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Consider again the case of N coupled oscillators. We found that Newton’s second law applied to the ith
oscillator gives

m
d2qi
dt2
− k (qi+1 − qi) + k (qi − qi−1) = 0

We wish to take the limit of an infinite number of oscillators as their separation shrinks to zero. To begin,
let the ith position coordinate qi be written as a function of its equilibrium position

qi (t) → q (x, t)

x = = id

Then the force term becomes
k (qi+1 − qi)→ k (q (x+ d, t)− q (x, t))

and the equation of motion is now

m
∂2q (x, t)

∂t2
− k (q (x+ d, t)− q (x, t)) + k (q (x, t)− q (x− d, t)) = 0

Notice that since q is now a function of two variables, we change the total derivatives to partial derivatives.
We may simplify this by expanding q (x+ d) and q (x− d) around q (x):

q (x+ d, t) = q (x, t) +
∂q

∂x
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x,t

d+
1

2!

∂2q

∂x2

∣∣∣∣
x,t

d2 + · · ·

q (x− d, t) = q (x, t)− ∂q

∂x
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x,t
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∂2q

∂x2
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x,t
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Substituting into the equation of motion,

m
∂2q (x, t)

∂t2
− k

(
∂q

∂x

∣∣∣∣
x,t

d+
1
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∂2q

∂x2
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x,t

d2 + · · ·

)
+ k

(
− ∂q

∂x

∣∣∣∣
x,t

d+
1

2!

∂2q

∂x2

∣∣∣∣
x,t

d2 − · · ·

)
= 0

The linear terms in d cancel. Dividing by m leaves us with\;

∂2q (x, t)

∂t2
− kd2

m

∂2q

∂x2

∣∣∣∣
x,t

+ terms of order d3 and higher = 0

We now take the limit as d→ 0. This requires us to be precise about the limit of the constant, kd
2

m .

1



Springs in series

Suppose we have two springs with spring constants k1 and k2, connected end to end, and then to a mass m.
If we stretch the system by a length x, the force each spring exerts on the other and on the mass must be
the same, so with the stretch of each spring being x1 and x2 respectively, we must have

x = x1 + x2

kx = k2x2 = k1x1

Therefore,

x1 =
kx

k1

x2 =
kx

k2

and x = x1 + x2 becomes

x = x1 + x2

=
kx

k1
+
kx

k2

Cancelling the overall factor of x, the effective spring constant is given by

1

k
=

1

k1
+

1

k2

Finally, if k1 = k2,

1

k
=

2

k1
k1 = 2k

The d→ 0 limit
Applied to our oscillators, this means that if we double the number of masses, the spring constant between
mass pairs doubles. More generally, k is inversely proportional to the separation of masses,

k =
κ

d

where κ0 is the spring constant per unit length. Also, with each doubling of the number of masses, we cut
each mass in half, so that

m = µd

with µ0 givng the mass per unit length. We hold κ and µ constant. Putting these together, the constant in
the wave equation is

kd2

m
=

κ
dd

2

µd
=
κ

µ

This quantity does not change as d→ 0,

lim
d→0

(
kd2

m

)
=
κ

µ

Since terms of cubic order and higher vanish as d→ 0, therefore, the continuum limit is

∂2q (x, t)

∂t2
− κ

µ

∂2q (x, t)

∂x2
= 0
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This is once again the 2-dimensional wave equation. Since the x dependence of q (x, t) spans all of the former
qi, this equation combines the full couple set of N →∞ equations. As we shall see, there are now infinitely
many normal modes of oscillation.

The constant has units of velocity squared:[
κ

µ

]
=

[
kd2

m

]
=

[F/x] ·m2

kg

=
kg ·m2

kg · s2

=
(m
s

)2
We will see that this velocity, c ≡

√
κ
µ , is the speed of waves in the continuous medium. We may write the

wave equation in the final form:

− 1

c2
∂2q

∂t2
+
∂2q

∂x2
= 0
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