditions q0 = qN+1 = 0, so the endpoints are fixed, then A0 = 0 and setting
i = 1,

A2 = αA1

Continuing to i = 2,

A3 = αA2 −A1

=
(
α2 − 1

)
A1

then

A4 = αA3 −A2

= α
(
α2 − 1

)
A1 − αA1

=
[(
α3 − α

)
− α

]
A1

=
(
α3 − 2α

)
A1

It’s clear that we get a series of alternating even and odd polynomials, and that the final equation for
AN+1 = 0 will take the form

AN+1 = 0 = αN + · · ·
This is an N th order polynomial equation giving the eigenvalues–the same equation we would have gotten
by taking the determinant of M − λ1.

However, we need a still more systematic approach. For a long chain of masses, we might guess that the
amplitudes of displacement are periodic, so that Ai may be written as

Ai = a sin iϕ
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for some numbers a and ϕ. Alternatively, we might notice that using sine or cosine in this form allows us to
use the addition formula,

a sin (i± 1)ϕ = sin iϕ cosϕ± sinϕ cos iϕ

so we can write the recursion as an equation for Ai alone.
Either way, making the substitution and using the addition formula puts the recursion formula in the

form

a sin ((i+ 1)ϕ) = (2− η) a sin (iϕ)− a sin ((i− 1)ϕ)

sin iϕ cosϕ+ sinϕ cos iϕ = (2− η) sin (iϕ)− sin iϕ cosϕ+ sinϕ cos iϕ

sin iϕ cosϕ = (2− η) sin (iϕ)− sin iϕ cosϕ

Solving for the sine
sin iϕ (2 cosϕ− (2− η)) = 0

As long as sin iϕ does not vanish for some i, this requires

0 = (2 cosϕ− (2− η))

= 2 (cosϕ− 1) +
Ω2

ω2

Ω2 = 2ω2 (1− cosϕ)

= 4ω2 sin2 ϕ

2

Ω = 2ω sin
ϕ

2

We still need the second boundary condition. We have A0 = a sin 0 = 0 but we still need

0 = AN+1

= a sin (N + 1)ϕ

and therefore,
(N + 1)ϕ = nπ

Since n = 0 and n = N + 1 give zero, we have n modes given by

ϕn =
nπ

N + 1
, n = 1, · · · , n

Ωn = 2ω sin
nπ

2 (N + 1)

4 The normal modes
We have written the solution for the kth mass in some normal mode as

qk = Ake
iΩt

or, taking the imaginary part,
qk = Ak sin Ωt

Next, we assumed that the amplitude Ak is given by Ak = a sin kϕ and we found that Ω and ϕ satisfy

Ω = 2ω sin
ϕ

2
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Imposing boundary conditions leads to N possible solutions, for Ω and Ak,

ϕn =
nπ

N + 1

Ωn = 2ω sin
ϕn

2

= 2ω sin
nπ

2 (N + 1)

Ak,n = a sin kϕn

= a sin
knπ

N + 1

where n may take any value from 1 to N .
Together, these give the motion of the kth particle in the nth mode,

qk
(
nthmode

)
= Ai sin Ωt

= a sin

[
knπ

N + 1

]
sin

[
2

(
sin

nπ

2 (N + 1)

)
ωt

]
This gives us the motion of each mass for any normal mode. The general motion of any one mass (the kth)
in the system is a superposition of these normal mode oscillations over all n,

qk (t) =

N∑
n=1

an sin

[
knπ

N + 1

]
sin

[
2

(
sin

nπ

2 (N + 1)

)
ωt

]
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