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1 Complex numbers
The real numbers may be extended by defining the imaginary unit,

i =
√
−1

The set of numbers of the form
z = x+ iy

then form a field, with addition and multiplication defined by

z1 + z2 = (x1 + iy1) + (x2 + iy2)

= (x1 + x2) + i (y1 + y2)

z1z2 = (x1 + iy1) (x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2

= (x1x2 − y1y2) + i (x1y2 + x2y1)

Clearly, there is exactly one complex number for each point of the plane. This gives rise to the polar
representation

z = reiϕ

where r =
√
x2 + y2 and tanϕ = y

x . Expanding in a Taylor series it is straightforward to show that

eiϕ = cosϕ+ i sinϕ

which includes the amusing Euler relation, eiπ = −1. In polar form, multiplying by a phase eiθ simply
rotates z, i.e.,

zeiθ = rei(ϕ+θ)

Any function of on the plane, f (x, y) may equally well be written as a function f (z, z̄) where z̄ is the
complex conjugate of z, found by replacing i by −i,

z̄ = x− iy

The squared norm of z is the product
zz̄ = x2 + y2

Using this, the inverse of any nonzero complex number is
1

z
=

z̄

zz̄

=
x− iy
x2 + y2

Every n-degree polynomial equation over the complex numbers,

anz
n + an−1z

n−1 + · · ·+ a0 = 0

has exactly n complex solutions.
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2 Cauchy Riemann equations
We would like to differentiate and integrate using complex numbers. However, the complex numbers lie in
a plane, so there are two independent directions (and any linear combination of these) from which we may
take limits. These different limits must agree.

Specifically, we define
df

dz
= lim
ε→0

f (z + ε)− f (z)

ε

where ε is an arbitrary complex number. If we let ε = (a+ bi) δ = wδ and set

z = x+ iy

f (z) = u (x, y) + iv (x, y)

then we have

df

dz
= lim

δ→0

u (x+ aδ, y + bδ) + iv (x+ aδ, y + bδ)− u (x, y)− iv (x, y)

(a+ bi) δ

=
1

w
lim
δ→0

u (x+ aδ, y + bδ) + iv (x+ aδ, y + bδ)− u (x, y)− iv (x, y)

δ

To take these limits, add and subtract a term. For the real part,

lim
δ→0

u (x+ aδ, y + bδ)− u (x, y)

δ
= lim

δ→0

u (x+ aδ, y + bδ)− u (x, y + bδ) + u (x, y + bδ)− u (x, y)

δ

= lim
δ→0

u (x+ aδ, y + bδ)− u (x, y + bδ)

δ
+ lim
δ→0

u (x, y + bδ)− u (x, y)

δ

= a lim
aδ→0

u (x+ aδ, y + bδ)− u (x, y + bδ)

aδ
+ b lim

bδ→0

u (x, y + bδ)− u (x, y)

bδ

= a lim
aδ→0

∂u (x, y + bδ)

∂x
+ b

∂u (x, y)

∂y

= a
∂u (x, y)

∂x
+ b

∂u (x, y)

∂y

Similarly, the imaginary part becomes

lim
δ→0

v (x+ aδ, y + bδ)− v (x, y)

δ
= a

∂v (x, y)

∂x
+ b

∂v (x, y)

∂y

Therefore, if we define w = a+ bi,

df

dz
=

1

w

(
a
∂u

∂x
+ b

∂u

∂y
+ ia

∂v

∂x
+ ib

∂v

∂y

)
The derivative of f exists if and only if this holds for all aand b, which happens if and only if

a
∂u

∂x
+ b

∂u

∂y
+ ia

∂v

∂x
+ ib

∂v

∂y

is a multiple of w. This requires, for some functions g and h,

a
∂u

∂x
+ b

∂u

∂y
+ ia

∂v

∂x
+ ib

∂v

∂y
= (g + ih) (a+ bi)

a
∂u

∂x
+ b

∂u

∂y
+ ia

∂v

∂x
+ ib

∂v

∂y
= ag − bh+ iah+ igb
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and therefore, since a and b are arbitrary,

a
∂u

∂x
+ b

∂u

∂y
= ag − bh

ia
∂v

∂x
+ ib

∂v

∂y
= iah+ igb

and therefore

g =
∂u

∂x
=
∂v

∂y

h = −∂u
∂y

=
∂v

∂x

The necessary and sufficient conditions for a well-defined derivative are therefore,

