1 Quantization of the Dirac field

1.1 The Dirac action

We have written the Dirac action as
S = /d4m Y (iy"0, — m)

where 1 = 149, Tt is clear that 7° is required here to make the action real, since, with 7% = 4° and
7t = =4, we have
[ (v 0,0 —mip)]" = (=iduty™ = wtm) %y
= (=idop™y’ — 0T — pim) A%y
= =0Ty +i0;9 T4 " — mypTy Oy
= =00y % — i1y — mipy
= =iy — iy — mipi
= —iawhu?ﬁ - mi/_ﬂ/f

so that, integrating by parts,

5 = / da (—id " — md) v

[ s b0, —my

= /d4:c 1/_)(1'7“8# —m)y
Y0, = ~"0

1.2 Hamiltonian formulation

Now we turn to the quantization of the Dirac field. The action is
S = /d4x Y (iy"0, — m)

The conjugate momentum to ¢ is the spinor field
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We can also write this as -
m™° =iy (1)

Undaunted by the peculiar lack of a time derivative in the momentum, we press on with the Hamiltonian:
H = /dgx iy Opr) — /d?’m/; (iv"0, —m)
= [ (50000 — 10500 — 070 + mi)
= [ (a0 + mi)



= [ id (0w - imy)
= /dgac 70 (—vi&» — im) P
i/d3x 70 (i'yiai — m) ) (2)

Once again, we are struck by the absence of time derivatives in the energy. This is somewhat illusory, since
we may rewrite H using the field equation as

H

i/d3x 70 (i’yiﬁi — m) )
= [dam (o)
= /d3x w0 3)

As we show below, only the first form of the Hamiltionian is suitable for deriving the field equations, since we
used the field equations to write this simplified form. However, eq.(3) is useful for computing the operator
form of the Hamiltonian from solutions.

We can check the field equation using either form of H. Thus, we have

ooy = {HJ/J}
/d%/ (5H($) op(z)  OH(x) 5¢($)>
om(a’) 6y(a’)  Gp(a’) om(x!)

i/d3x' V0 (iv'0; — m) p(a') 6°(x — ')

= i’ (i’yiai — m) P(x) (4)

Multiplying by i7" this becomes
0 = —(in'8 —m)p(x) (5)
(17" 0o —m)p(z) = 0 (6)

Notice that, had we used eq.(3) for the Hamiltonian, we find only an identity:

[ (S0 00te)_ i) 50t
5r(e) S6()  50(a) on(+)

/ﬁ%%%wf»ﬁu—f> (8)
= 601/1(5”) (9)

As already noted, the identity occurs because we have already used the field equation to write the Hamiltonian
in the simplified form.
For the momentum we find the conjugate field equation:

0ot

dom = {H,m} (10)
/ B <§H(x) on(z)  SH(z) 57T(x))




= /d3x’ (= (i (—i(‘?m'yovi — wvom)) §3(x — ') (13)
= 1 (i@ﬂr’yovi + 7r’yom) (14)
i (x)y° (ivi%i + m) (15)

where the arrow to the left over the derivative is standard notation indicating that the derivative acts to the
left on 7. This lets us write the final result more compactly. Replacing 7v° = i7) and inserting v°4° = 1 on
the left, we find:

m) (16)

domy*y° = - (WZ<51
9 m) (17)

0oy’ = (w
and therefore gathering terms
%

i009r” + 9 (i

+m) = 0 (18)
w(ma%a+m) = 0 (19)

thereby arriving at the conjugate Dirac equation. Once again, if we use H as given in eq.(3), we find only
an identity.
Finally, we write the fundamental Poisson brackets,

{ma(x, ), 9P (1)} = 046° (x = x) (20)

Before we can proceed, we need to solve the classical Dirac equation.

