Continuum Limit

September 1, 2019

Consider again the case of N coupled oscillators. We found that Newton's second law applied to the $i^{\text {th }}$ oscillator gives

$$
m \frac{d^{2} q_{i}}{d t^{2}}-k\left(q_{i+1}-q_{i}\right)+k\left(q_{i}-q_{i-1}\right)=0
$$

We wish to take the limit of an infinite number of oscillators as their separation shrinks to zero. To begin, let the $i^{t h}$ position coordinate q_{i} be written as a function of its equilibrium position

$$
\begin{aligned}
q_{i}(t) & \rightarrow q(x, t) \\
x= & =i d
\end{aligned}
$$

Then the force term becomes

$$
k\left(q_{i+1}-q_{i}\right) \rightarrow k(q(x+d, t)-q(x, t))
$$

and the equation of motion is now

$$
m \frac{\partial^{2} q(x, t)}{\partial t^{2}}-k(q(x+d, t)-q(x, t))+k(q(x, t)-q(x-d, t))=0
$$

Notice that since q is now a function of two variables, we change the total derivatives to partial derivatives. We may simplify this by expanding $q(x+d)$ and $q(x-d)$ around $q(x)$:

$$
\begin{aligned}
q(x+d, t) & =q(x, t)+\left.\frac{\partial q}{\partial x}\right|_{x, t} d+\left.\frac{1}{2!} \frac{\partial^{2} q}{\partial x^{2}}\right|_{x, t} d^{2}+\cdots \\
q(x-d, t) & =q(x, t)-\left.\frac{\partial q}{\partial x}\right|_{x, t} d+\left.\frac{1}{2!} \frac{\partial^{2} q}{\partial x^{2}}\right|_{x, t} d^{2}-\cdots
\end{aligned}
$$

Substituting into the equation of motion,

$$
m \frac{\partial^{2} q(x, t)}{\partial t^{2}}-k\left(\left.\frac{\partial q}{\partial x}\right|_{x, t} d+\left.\frac{1}{2!} \frac{\partial^{2} q}{\partial x^{2}}\right|_{x, t} d^{2}+\cdots\right)+k\left(-\left.\frac{\partial q}{\partial x}\right|_{x, t} d+\left.\frac{1}{2!} \frac{\partial^{2} q}{\partial x^{2}}\right|_{x, t} d^{2}-\cdots\right)=0
$$

The linear terms in d cancel. Dividing by m leaves us with $\backslash ;$

$$
\frac{\partial^{2} q(x, t)}{\partial t^{2}}-\left.\frac{k d^{2}}{m} \frac{\partial^{2} q}{\partial x^{2}}\right|_{x, t}+\text { terms of order } d^{3} \text { and higher }=0
$$

We now take the limit as $d \rightarrow 0$. This requires us to be precise about the limit of the constant, $\frac{k d^{2}}{m}$.

Springs in series

Suppose we have two springs with spring constants k_{1} and k_{2}, connected end to end, and then to a mass m. If we stretch the system by a length x, the force each spring exerts on the other and on the mass must be the same, so with the stretch of each spring being x_{1} and x_{2} respectively, we must have

$$
\begin{aligned}
x & =x_{1}+x_{2} \\
k x=k_{2} x_{2} & =k_{1} x_{1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
x_{1} & =\frac{k x}{k_{1}} \\
x_{2} & =\frac{k x}{k_{2}}
\end{aligned}
$$

and $x=x_{1}+x_{2}$ becomes

$$
\begin{aligned}
x & =x_{1}+x_{2} \\
& =\frac{k x}{k_{1}}+\frac{k x}{k_{2}}
\end{aligned}
$$

Cancelling the overall factor of x, the effective spring constant is given by

$$
\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}
$$

Finally, if $k_{1}=k_{2}$,

$$
\begin{aligned}
\frac{1}{k} & =\frac{2}{k_{1}} \\
k_{1} & =2 k
\end{aligned}
$$

The $d \rightarrow 0$ limit

Applied to our oscillators, this means that if we double the number of masses, the spring constant between mass pairs doubles. More generally, k is inversely proportional to the separation of masses,

$$
k=\frac{\kappa}{d}
$$

where κ_{0} is the spring constant per unit length. Also, with each doubling of the number of masses, we cut each mass in half, so that

$$
m=\mu d
$$

with μ_{0} givng the mass per unit length. We hold κ and μ constant. Putting these together, the constant in the wave equation is

$$
\frac{k d^{2}}{m}=\frac{\frac{\kappa}{d} d^{2}}{\mu d}=\frac{\kappa}{\mu}
$$

This quantity does not change as $d \rightarrow 0$,

$$
\lim _{d \rightarrow 0}\left(\frac{k d^{2}}{m}\right)=\frac{\kappa}{\mu}
$$

Since terms of cubic order and higher vanish as $d \rightarrow 0$, therefore, the continuum limit is

$$
\frac{\partial^{2} q(x, t)}{\partial t^{2}}-\frac{\kappa}{\mu} \frac{\partial^{2} q(x, t)}{\partial x^{2}}=0
$$

This is once again the 2-dimensional wave equation. Since the x dependence of $q(x, t)$ spans all of the former q_{i}, this equation combines the full couple set of $N \rightarrow \infty$ equations. As we shall see, there are now infinitely many normal modes of oscillation.

The constant has units of velocity squared:

$$
\begin{aligned}
{\left[\frac{\kappa}{\mu}\right] } & =\left[\frac{k d^{2}}{m}\right] \\
& =\frac{[F / x] \cdot m^{2}}{k g} \\
& =\frac{k g \cdot m^{2}}{k g \cdot s^{2}} \\
& =\left(\frac{m}{s}\right)^{2}
\end{aligned}
$$

We will see that this velocity, $c \equiv \sqrt{\frac{\kappa}{\mu}}$, is the speed of waves in the continuous medium. We may write the wave equation in the final form:

$$
-\frac{1}{c^{2}} \frac{\partial^{2} q}{\partial t^{2}}+\frac{\partial^{2} q}{\partial x^{2}}=0
$$

