Solutions to the wave equation

February 26, 2013

1 Constant potential

The stationary state Schrödinger equation is

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi$$

which, for a constant potential V_0 , we may rearrange as

$$\nabla^2 \psi = -\frac{2m}{\hbar^2} \left(E - V_0 \right) \psi$$

Let $\psi = Ae^{\frac{i}{\hbar}\mathbf{p}\cdot\mathbf{x}}$. Then

$$\left(\frac{i}{\hbar}\mathbf{p}\right)^{2}\psi = -\frac{2m}{\hbar^{2}}(E - V_{0})\psi$$
$$\mathbf{p}^{2}\psi = 2m(E - V_{0})\psi$$

so we must have

$$E = \frac{\mathbf{p}^2}{2m} + V_0$$

This gives a stationary state wave function,

$$\psi\left(\mathbf{x}\right) = Ae^{\frac{i}{\hbar}\mathbf{p}\cdot\mathbf{x}}$$

Multiplying by the time dependence gives

$$\psi(\mathbf{x},t) = Ae^{\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{x}-Et)}$$
$$= Ae^{\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{x}-\frac{\mathbf{p}^2}{2m}t+V_0t)}$$

A general solution is an arbitrary linear combination of these stationary states.

1.1 Free space solution

In empty space, $V_0 = 0$, and there are only boundary conditions at infinity. The general solution is therefore a superposition of the plane waves above over all values of \mathbf{p} . The contribution to the superposition may be different for each \mathbf{p} , so we allow the amplitude, A, to depend on momentum

$$\psi\left(\mathbf{x},t\right) = \int d^{3}p A\left(\mathbf{p}\right) e^{\frac{i}{\hbar}\left(\mathbf{p}\cdot\mathbf{x} - \frac{\mathbf{p}^{2}}{2m}t\right)}$$

Suppose $A(\mathbf{p})$ is a Gaussian centered on some momentum \mathbf{p}_0 ,

$$A\left(\mathbf{p}\right) = Ae^{-\frac{\left(\mathbf{p} - \mathbf{p}_0\right)^2}{2\lambda^2}}$$

where A is a single fixed normalization constant. This localizes the particle somewhat in momentum space, and will be shown in the one dimensional case below to do the same in configuration space. Knowing $A(\mathbf{p})$, we can now do the integral.

For simplicity, we restrict our attention to one dimension, so that

$$\psi\left(x,t\right) = A \int dp e^{-\frac{\left(p-p_{0}\right)^{2}}{2\lambda^{2}}} e^{\frac{i}{\hbar}\left(px - \frac{p^{2}}{2m}t\right)}$$

This avoids the angular integrals required by the dot products. Define

$$\alpha^2(t) \equiv \left(1 + \frac{i\lambda^2 t}{m\hbar}\right)$$

Then

$$\psi(x,t) = A \int dp \exp\left(-\frac{(p-p_0)^2}{2\lambda^2} + \frac{i}{\hbar} \left(px - \frac{p^2}{2m}t\right)\right)$$

$$= A \int dp \exp\left(-\frac{1}{2\lambda^2} \left(p^2 - 2pp_0 + p_0^2 - \frac{2i\lambda^2}{\hbar} \left(px - \frac{p^2}{2m}t\right)\right)\right)$$

$$= A \int dp \exp\left(-\frac{1}{2\lambda^2} \left(p^2 \left(1 + \frac{i\lambda^2 t}{m\hbar}\right) - 2p\left(p_0 + \frac{i\lambda^2 x}{\hbar}\right) + p_0^2\right)\right)$$

$$= A \int dp \exp\left(-\frac{1}{2\lambda^2} \left(\alpha^2 p^2 - 2p\left(p_0 + \frac{i\lambda^2 x}{\hbar}\right) + p_0^2\right)\right)$$

$$= A \int dp \exp\left(-\frac{1}{2\lambda^2} \left(\alpha^2 p^2 - 2p\left(p_0 + \frac{i\lambda^2 x}{\hbar}\right) + p_0^2\right)\right)$$

$$= A \exp\left[\frac{1}{2\lambda^2 \alpha^2} \left(p_0 + \frac{i\lambda^2 x}{\hbar}\right)^2 - \frac{p_0^2}{2\lambda^2}\right] \int dp \exp\left(-\frac{1}{2\lambda^2} \left(\alpha p - \frac{1}{\alpha} \left(p_0 + \frac{i\lambda^2 x}{\hbar}\right)\right)^2\right)$$