1.3 Solution to the free classical Dirac equation

As with the scalar field, we can solve using a Fourier integral. First consider a single value of the momentum.
Then we can write two plane wave solutions with fixed, positive energy 4-momentum p® in the form

Y(x,t) = u(p®)e” P £ o(pt)e (21)

where u(p®) and v(p®) are spinors, p* = (E,p‘)and p, = (E,p;) = (E, —p'). Substituting,

0 = (i’yaaa - m) ¢(X7 t) (22)
= (700 —m) (u(p™)e " 4 u(p)er" ) (23)
= (7P —m)u(p®)e” """ — (v"pa + m) v(p®)eP"" (24)

we find the pair of equations
(Y*pa —m)u(p®) = 0 (25)
(Y*pa +m)v(p®) = 0 (26)

for the u(p®) and v(p®) modes, respectively.
We'll begin by writing out the equation using the Dirac matrices as given in eqs.(?7),

b ()2 0)

and solve first for u(p®) . If we set



where A = 1,2, 3,4, then we get the matrix equation
0 = (Y"pa—m)w(p®) (29)
E—-m o'p; a(pa) )
= i 30
( —0'p; —E—m>(ﬁ(pa) (30)
which gives the set of 2 x 2 equations

(E—m)a(pa) +0'piB(pa) = 0 (31)
—a'pia(pa) — (E +m) B(pa) (32)

o

Since E > 0, the quantity F + m is nonzero so the second equation may be solved for 8(p,) and substituted
into the first:

Blpa) = —<;f;>Mm) (33)
(B =malpn) = o' () alo) (39
(B2~ p> ) alps) = 0 (39)

where we use (Uipi)2 = (—p*)(—p") = p? in the last line. This just gives the usual relativistic expression
relating mass, energy and momentum, with positive energy solution

E=+/p%2+m? (36)

This determines the energy; now we need the eigenstates. These must satisfy

Uipi
o) = - (52 ) ato) (37)
0 = E?—-p>-m? (38)

with no further constraint on «(p,). We are free to choose any convenient independent 2-spinors for a(pq,).

Therefore, let
a1(pa) = ( (1) );az(pa) = ( (1) ) (39)

For a;(pa), (remembering that p; = —p*) we must have
a'pi
) o= — . 4
B1(pa) <E—|—m> a1(pa) (40)
1 p* p® —ip? 1
E+m<p””+zpy -p? )(O) (41)
1 p*
E+m(pz+1py> (42)

while for as(p,) we find

Bara) = () aslpa) (43
- Eim ( p* fzpy p“”_—pipy ) ( (1) ) 44
- E—il—m < pw—_pipy > )



These relations define two independent, normalized, positive energy solutions, which we denote by u,(p*):

1
ayviA E+m 0
me" = | (16)
Z
o
0
A E+m 1
a _ o i 47
[u2(p )} om % ( )
Efm

Exercise: Show that ui(p*) and us(p®) are orthonormal, where the inner product of two spinors is given
by

vy =xThy (48)

with h given by eq.(??). Notice that this inner product is Lorentz invariant, so our spinor basis remains
orthonormal in every frame of reference.

For the second set of mode amplitudes, we solve

0 = (Y"pa+m)v(»”) (49)
_ E+m  o'p; a(pa)
B ( —a'p; —E+m ) ( B(pa) ) (50)
for a(py) first instead: A
alpa) = ~ g7 B(pe) (51)

Once again this leads to E2 — p2 — m? = 0, so that E = \/p2 + m2. There are again two solutions. Since
B(pa) is arbitrary and a(p,) is given by eq.(51), we choose

i) = g Jstatra) = () 52)

leading to two more independent, normalized solutions, v, (p®),

E+m

A m+E | ptip?

ayd o 53
[v1(p?)] 5 ) (53)

o)t = | F 54)

The entire set of four spinors, u,(p%), v, (p®), is a complete, pseudo-orthonormal basis.
Exercise: Check that v1(p®) and ve(p®) satisfy

(a(P®), v6(p™)) = —0ap (55)
(ua(p®),vs(p™)) = 0 (56)



Exercise: Prove the completeness relation,

2
a\1A - « [e" — (e%
> (™)1 [0 (0] 5 = o 0] [20(6*)] ) = 67 (57)
a=1
where A, B =1,...,4 index the components of the basis spinors.

