Spin States

January 22, 2013

We have seen that the three spin operators may be written in terms of the Pauli matrices,

$$
\hat{S}_{i}=\frac{\hbar}{2} \hat{\sigma}_{i}
$$

or, equivalently, in bra-ket notation as

$$
\begin{aligned}
\hat{S}_{x} & =\frac{\hbar}{2}(|+\rangle\langle-|+|-\rangle\langle+|) \\
\hat{S}_{y} & =\frac{i \hbar}{2}(|-\rangle\langle+|-|+\rangle\langle-|) \\
\hat{S}_{z} & =\frac{\hbar}{2}(|+\rangle\langle+|-|-\rangle\langle-|)
\end{aligned}
$$

Consider the evolution of a beam of electrons, prepared in the normalized state,

$$
|A\rangle=\alpha|+\rangle+\beta|-\rangle
$$

where $|\alpha|^{2}+|\beta|^{2}=1$, as we measure successive components of spin. If we make a measurement of the z-component of spin,

$$
\begin{aligned}
\hat{S}_{z}|A\rangle & =\left(\frac{\hbar}{2}(|+\rangle\langle+|-|-\rangle\langle-|)\right)(\alpha|+\rangle+\beta|-\rangle) \\
& =\frac{\alpha \hbar}{2}|+\rangle-\frac{\beta \hbar}{2}|-\rangle
\end{aligned}
$$

then the probablility that we measure the value $+\frac{\hbar}{2}$, and therefore find the state to be $|+\rangle$ is

$$
\begin{aligned}
|\langle+\mid A\rangle|^{2} & =\mid\left.\langle+|(\alpha|+\rangle-\beta|-\rangle)\right|^{2} \\
& =|\alpha|^{2}
\end{aligned}
$$

while the probability of measuring $-\frac{\hbar}{2}$ is

$$
|\langle-\mid A\rangle|^{2}=|\beta|^{2}
$$

The expectation value of the spin, essentially the average of many measurements, is

$$
\begin{aligned}
\langle A| \hat{S}_{z}|A\rangle & =\left(\langle+| \alpha^{*}-\langle-| \beta^{*}\right)\left(\frac{\alpha \hbar}{2}|+\rangle-\frac{\beta \hbar}{2}|-\rangle\right) \\
& =\frac{\hbar}{2} \alpha^{*} \alpha-\frac{\hbar}{2} \beta^{*} \beta
\end{aligned}
$$

i.e., $+\frac{\hbar}{2}$ times the probability of measuring spin up, plus $-\frac{\hbar}{2}$ times the probability of measuring spin down.

Suppose we measure a given electron to have z-component of spin $+\frac{\hbar}{2}$. Then the subsequent state must reflect this, and is therefore

$$
\left|A^{\prime}\right\rangle=\alpha|+\rangle
$$

for the resulting spin-up beam. This state no longer has the same normalization, because we have eliminated the spin-down portion of the beam of electrons. If we make another measurement of the z-component of this state, the result is

$$
\begin{aligned}
\hat{S}_{z}\left|A^{\prime}\right\rangle & =\left(\frac{\hbar}{2}(|+\rangle\langle+|-|-\rangle\langle-|)\right) \alpha|+\rangle \\
& =\frac{\hbar}{2} \alpha|+\rangle
\end{aligned}
$$

This corresponds to measuring the value $+\frac{\hbar}{2}$ every time, and we see that $\left|A^{\prime}\right\rangle$ is already an eigenstate of \hat{S}_{z}. The state is unchanged by the subsequent measurement of the same observable.

On the other hand, suppose we measure the x-component of spin for $\left|A^{\prime}\right\rangle$,

$$
\begin{aligned}
\hat{S}_{x}\left|A^{\prime}\right\rangle & =\frac{\hbar}{2}(|+\rangle\langle-|+|-\rangle\langle+|) \alpha|+\rangle \\
& =\frac{\alpha \hbar}{2}|-\rangle
\end{aligned}
$$

The state is altered by the measurement, so it is not an eigenstate of \hat{S}_{x}. To find the probabilities for measuring the x-component up or down, we need to write $\left|A^{\prime}\right\rangle$ in terms of the eigenstates of \hat{S}_{x}. These are not hard to find. They satisfy

$$
\hat{S}_{x}\left|\hat{S}_{x}, \lambda\right\rangle=\lambda\left|\hat{S}_{x}, \lambda\right\rangle
$$

Expanding in terms of the z-basis,

$$
\left|\hat{S}_{x}, \lambda\right\rangle=a|+\rangle-b|-\rangle
$$

the eigenvector equation becomes

$$
\begin{aligned}
\frac{\hbar}{2}(|+\rangle\langle-|+|-\rangle\langle+|)(a|+\rangle-b|-\rangle) & =\lambda(a|+\rangle-b|-\rangle) \\
-\frac{\hbar}{2} b|+\rangle+\frac{\hbar}{2} a|-\rangle & =\lambda(a|+\rangle-b|-\rangle)
\end{aligned}
$$

so that, equating like components,

$$
\begin{aligned}
-\frac{\hbar}{2} b|+\rangle & =a \lambda|+\rangle \\
\frac{\hbar}{2} a|-\rangle & =-\lambda b|-\rangle
\end{aligned}
$$

Solving the second, we have

$$
b=-\frac{\hbar}{2 \lambda} a
$$

and substituting this into the first gives

$$
\begin{aligned}
\frac{\hbar}{2} \frac{\hbar}{2 \lambda} a & =a \lambda \\
\left(\frac{\hbar}{2}\right)^{2} & =\lambda^{2} \\
\lambda & = \pm \frac{\hbar}{2}
\end{aligned}
$$

With these values for λ, we find two states, having $b=\mp a$. Normalizing by requiring $a^{2}+b^{2}=1$, the eigenstates are

$$
\begin{aligned}
\left|\hat{S}_{x}, \frac{\hbar}{2}\right\rangle & =\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle) \\
\left|\hat{S}_{x},-\frac{\hbar}{2}\right\rangle & =\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle)
\end{aligned}
$$

Now return to the state $\left|A^{\prime}\right\rangle=\alpha|+\rangle$. We may write this in terms of the eigenstates of \hat{S}_{x}, as

$$
\begin{aligned}
\left|A^{\prime}\right\rangle & =\alpha|+\rangle \\
& =\frac{\alpha}{\sqrt{2}}\left(\left|\hat{S}_{x},+\frac{\hbar}{2}\right\rangle+\left|\hat{S}_{x},-\frac{\hbar}{2}\right\rangle\right)
\end{aligned}
$$

and now we see that the probability of measuring the x-component of spin to be $+\frac{\hbar}{2}$ is

$$
\begin{aligned}
\left|\left\langle\hat{S}_{x}, \left.+\frac{\hbar}{2} \right\rvert\, A^{\prime}\right\rangle\right|^{2} & \left.=\left|\left\langle\hat{S}_{x},+\frac{\hbar}{2}\right| \alpha\right|+\right\rangle\left.\right|^{2} \\
& =\left|\frac{\alpha}{\sqrt{2}}\right|^{2} \\
& =\frac{1}{2}|\alpha|^{2}
\end{aligned}
$$

The probability of measuring spin down is also $\frac{1}{2}|\alpha|^{2}$, where the factor $|\alpha|^{2}$ reflects the dimunition of the beam by the original z measurement. Therefore, a state which has its z-component of spin in the spin up state has equal probability of finding the x-component of spin in either the spin up or spin down state.