Now define

$$q \equiv \alpha p - \frac{1}{\alpha} \left(p_0 + \frac{i\lambda^2}{\hbar} x \right)$$

so that

$$dq = \alpha dp$$

so the integral becomes

$$\frac{1}{\alpha} \int dq \exp\left(-\frac{q^2}{2\lambda^2}\right)$$

For a Gaussian integral,

$$I = \int dq \exp(-\mu q^2)$$

$$I^2 = \int dq \int dq' \exp(-\mu q^2 - \mu q'^2)$$

$$I^2 = \int r dr d\varphi \exp(-\mu r^2)$$

$$= 2\pi \frac{1}{2} \int_0^\infty d(r^2) \exp(-\mu r^2)$$

$$= 2\pi \frac{1}{2} \int_0^\infty dy \exp(-\mu y)$$

$$= 2\pi \frac{1}{2} \left(-\frac{1}{\mu} \exp(-\mu \infty) + \frac{1}{\mu} \exp(-\mu 0) \right)$$
$$= \frac{\pi}{\mu}$$
$$I = \sqrt{\frac{\pi}{\mu}}$$

Therefore

$$\frac{1}{\alpha} \int dq \, \exp\left(-\frac{q^2}{2\lambda^2}\right) = \frac{\lambda}{\alpha} \sqrt{2\pi}$$

Returning to the wave function,

$$\psi(x,t) = A\frac{\lambda}{\alpha}\sqrt{2\pi}\exp\left[\frac{1}{2\lambda^2\alpha^2}\left(p_0 + \frac{i\lambda^2x}{\hbar}\right)^2 - \frac{p_0^2}{2\lambda^2}\right]$$

Now separate the real and imaginary parts. Restore $\alpha^2 = 1 + \frac{i\lambda^2 t}{m\hbar} = 1 + i\beta t$ where $\beta \equiv \frac{\lambda^2}{m\hbar}$

$$\begin{split} \psi\left(x,t\right) &= A\frac{\lambda}{\alpha}\sqrt{2\pi}\exp\left[\frac{1}{2\lambda^{2}\alpha^{2}}\left(p_{0} + \frac{i\lambda^{2}x}{\hbar}\right)^{2} - \frac{p_{0}^{2}}{2\lambda^{2}}\right] \\ &= A\frac{\sqrt{2\pi}\lambda}{\sqrt{1+i\beta t}}\exp\left[\frac{1}{2\lambda^{2}\left(1+i\beta t\right)}\left(p_{0} + \frac{i\lambda^{2}x}{\hbar}\right)^{2} - \frac{p_{0}^{2}}{2\lambda^{2}}\right] \\ &= A\frac{\sqrt{2\pi}\lambda}{\sqrt{1+i\beta t}}\exp\left[\frac{\left(1-i\beta t\right)}{2\lambda^{2}\left(1+\beta^{2}t^{2}\right)}\left(p_{0}^{2} + \frac{2i}{\hbar}\lambda^{2}p_{0}x - \frac{\lambda^{4}}{\hbar^{2}}x^{2}\right) - \frac{p_{0}^{2}}{2\lambda^{2}}\right] \\ &= A\frac{\sqrt{2\pi}\lambda}{\sqrt{1+i\beta t}}\exp\left[-\frac{1}{2\lambda^{2}\left(1+\beta^{2}t^{2}\right)}\left(-p_{0}^{2}\left(1-i\beta t\right) - \frac{2i}{\hbar}\lambda^{2}p_{0}x\left(1-i\beta t\right) + \frac{\lambda^{4}}{\hbar^{2}}x^{2}\left(1-i\beta t\right) + p_{0}^{2}\left(1+\beta^{2}t^{2}\right)\right)\right] \end{split}$$