Using this basis, we now have a complete solution to the free Dirac equation. Using ©(F) to enforce
positive energy condition, we have

1 ! 2 2 2 a ay,~tpaz®
bix,t) = W;/d%w —p? —m?) O(B) (an(p*)ws(p)e F (58)
+ (b ()i ) (59)

2
= 3 ﬂ . Uu; e—i(wt—k‘x) T s ei(wt—kx)
;/d ky/ = (bz(k) (k) + d (k)v;(k) ) (60)

where we introduce the conventional normalization for the Fourier amplitudes, a;(k) = /2w b;(k) and

cj k) =4/2w dj»(k) and set w = +vk2 4+ m? as before. Before turning to quantization, let’s consider the

spin.

1.4 The spin of spinors

The basis spinors (uq(p®), ve(p%)) may be thought of as eigenvectors of the operator p,v*. For u,(p®) we
have:

0 = (Y"pa —m)ua(p®)
0 = (Y"Pa +m)va(p®)
and therefore
Y Patia(p®) = mua(p®) (61)
Y Pava(p®) = —mua(p®) (62)

This means we can construct projection operators that single out the u,(p®)- and v, (p®)-type spinors. If we
write

1 1
P, == {1+ —~%, 63
'+ 2(+m7p> (63)

T, 1 4
1+ —9"pa | | 1+ —7"ps
m m
2 « 1 e B
1+ —7"pa + —S7"PaV P8

m m
2 fe 1 2
1+ —9"pa+—p
m m

- P (64)

then

1
4
1
4
1
4



Clearly, we have

Prua(p®) = ua(p®)
Piu,(p*) = 0
2
Py = Zua(pa)ﬂa(pa)
a=1
Similarly, we define
1 1
P ==-(1——7%a
5 (100 )
satisfying
P_uq(p) 0
P_va(p®) = va(p)
2
P = Zva(pa)ﬁa(pa)
a=1
These projections span the spinor space since Py + P_ = 1.

(67)

Next, we seek a pair of operators which distinguishes between u; and us and between v; and vy. Since
u, and v, are pseudo-orthonormal, we can simply write

M]" 5 =w @ — vy ® 0y = [ua]* [7°] BC [UHC ~ [») [V 5o [

In the rest frame of the particle, where the 4-momentum is given by

we have

so that

This combination is easy to construct from the gamma matrices. With

V= -1 Y = 70,1' 0 y V5 = 1

we note that

p* = (mcv O)
(41 (pa) (1707070)
Uz (pa) = (07 17070)
U1 (pa) = (0307170)
vy (p®) = (0,0,0,1)
1
mt = 7,

1

(71)



We see that all of the basis vectors, eq.(70), are eigenvectors of v37s :

7375u1 Uy (74)
Vysuz = —ug (75)
Vs = —u (76)
Vysve = vs (77)
Therefore, we have two projection operators,
1 3 1 «
My = 5 (14+9%5) =5 (L4 na7"%) (78)
1 1
I =3 (1=~%y5) = 5 (L= na7"7s) (79)

where n,, = (0,0,0,1) . Notice that n, is spacelike, with n? = —1, and that p®n,, = 0.
Now, we generalize these new projections by writing

I, = (14 5,7"75) (80)

L = (-0 (81)

[N R

where s,, is any 4-vector. These are still projection operators provided s, s,n"" = 52

have

= —1, since then we

n = i (1+ 5.7"75) (1 + s,79"75) (82)
= i (14 2s,7%v5 + s,y 55,77 75) (83)
= i (L4 287" 75 — spsuy* v ¥575) (84)
= i (1+ 28,775 — susun™”) (85)
- I, (86)

and similarly for II_. In addition, we can make these projections commute with P, and P_ . Consider

1 1 1
m..P.] = |=(1 Pas), = (14 =~2p,
P = |35t g (14 2% ) | (57)
1 . 1, 1 e
= (14595 + —=7"Pa + —suPa"V57Y (88)
4 m m
1 1, . 1 o
_1 1+ E'}/ Pa + SuY V5 + Epasufy Y5 (89)
1 (073 «
= ~am (80P V" VY5 + Pas Y Y 5) (90)
m
1
=~ P (VYT ) s (91)
1 (0
= f%supan“ ¥s (92)