∂u

∂y
= −∂v

∂x

∂v

∂y
=

∂u

∂x
(1)

and these are called the Cauchy-Riemann conditions.
Now, we have several ways to write the derivative,

df

dz
=

∂u

∂x
− i∂u

∂y

=
∂v

∂y
+ i

∂v

∂x

2.1 Derivatives with respect to z̄

Suppose we have a complex valued function of two variables, which we may write as either f (x, y) or as
f (z, z̄). Consider the consequences of the Cauchy-Riemann conditions for the derivatives df

dz and df
dz̄ .

We may write f (z, z̄) = u (z, z̄) + iv (z, z̄) where u and v take only real values. Furthermore, since
z = x+ iy and z̄ = x− iy we have

x =
1

2
(z + z̄)

y =
1

2i
(z − z̄)

so that with the chain rule we may evaluate

df

dz
=

∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z

=
1

2

∂f

∂x
+

1

2i

∂f

∂y

=
1

2

∂u

∂x
+
i

2

∂v

∂x
+

1

2i

∂u

∂y
+

1

2

∂v

∂y

and

df

dz̄
=

∂f

∂x

∂x

∂z̄
+
∂f

∂y

∂y

∂z̄

=
1

2

∂f

∂x
− 1

2i

∂f

∂y
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=
1

2

∂ (u+ iv)

∂x
− 1

2i

∂ (u+ iv)

∂y

=
1

2

∂u

∂x
+
i

2

∂v

∂x
− 1

2i

∂u

∂y
− 1

2

∂v

∂y

Using the Cauchy-Riemann conditions Eqs.(1) to replace the y-derivatives these become

df

dz
=

1

2

∂u

∂x
+
i

2

∂v

∂x
+

1

2i

∂u

∂y
+

1

2

∂v

∂y

=
1

2

∂u

∂x
+
i

2

∂v

∂x
− 1

2i

∂v

∂x
+

1

2

∂u

∂x

=
∂u

∂x
+ i

∂v

∂x

=
∂

∂x
(u+ iv)

and
∂u

∂y
= −∂v

∂x

∂v

∂y
=

∂u

∂x

df

dz̄
=

1

2

∂u

∂x
+
i

2

∂v

∂x
− 1

2i

∂u

∂y
− 1

2

∂v

∂y

=
1

2

∂u

∂x
+
i

2

∂v

∂x
+

1

2i

∂v

∂x
− 1

2

∂u

∂x
= 0

Essentially, a differentiable complex function depends in either coordinate system on only one of the variables.
In particular, a function f (z, z̄) is differentiable if it is independent of z̄, f (z, z̄) = f (z).

3 Higher derivatives
Suppose F is the complex derivative of f (z),

F (x) =
df

dz

=
∂u

∂x
− i∂u

∂y

=
∂v

∂y
+ i

∂v

∂x

With F = U + iV we have

U =
∂u

∂x
=
∂v

∂y

V = −∂u
∂y

=
∂v

∂x

Now consider the Cauchy-Riemann conditions for the existence of dFdz = d2f
dz2 ,

∂U

∂x
=

∂V

∂y

∂U

∂y
= −∂V

∂x
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Substituting for U and V in the first condition,

∂U

∂x
=

∂V

∂y

∂2v

∂x∂y
=

∂2v

∂y∂x

and in the second,

∂U

∂y
= −∂V

∂x

∂2u

∂y∂x
=

∂2u

∂x∂y

we see that the Cauchy-Riemann conditions for F are identically satisfied by the equality of mixed partials.
Therefore, the second derivative of f (z) exists whenever the first derivative exists, provided only that the
separate real or imaginary parts, u, v are similarly differentiable. Since we may repeat this arguement ad
infinitum, f (z) satisfies the Cauchy-Riemann conditions at all orders if and only if u and v are C∞ functions,
in which case, all derivatives of f (z) exist.