Now reduce the factor in the exponent. The real part is:

$$-p_0^2 - \frac{2}{\hbar}\lambda^2\beta p_0 t x + \frac{\lambda^4}{\hbar^2}x^2 + p_0^2 \left(1 + \beta^2 t^2\right) = \frac{\lambda^4}{\hbar^2}x^2 - \frac{2}{\hbar}\lambda^2\beta p_0 t x + p_0^2\beta^2 t^2$$

$$= \frac{\lambda^4}{\hbar^2} \left(x^2 - 2x\frac{p_0}{m}t + \frac{p_0^2}{m^2}t^2\right)$$

$$= \frac{\lambda^4}{\hbar^2} \left(x - \frac{p_0 t}{m}\right)^2$$

while the imaginary part is

$$\begin{aligned} -p_0^2 \left(-i\beta t \right) - \frac{2i}{\hbar} \lambda^2 p_0 x + \frac{\lambda^4}{\hbar^2} x^2 \left(-i\beta t \right) &= -p_0^2 \left(-i\frac{\lambda^2}{m\hbar} t \right) - \frac{2i}{\hbar} \lambda^2 p_0 x + \frac{\lambda^4}{\hbar^2} x^2 \left(-i\frac{\lambda^2}{m\hbar} t \right) \\ &= i\frac{m^2 \lambda^2}{\hbar} \left(\frac{p_0^2}{m^2} t - 2\frac{p_0}{m} x - \frac{\lambda^4}{m^2 \hbar^2} x^2 t \right) \end{aligned}$$

Then the wave function is

$$\psi(x,t) = A \frac{\sqrt{2\pi}\lambda}{(1+\beta^2 t^2)^{1/4}} e^{i\varphi(x,t)} \exp\left[-\frac{\lambda^2}{2\hbar^2 (1+\beta^2 t^2)} \left(x - \frac{p_0 t}{m}\right)^2\right]$$

where the phase is

$$\varphi\left(x,t\right) = \frac{1}{2}\tan^{-1}\beta t - \frac{1}{2\lambda^{2}\left(1 + \beta^{2}t^{2}\right)}\frac{m^{2}\lambda^{2}}{\hbar}\left(\frac{p_{0}^{2}}{m^{2}}t - 2\frac{p_{0}}{m}x - \frac{\lambda^{4}}{m^{2}\hbar^{2}}x^{2}t\right)$$

At late times, $\beta t \gg 1$, this reduces to

$$\psi\left(\mathbf{x},t\right)\approx\frac{A'e^{-\frac{i\pi}{4}}}{\sqrt{\beta t}}\exp\left[-\frac{\lambda^{2}}{2\hbar^{2}\beta^{2}t^{2}}\left(x-\frac{p_{0}}{m}t\right)^{2}\right]$$

This describes a Gaussian wave packed centered at

$$x = \frac{p_0}{m}t$$

of width

$$\sigma \ = \ \frac{\hbar \beta t}{\lambda}$$

and amplitude decreasing as

$$\sim \frac{1}{\sqrt{\beta}}$$

Notice that the standard deviation of the momentum distribution is $\sigma_p = \lambda$, while that of the spatial distribution is $\sigma_x = \frac{\hbar \sqrt{1 + \left(\frac{\lambda^2 t}{m\hbar}\right)^2}}{\lambda}$, with product

$$\sigma_x \sigma_p = \hbar \sqrt{1 + \beta^2 t^2}$$

which grows from a minimum of \hbar at t=0, in agreement with the uncertainty relation.