This will vanish if s® and p,, are orthogonal, s“p, = 0. Since, P P_ = 0 and I1,I1_ = 0, the set of projection
operators,
{P+?P—7H+7H—} (93)



is fully commuting and therefore simultaneously diagonalizable. Moreover, they are independent. To see
this, consider the products
(P4, Py IO, PILy, P} (94)

These are mutually orthogonal, i.e., (PyII}) (PrII_) = P P.IILII_ = 0 and so on. Each combination
projects into a 1-dimensional subspace of the spinor space since

1 1 1
tr (PyI1,) = i (1 + 875 + Ev“pa + msupw”vw“) (95)
1
= 1(4+0+0+0) (96)
-1 (97)
and similarly
tr(PyIIL) =tr (P_IIL) =tr (P-II_) =1 (98)

Moreover, they span the space as we see from the completeness relation:

PO +PI_+P I, +PI_ = P (I +1_)+P_ (II, +1I) (99)
= P +P_ (100)
1 (101)

We interpret all of this as follows. The vector s, is the 4-dimensional generalization of the spin vector,
s*, and in the rest frame, u and v are eigenvectors of the z-component of spin. We are free to choose u and
v to be eigenvectors of any 3-vector s, and therefore eigenspinors of the corresponding IT; (s*),I1_(s%). As
a result, we can label the spinors by their 4-momentum and their spin vectors,
uq (p%, sB) (102)
vg (p°, 56) (103)
In the rest frame, with s, = (0,0,0,1) = (0,n%) = n,, we have:
H+ = u (pa7 nﬂ) 31 (paa nB) — V2 (paa nB) U2 (paa nﬁ) (104)
- = wuy (p”‘,nﬁ) o (pa,nﬂ) - (po‘, nﬁ) U1 (p"‘, nﬁ) (105)
and since both sides transform in the same way under Lorentz transformations, we have
I = u (p°, 5’6) a (p®, nﬁ) — vz (p%, sﬂ) s (p®, sB) (106)
. = us (p“, 35) Uo (po‘, Sﬁ) — v (p"‘7 55) U1 (po‘, 5’3) (107)

in any frame of reference and for any choice of spin direction.
Using these expressions for the spin projection operators together with the corresponding expressions,
egs.(65) and (67), for the energy, we can rewrite the outer products of the completeness relation, eq.(57), as

P I, = w (pa, sﬁ) Uy (pa,sﬁ) (108)
1 1, \1
- . (1+ Ly pa) Lt s 9) (109)
PO = w (po‘, Sﬁ) Us (po‘, 86) (110)
_ I Loy YL g
= 5 1+ —7"Pa | 5 (1 —suv"7s) (111)
= u (po‘, 73’8) U1 (p“7 —sﬁ) (112)



PII. = -—u (p“,sﬁ) U1 (p“,sﬂ) (113)

1 1. \1
= ) (1 - EV pa> 5 (1 - 5#7“’}/5) (114)
PIly, = —u (po‘,sB) 1 (po‘,sﬁ) (115)
1 1, \1
= 5 (1 -7 pa> 3 (1 + s,v"75) (116)
a6 ) ) a1

These identities will be useful for calculating scattering amplitudes.

1.5 Quantization of the Dirac field

The fundamental commutator of the spinor field follows from the fundamental Poisson brackets, eq.(20) as

[frA(x, £), 4B (x, t)} — i688% (x — x) (118)

and we can immediately turn to our examination of the commutation relations of the mode amplitudes. The

classical solution is
2
1 m —i(wt—k-x
Y(x,t) = W E /d?’k\/; (ba(k)ua(k)e (wi—kex) (119)
a=1

o+ df (K (K)e! (<14 (120)
W) = 3/2 Z & \f bl ()] (i1~ (121)
+ da(K)v] (K)e (1)) (122)
m(x,t) = (27:)3/2; / d3k\/T(bg(k)ua(k)e—“wt—k'x) (123)
+ df (k) (K)e %) 50 (124)

and we may solve for the amplitudes as usual. Notice that our writing d! (k) instead of d;(k) in the expansion
of 1, while perfectly allowable, has no justification at this point. It is purely a matter of definition. However,
when we look at the commutation relations of the corresponding operators, this part of the field operator Q/AJ
should create an antiparticle, and therefore is most appropriately called dz (k). This is consistent with C P©
symmetry of the field.