4 Analytic extension
Consider any real values function with a convergent Taylor series for all x,

f (x) =

∞∑
n=0

1

n!
anx

n

Then we define the analytic extension of f to be the complex valued function

f (z) =

∞∑
n=0

1

n!
anz

n

To see that this exists for all z, write z = reiφ and einφ = cosnφ+ i sinnφ, then expand

f (z) =

∞∑
n=0

1

n!
anr

neinφ

=

∞∑
n=0

1

n!
anr

n (cosnφ+ i sinnφ)

Now, each of the series,

u (r, φ) =

∞∑
n=0

1

n!
anr

n cosnφ

v (r, φ) =

∞∑
n=0

1

n!
anr

n sinnφ

converges since,

u (r, φ) =

∞∑
n=0

1

n!
anr

n cosnφ
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≤
∞∑
n=0

1

n!
anr

n |cosnφ|

≤
∞∑
n=0

1

n!
anr

n = f (r)

v (r, φ) ≤
∞∑
n=0

1

n!
anr

n |sinnφ|

≤ f (r)

and therefore both converge.
Furthermore, f (z) satisfies the Cauchy-Riemann conditions. To check, we first observe that with f (z) =

u (r, φ) + iv (r, φ) in polar coordinates we can immediately write the real and imaginary parts,

u =

∞∑
n=0

1

n!
anr

n cosnφ

v =

∞∑
n=0

1

n!
anr

n sinnφ

To perform the derivatives we need to express the derivatives in polar coordinates. Using the chain rule,

∂

∂x
=

∂r

∂x

∂

∂r
+
∂φ

∂x

∂

∂φ

∂

∂y
=

∂r

∂y

∂

∂r
+
∂φ

∂y

∂

∂φ
(2)

We can find the partials we need from the coordinate transformation,

tanφ =
y

x
1

cos2 φ
dφ =

xdy − ydx
x2

x2

cos2 φ
dφ = xdy − ydx

r2dφ = xdy − ydx
dφ =

x

r2
dy − y

r2
dx

dφ =
cosφ

r
dy − sinφ

r
dx

and

r =
√
x2 + y2

dr =
1

2
√
x2 + y2

(2xdx+ 2ydy)

=
1

r
(r cosφdx+ r sinφdy)

= cosφdx+ sinφdy

so we see that
∂φ

∂x
= − sinφ

r
∂φ

∂y
=

cosφ

r
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and

∂r

∂x
= cosφ

∂r

∂y
= sinφ

Therefore, substituting the partials into Eqs.(2),

∂

∂x
= cosφ

∂

∂r
− 1

r
sinφ

∂

∂φ

∂

∂y
= sinφ

∂

∂r
+

1

r
cosφ

∂

∂φ

and the partial derivatives required for the first Cauchy-Riemann conditions become

∂u

∂x
= cosφ

∂u

∂r
− 1

r
sinφ

∂u

∂φ

=

(
cosφ

∂

∂r
− 1

r
sinφ

∂

∂φ

)( ∞∑
n=0

1

n!
anr

n cosnφ

)

=

∞∑
n=0

1

n!
an

(
cosφ

∂

∂r
− 1

r
sinφ

∂

∂φ

)
rn cosnφ

=

∞∑
n=0

1

n!
an
(
nrn−1 cosφ cosnφ+ nrn−1 sinφ sinnφ

)
=

∞∑
n=0

1

(n− 1)!
anr

n−1 cos (n− 1)φ

while

∂v

∂y
= sinφ

∂v

∂r
+

1

r
cosφ

∂v

∂φ

=

(
sinφ

∂

∂r
+

1

r
cosφ

∂

∂φ

)( ∞∑
n=0

1

n!
anr

n sinnφ

)

=

∞∑
n=0

1

n!
an
(
nrn−1 sinφ sinnφ+ nrn−1 cosφ cosnφ

)
=

∞∑
n=0

1

(n− 1)!
anr

n−1 cos (n− 1)φ

so that

∂u

∂x
=

∂v

∂y

is identically satisfied.
For the second condition, we need

∂u

∂y
= sinφ

∂u

∂r
+

1

r
cosφ

∂u

∂φ

=

(
cosφ

∂

∂r
− 1

r
sinφ

∂

∂φ

)( ∞∑
n=0

1

n!
anr

n sinnφ

)
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=

∞∑
n=0

1

n!
annr

n−1 (cosφ sinnφ− sinφ cosnφ)

