Solutions to the wave equation
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1 Constant potential

The stationary state Schrodinger equation is

h2
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which, for a constant potential V{;, we may rearrange as

Vi =~ (B = Vo) v
Let 1) = Ae#P*. Then
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so we must have

E=21v
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This gives a stationary state wave function,
¥ (x) = ActP
Multiplying by the time dependence gives
Y (x,t) = At (Px—Ft)
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A general solution is an arbitrary linear combination of these stationary states.

1.1 Free space solution

In empty space, Vy = 0, and there are only boundary conditions at infinity. The general solution is therefore
a superposition of the plane waves above over all values of p. The contribution to the superposition may be
different for each p, so we allow the amplitude, A, to depend on momentum

¥ (x,t) = / d*pA (p) et (3~ Ent)

Suppose A (p) is a Gaussian centered on some momentum po,
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where A is a single fixed normalization constant. This localizes the particle somewhat in momentum space,
and will be shown in the one dimensional case below to do the same in configuration space. Knowing A (p),
we can now do the integral.

For simplicity, we restrict our attention to one dimension, so that
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This avoids the angular integrals required by the dot products. Define
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Then
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Now define
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so the integral becomes

For a Gaussian integral,
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Therefore

Returning to the wave function,

A 1 iX2z\ 2 P2
Y (z,t) = AE\/27rexp [2)\2@2 <p0 + ) 0]

A - 2)2

. . )2 . 2
Now separate the real and imaginary parts. Restore o? = 1+ Z‘l ht =1+ if0t where g = %
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Now reduce the factor in the exponent. The real part is:
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Then the wave function is
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At late times, 5t > 1, this reduces to

A —%" )\2 2
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This describes a Gaussian wave packed centered at

m
of width
hpat
o = —
A
and amplitude decreasing as
1

Notice that the standard deviation of the momentum distribution is o, = A, while that of the spatial
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distribution is o, = —————, with product

0:0p = hn/1 + (522

which grows from a minimum of 7 at ¢ = 0, in agreement with the uncertainty relation.