Setting t =t = 0, we first invert the Fourier transform:

(k) = (27:)3/2 / b(x,0)e**gBy (125)
- (271r)3;: / / d3xd3k’\/§ (bj(k/)uj(k/)ei(k/_k>'x (126)

+ dT(k’)vj(k'>e—i(k’+k)-x) (127)

= 2 [ 0005 1 ) (128)
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+ dl (K )u; (k)8 (K + k))

22: \/T (bj(k)uj(k) + d}(—k)vj(_k))

J=1

We immediately find

Q;T(k) = %M/ZDT(X’O)eik.de,I

_ Z\/> bl (k)ul (k) + dj(~k) j(fk)>
so that
wk) = ik’

= 7( 23/2/1&T(x,0)h706ik'xd3x

= ZZ[ b} (€)ul (k)hy” + dj(~K)ol (~Kk)hy)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

Now, we would like to use the spinor inner product to isolate b; and d;. However, since @(k) involves
v;(—k) instead of v;(k), we need a modified form of the orthonormality relation. From the form of our

solution for v;(k), we immediately see that

_k?
+ (I:j_—ﬁ-zky
m w

Ul(—k) = o w1+m = —")/01)1 (k)
0

_ K" —ik?
wjm

m+w kT

v2(—k) = 5 “o" = —"va(k)

We also need
5i(—k) = v (<)h = (=1 vi(k)) " h = —v] (1)1"h
as well as two more identities to reach our goal.

Exercise: Show that

and

A A
where u;r-B = [uﬂ hap and v]T.B k) = [UH hag (k).

Continuing, we may write the Fourier transforms as

30 Z\/T (b, 090, 0) — d} (K1, (1)
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(138)

(139)

(140)

(141)

(142)



where we used 7°hy°? = h. As a result,

and similarly

while for the momentum,

and

Noting that

(k) v; (k)

i (k)7 (k)

I
Q“
3|e
&

E IS

iy %b}(k)uj(k)moui (k)

(143)
(144)

(145)

(146)

(147)
(148)

(149)

(150)

(151)
(152)

(153)

(154)

(155)
(156)

(157)

(158)



Tt _ 1 f ik-x 13
B w&m/¢@ﬂk P

we collect terms and replace the mode amplitudes by operators:

bi(k) — \/T(Q;)g/g / s (k) 700 (x, 0)e~ K
dt) = —\/T(l)m / 51 (—K) (x, 0)e &> 3z
_ \/ﬁ (2;)3 / 51 (K) /240 (x, 0)e @z
bi(k) = \/ﬁ wl)?’ 7 / Wl (x,0)h7u; (k) e *dz
di(k) = \/TW / Y (x,0)h; (—k) e~ 5 *d3y
_ \/T(%l)s/g / W1 (x, 0)hy 00 (K)e = * 37

Next we want to find the commutation relations satisfied by these mode amplitudes.

convenient to rewrite the fundamental commutator,
[fa 1), 9P (1) | = 0587 (x = x)
in terms of 1) and ¢!. Replacing 7 4 (x,t) by ihT(x,t)hy° we have
i “w(x,t)}chw [WO]D N :1/}(x’,t)}3} = 688 (x —x)

i quﬁ(x, t)}D, {&(x’,t): B] [70]17 L= 10883 (x — x')

Hw(x,t)}c, :qﬁ(x’,t)f} — [70]3 o0 (x—x')

or simply
|91, b D 1) | =1°6% (x = x)

We are now in a position to compute the commutators of the mode operators

1.5.1 Anticommutation

Now consider the by ('), I;Z(k) and Cij k), cij (k) commutators:

(2r)° //d3 da e X () (1],
w%xm(ww0>)uwFBwuwB

— //dgl'dB lzkx ik’ x’
27r

xtiao () [1°]C 5 107 4 [7°7 5 lus ()7 6% (x — X)