∂v

∂x
= cosφ

∂v

∂r
− 1

r
sinφ

∂v

∂φ

=

(
sinφ

∂

∂r
+

1

r
cosφ

∂

∂φ

)( ∞∑
n=0

1

n!
anr

n cosnφ

)

=

∞∑
n=0

1

n!
annr

n−1 (sinφ cosnφ− cosφ sinnφ)

and these are negatives of one another
∂u

∂y
= −∂v

∂x

as required for analyticity.
Therefore, analytic extension of any real Taylor series gives an analytic function f (z). Conversely, any

complex Taylor series gives an analytic function.
Exercise: Show that the composition of two analytic functions is analytic. That is, if f (z) and g (w) both

satisfy the Cauchy-Riemann conditions, show that g (f (z)) also satisfies the Cauchy-Riemann conditions.

5 Contour Integrals

5.1 Integral of an analytic function using the Cauchy-Riemann conditions
Now consider a function f (z) with derivatives of all orders in some region of the complex plane, and consider
the integral of f (z) around a closed curve, C,

˛

C

f (z) dz

We may expand this as a pair of functions of two variables,˛

C

f (z) dz =

˛

C

(u (x, y) + iv (x, y)) (dx+ idy)

=

˛

C

(udx+ iudy + ivdx− vdy)

=

˛

C

(udx− vdy) + i

˛

C

(udy + vdx)

The final integrals are expressed as real integrals along curves in the plane. Define a vector field in R3

~u := (u (x, y) ,−v (x, y) , 0)

and write d~x = (dx, dy, dz) as an infinitesimal vector displacement. Then we can use Stoke’s theorem. The
first integral becomes ˛

C

(udx− vdy) =

˛

C

~u · d~x

=

¨

S

(∇× ~u) · n̂d2x
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where S is any region bounded by C and the normal n̂ is in the z-direction. The z-component of the curl of
~u, however, is

k̂ · (∇× ~u) =
∂ux
∂y
− ∂uy

∂x

=
∂u

∂y
+
∂v

∂x
= 0

where the result vanishes by the Cauchy-Riemann conditions. Therefore,
˛

C

(udx− vdy) = 0

For the second integral, let ~w = (v, u, 0) be a vector field, so that
˛

C

(udy + vdx) =

˛

C

~w · d~x

=

¨

S

(∇× ~w) · n̂d2x

Again we need the z-component of the curl, which is

k̂ · (∇× ~w) =
∂wx
∂y
− ∂wy

∂x

=
∂v

∂y
− ∂u

∂x
= 0

using the second Riemann-Cauchy condition. We conclude that
¸
C

(udy + vdx) = 0 as well.
Therefore, for any analytic function f , we have

˛

C

f (z) dz = 0

around any closed curve, C.

5.2 Deforming the curve
If two closed curves share a common segment, then we can add the curves together to get a larger curve
equal to the outer boundary of both curves. Starting with a given curve, we can therefore imagine adding a
small second loop in such a way that the combined contour is slightly altered from the first. This is called a
deformation of the contour, and it will not change the value of the integral as long as the small loop we add
lies entirely within a region where f is analytic. In any analytic region we may therefore deform the path of
integration in any way we like without changing the value of the integral.

For the alternative proof where we have a small circle with vanishing integral, we can imagine a pair of
such circles centered on nearby points. The overlap region is surrounded by an interior closed curve with
vanishing integral, and we may disregard it in evaluating the net contour integral. In this way, we may build
up contours around finite regions.
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Two	
  overlapping	
  circles,	
  each	
  
integrated	
  clockwise

The	
  central	
  portion	
  makes	
  no	
  
contribution,	
  since	
  integrating	
  up	
  one	
  
side	
  and	
  down	
  the	
  other	
  forms	
  a	
  closed	
  
curve.