(b (1), B} 10
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(159)

(160)

(161)

(162)

(163)

(164)

For this it is

(165)

(166)



and
N 5t . m 3 .33 1 7’Lk x+ik’-x’ 01D UE !
a(k)vdb(k)} = w (2r //d ad’x [’Y] E a (K)
[ (x',0)hcp, ¥ (X,O)] Upa (k) ['YO}A B
_ 7;1 //ds 3! o~ ik x ik x’ ho]DEvf(k/)
x 1) 58 (= x)mma (k) [
_ ﬂ 3 358/6 ik-x+ik’ x,U v 4 3x—x
- T //d vd FX 4 (1)1 04 (K8 (x — )
- 553 (k= K) pa (k) [1°]" L of (K)
= 5ab63 (k*kl)

This is just the relationship we expect for dq(k) — the mode amplitudes dg, (k) and di (k) act as annihilation
and creation operators, respectively. However, commutator

[Ea(k), ég(k’)} = 5% (k —K)dup

has the wrong sign, with Ba(k) rather than l;l]:(k) acting like the creation operator. However, b, (k) multiplies
e~ iwi=kx) while df (k) multiplies the C' PO conjugate of e~ #“*~k) This is consistent with our identification
of these modes as particles and antiparticles, respectively. As we shall see, this pairing of particle creation
with antiparticle annihilation, and vice versa, is necessary for other reasons as well. The identification we
have chosen is necessary for conservation of charge (How could the action 1 have the potential to either
create an electron or create a positron, since these have opposite electrical charges?). In addition, particle-
antiparticle annihilation would not work correctly — every interaction that created a particle would have to
annihilate a particle. We do not observe this. What went wrong?

We have very little freedom for introducing a sign here. In particular, the bilinear form UT’)/O’UJ is governed
by the Lorentz invariance properties of the spinor products. An overall sign on the field or the momentum
would change the sign of thed, (k) commutator as well as the b, (k) commutator, thereby merely displacing
the problem. Moreover, since Ba(k) and l;l(k) enter the commutator together, a relative sign in the definition
of b, (k) is cancelled by a corresponding sign from I;lt(k) The only place a sign enters in a way that we could
change the outcome is in our use of the antisymmetry of the commutator. If this “bracket” of conjugate
variables were symmetric instead of antisymmetric, the proper relationship would be restored. But recall
that this bracket was imposed by fiat — it is simply a rule that says we should take Poisson brackets to field
commutators to arrive at the quantum field theory from the classical field theory.

Of course, we know that using anticommutators for fermionic fields is the right answer — essentially all
of the rigid strucuture of the world, from the discretely stacked energy levels of nucleons in the nucleus
and electrons in atoms to the endstates of stars as white dwarfs and neutron stars, relies on the Pauli
exclusion principle. This principle states that no two fermions can occupy the same state and it is enforced
mathematically by requiring fermion fields to anticommute. Here, we see the principle emerge from field
theory as a condition of chronicity invariance. Below, we will see that the same conclusion follows from a
consideration of energy.

14



Returning to the previous calculations, we see that nothing goes awry if we replace the canonical quantiza-
tion rule with a sign change to an anticommutator in the case of fermions. The fundamental anticommutation
relations for the Dirac field are then:

{ﬁA(x,ﬂ,zﬁB(x’,t)} =

with the consequence

0883 (x — x')

{8109, b;0)} = 650° (= k)

{dl ), diic)}

656 (k — X)

All other anticommutators vanish.

1.5.2 The Dirac Hamiltonian

fa(x, )PP (1) + OF (3, t)ia(x, 1)

(167)
(168)

Next, consider the Hamiltonian. We wish to express it as a quantum operator in terms of the creation and
annihilation operators. It is now convenient to use the simplified form of the Dirac Hamiltonian, eq.(3):

so that

H= i/d3x 70 (i’yl@i — m) Y = /d?’x T

H= z‘/d?’;v 70 (i’yiai — m) Y = /d3x T

We begin by substituting the field operator expansions,

b(x,1)

(27:)3/2 22: / d%ﬁ (Ei(k)ui(k)e—“wt—k'x)