The	
  net	
  integral	
  is	
  around	
  the	
  outer	
  curve.

6 The Residue Theorem
We can use this result to simplify integrals where the function is not analytic in the entire complex plane.
Suppose a function is analytic everywhere except a single point, z0. Then in addition to a Taylor series for
the function, there may be a Laurent expansion which includes poles at z0,

1

(z − z0)
n

Such terms are fine away from the point z0, so they do not affect analticity elsewhere. Consider the class of
functions which have a Laurent series, i.e., for some finite number N , the function may be expressed as

f (z) =

∞∑
n=−N

an (z − z0)
n

This has poles of orders 1, 2, . . . , N . Since the mapping w = g (z) = z− z0 is analytic, we might as well write
this as

f (w) =

∞∑
n=−N

anw
n

where the poles are now at w = 0. Now consider a contour integral of the form
˛

C

f (w) dw

for any closed curve C. Since f is analytic everywhere except the origin, the integral vanishes if C does not
enclose the origin – we may deform the curve down to a single point. If C does include the origin, we may
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deform C until it is a circle of radius R about the origin, and the deformation does not affect the value of
the integral. Then on the circle

dw = d
(
Reiφ

)
= iReiφdφ

so we have

˛

C

f (w) dw =

2πˆ

0

∞∑
n=−N

anR
neinφ

(
iReiφdφ

)

= i

∞∑
n=−N

anR
n+1

2πˆ

0

ei(n+1)φdφ

= i

∞∑
n6=−1

anR
n+1 ei(n+1)φ

i (n+ 1)

∣∣∣∣2π
0

+ ia−1

2πˆ

0

dφ

= i

∞∑
n=−N

anR
n 1

i (n+ 1)

(
e2(n+1)πi − 1

)
+ ia−1

2πˆ

0

dφ

= 2πia−1

We see that the integral depends only on the coefficient of the simple pole (i.e., the pole of order 1). This
coefficient is called the residue of f at z0, and we write

Res (f (z)) = Res

( ∞∑
n=−N

an (z − z0)
n

)
= a−1

The residue theorem now states that the integral of a complex function about a pole equals 2πi times the
residue of the function at the pole. If there are multiple poles, the result is the sum of the residues at all
poles included within the contour C. Thus, the residue theorem becomes

˛

C

f (w) dw = 2πi
∑

Res (f)

where the sum is over all poles included within C.

6.1 Example: Completeness relation for Fourier integrals
Suppose we can expand a function f (x) as

f (x) =
1√
2π

∞̂

−∞

g (k) e−ik·xd3k

We would like to show that this transformation is invertible, and this requires the completeness relation for
Fourier transformations. To see this, consider inverting the transformation. Multiply both sides by eik

′·x

and integrate over all x,

1√
2π

∞̂

−∞

f (x) eik
′·xd3x =

1

2π

∞̂

−∞

eik
′·xd3x

∞̂

−∞

g (k) e−ik·xd3k
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=
1

2π

∞̂

−∞

∞̂

−∞

g (k) e−i(k−k
′)·xd3k d3x

=
1

2π

∞̂

−∞

g (k) d3k

∞̂

−∞

e−i(k−k
′)·x d3x

We desire the result of this integration to be the transform, g (k), and this will be true if and only if

δ3 (k− k′) =
1

2π

∞̂

−∞

e−i(k−k
′)·x d3x

or equivalently

δ3 (k) =
1

2π

∞̂

−∞

e−ik·x d3x

Using Cartesian coordinates, this breaks into three identical integrals of the form

1

2π

∞̂

−∞

e−ikx dx

which we may use contour integration to evaluate.
Our goal is to show that this integral is a Dirac delta function, which means that for any test function

g (k) (i.e., g (k) is bounded, as differentiable as we like, and vanishes outside a compact region),

g (0) =

∞̂

−∞

g (k)

 1

2π

∞̂

−∞

e−ikx dx

 dk
Replace the infinite limit on the inner integral by R. We will let R→∞ at the end of the calculation. Then,
carrying out the integral of the exponential,

lim
R→∞

∞̂

−∞

g (k)