+ dT (k)’UZ (k)ei(wtfk-x)>

2

o 2 [ (i

i=1

+ di (k)] (1)e 17k

il (x, t)hy°

. 2
_r 3. [T (3 ! 0 —i(wt—k-x)
pEE ;/d k= (di0)0] (1)

+ Bj (k)uzT (k)h~° ei(wt*k'x)>

into the integral for the Hamiltonian,

H = /d?’m :7%301@:

= (2i)3 ii/d?’x/d?’k/d?’k/ m . (Aa(k)vl(k)h70€7i(wt7k'x)
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(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)



x (—ieop b yup (k') (17K %)
+iw' Jz(k/)vb(k/)ei(w’t—k"x)) .

Collecting terms we have

2

S oo
@ 1

a=1 b=

X

k)bb(k/) ( )h,youb(k/)ei(w—w’)t—i(k—k')'x
k)dT (k/) ( )h,yovb(k/)e—i(w—w’)t-s-i(k—k’)x
+ b (k) d] (K )u (k)hyovb(k’)ei(”“’/)t*i(k*k')'x> :

—bf
+da
Now, integrating over d®z, we produce Dirac delta functions:

2 2
A = ZZ/d%/d?’k’j:%

=1b=1

S}

Cia(k)bb(k )’UT (k)h'}/oub(kl)dg (k + k/) e—?iwt
+b (k)bb(k/) (k)h’youb(k’)é?’ (k _ k/)

—da (k) dj (k') o} (1) 7y oy (k)67 (k — K)

— bl (k)dT ()l (K)hy vy (K')63 (k + K') eint) :

X

which immediately integrate to give

thereby arriving at

x : (dgy(K)by(—k)v

by (k)] (k) hy Py (k)
dj (k)vf (k) hy "y (k)

o —

(k) huy (k)e ™2t

- a(k)

16

: <_da(k)i) (K)ol (k)hry° ub(k')eﬂ(ww Yeti(ktk') x

(178)

(179)

(180)

(181)

(182)
(183)



+ 8;(k)czg(—k)ug(k)hvb(k)e%wt) :

_ mZZ/dSk: (61095052 — ()} 1) 60r) :

a=1b=1
2 ~ ~ ~ A,
_ Z/d% w: (bg(k)ba(k) . da(k)dg(k)) : (184)
a=1

This would be a troubling result if it weren’t for the anticommutation relations. If we simply used the

normal ordering procedure, the second term would be negative and the energy indefinite. However,
{d,00), dy() } = di, () () + do (') () = 50" (I — K) (185)

so the normal ordering prescription is taken to mean

: Ay ) (k) = —d} (10, () (186)

We then can write the normal ordered Hamiltonian operator as

2
=3 [t (b0 + 4,094.00) (187)

This convention preserves the anticommutativity, while still eliminating the infinite delta function contribu-
tion to the vacuum energy.

1.6 Symmetries of the Dirac field

We’d now like to find the conserved currents of the Dirac field. There are two kinds — the spacetime
symmetries, including Lorentz transformations and translations, and a U(1) phase symmetry. We’ll discuss
the spacetime symmetries first. We put off our study of the phase symmetry to the next chapter, where it
leads us systematically to Quantum Electrodynamics: QED.

1.6.1 Translations

Under a translation, % — x® 4 a®, the Dirac field changes by

a [e%
V(@) v+ a) = () + 200D (185
OxP
so we identify A of eq.() as

A = (951) a” (189)

The four conserved currents form the stress-energy tensor, given by eq.():

oL

TOB 9By — LnHB 190
500y T 190)
= iy 0% — PP (i 8, — m) ¢ (191)
— iy Y (192)

since the Lagrangian density vanishes when the field equation is satisfied. For the conserved charges, we
therefore find that the conserved energy is the Hamiltonian,

P’ = / d3xpy° 0%y (193)
= i / d®z1py° 01 (194)
= H (195)
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while the conserved momentum is

Pt = —i: / d>xpy°0:)

—b} (k) d} (—Je)u] (k) *e* vy (k)
7 ( ) h70672iwtub(7k)

This is just what we expect.
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