 1

2π

R̂

−R

e−ikx dx

 dk = lim
R→∞

∞̂

−∞

g (k)

[
− 1

2πik

(
e−ikR − eikR

)]
dk

We can carry this out using contour integration.
In order to use contour integration, we need to enclose the simple pole at k = 0 with a curve. There

are two problems. First, the pole here lies directly on the path of integration. We solve this difficulty with
a trick: displace the pole slightly, then do the integral, then take the limit as the displacement vanishes.
Specifically, let ε be an arbitrary positive real number and write the integral as

∞̂

−∞

g (k)

[
− 1

2πik

(
e−ikR − eikR

)]
dk = lim

ε→0

∞̂

−∞

g (k)

[
1

2πi (k − iε)
(
eikR − e−ikR

)]
dk

= lim
ε→0

∞̂

−∞

g (k) eikR

2πi (k − iε)
dk − lim

ε→0

∞̂

−∞

g (k) e−ikR

2πi (k − iε)
dk

The second problem is to complete a closed curve without changing the value of the integral. We begin by
analytically extending the integration variable k to a complex variable, k = kR + ikI . The first integral is
then

lim
ε→0

∞̂

−∞

g (k) eikR

2πi (k − iε)
dk = lim

ε→0

∞̂

−∞

g (kR + ikI) e
ikRRe−kIR

2πi (kR + ikI − iε)
dk
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and we see that if kI > 0 the integrand is suppressed by e−kIR. If we close the contour by adding a semicircle
of radius R in the upper half plane:

Re	
  k

Im k

-­‐R +R

R

Add	
  a	
  half	
  circle	
  in	
  
the	
  upper	
  half	
  plane.

Integrate	
  
counterclockwise	
  
over	
  the	
  closed	
  path.

At any angle φ on the semicircle the imaginary component kI is given by kI = R sinφ. As the radius
tends to infinity, R→∞, so kIR diverges and the exponential factor e−kIR tends to zero. This means that
the integrand vanishes on this upper semicircle and we can integrate over a closed curve C which runs along
the entire real k axis and returns on the semicircle, without changing the value of the integral,

lim
ε→0

lim
R→∞

∞̂

−∞

g (kR + ikI) e
i(kR+ikI)R

2πi (kR + ikI − iε)
= lim
ε→0

lim
R→∞

˛

C

g (k) eikR

2πi (k − iε)
dk

We may now apply the Residue Theorem. The contour is integrated in the positive sense, i.e., counterclock-
wise, and encloses the simple pole at k = iε , so the residue is taken there

lim
ε→0

˛

C

g (k) eikR

2πi (k − iε)
dk = lim

ε→0
2πiRes

(
g (k) eikR

2πi (k − iε)

)

= lim
ε→0

2πi

(
g (k) eikR

2πi

)∣∣∣∣
k=iε

= lim
ε→0

2πi

(
g (iε) eεR

2πi

)
= lim

ε→0

(
g (iε) e−εR

)
= g (0)

The second integral is handled in the same way,

lim
ε→0

∞̂

−∞

g (k) e−ikR

2πi (k − iε)
dk = lim

ε→0

∞̂

−∞

g (kR + ikI) e
−ikRRe+kIR

2πi (kR + ikI − iε)

13



There is one important difference. The exponential factor is now ekIR, which converges only when kI < 0.
This means that we must close the contour, C ′, in the lower half plane. We now have a clockwise contour,
running along the entire real k axis then circling back along a semicircle in the lower half plane. We pick
up a minus sign because of the direction of the contour, but more importantly, the shifted pole no longer
lies inside the contour. Since the integrand lies in a region containing no poles it is analytic and the second
integral vanishes.

Returning to the original problem, we have

lim
R→∞

∞̂

−∞

g (k)

[
− 1

2πik

(
e−ikR − eikR

)]
dk = lim

R→∞

∞̂

−∞

g (k)
1

2πik
eikRdk − lim

R→∞

∞̂

−∞

g (k)
1

2πik
e−ikRdk

= lim
R→∞

g (0)

= g (0)

and we have established that
1

2π

∞̂

−∞

e−ikx dx = δ (k)

This shows the completeness of Fourier integrals.
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