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other words,

E,—>E +A, (5.8.11)%

as a result of perturbation. That is, we have calculated the level shift using

time-dependent perturbation theory. Now expand, as usual,

A=AD+AD 4 ... (5.8.12)

and compare (5.8.10) with (5.8.9); we get to first order

AV=V,. (5.8.13) 8

But this is just what we expect from r-independent perturbation theory.

Before we look at A, recall

1 1

i = Pr =y : .8.14
511_13) sonty id 4 o imd(x) (5 )

Thus
Re(A?) =Pr. Y nl® (5.8.15a).:
G . m#i Ei i Em
Im(AP)=—7 Y |V,.|8(E,—E,). (5.8.15b)
m#i

But the right-hand side of (5.8.15b) is familiar from the golden rule, so we

can identify

Z wi—*m T 27'” Z lleilzs(Ei o Em) Gl %Im[A(IZ)] b (5816y

m#*i m#i

Coming back to c¢,(2), we can write (5.8.10) as

¢,(1) = e~ (/MR 1+ MNIm(A 1] (5.8.17)‘

If we define
3= - e (5.8.18

then
le,|2 = e 1mB)t/h — o=Tu/h, 54

Therefore, T characterizes the rate at which state |i) disappears. .,
It is worth checking the probability conservation up to second ordet

in V for small ¢: |
lcl?+ X le > =Q=Ta/h)+ Y w,_ =1, (5.8.20,

m#i m#i o

where (5.8.16) has been used. Thus the probabilities for finding the initia
state and all other states add up to 1. Put in another way, the depletion ol
state |i) is compensated by the growth of states other than |i). |
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To summarize, the real part of the energy shift is what we usually
associate with the level shift. The imaginary part of the energy shift is,
apart from —2 [see (5.8.18)], the decay width. Note also

% =1, (5.8.21)

'
where 7, is the mean lifetime of state |i) because
|e;|? = et (5.8.22)

To see why T is called width, we look at the Fourier decomposition
ff(E)e—iEt/h dE = e~ {LE-+Re(8))t/h-Tit/2h (5.8.23)

Using the Fourier inversion formula, we get
1
{E—[E,+Re(8,)] )+ T2/4

If(E)|* « (5.8.24)

Therefore, I'; has the usual meaning of full width at half maximum. Notice
that we get the time-energy uncertainty relation from (5.8.21)

AtAE ~ B, (5.8.25)

where we identify the uncertainty in the energy with I', and the mean
lifetime with A¢.

Even though we discussed the subject of energy shift and decay
width using the constant perturbation V obtained as the limit of (5.8.1)
when 1 — 0, we can easily generalize our considerations to the harmonic
perturbation case discussed in Section 5.6. All we must do is to let

En(m) ot Fhind En(m) —E thw (5.8.26)

in (5.8.2), (5.8.8), and (5.8.15), and so on. The quantum-mechanical de-
scription of unstable states we have developed here is originally due to
Wigner and Weisskopf in 1930.

PROBLEMS

1. A simple harmonic oscillator (in one dimension) is subjected to a
perturbation
AH, = bx
where b is a real constant.

a. Calculate the energy shift of the ground state to lowest nonvanishing
order.
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. Establish (5.1.54) for the one-dimensional harmonic oscillator given by

- A slightly anisotropic three-dimensional harmonic oscillator has w,

Approximation Methods

b. Solve this problem exactly and compare with your result obtained in
(a).

[You may assume without proof

e —
<un’|x|un> i m ( Rokd 6n’,n+1+¢’78n’,n—1)'

. In nondegenerate time-independent perturbation theory, what is the

probability of finding in a perturbed energy eigenstate (|k)) the corre-

sponding unperturbed eigenstate (|k@))? Solve this up to terms of

order g2.

. Consider a particle in a two-dimensional potential

v ={0v for( e < 110 <y < ]y
" oo otherwise.

Write the energy eigenfunctions for the ground and first excited states.

We now add a time-independent perturbation of the form
Vz{)\xy fon s deoe L Okt P s |
! 0 otherwise.

Obtain the zeroth-order energy eigenfunctions and the first-order energy

shifts for the ground and first excited states.

. Consider an isotropic harmonic oscillator in two dimensions. The |

Hamiltonian is given by

2 2
Gie P ymdes
H0—2m+2m+ 3 e Vel

a. What are the energies of the three lowest-lying states? Is there any ‘

degeneracy?
b. We now apply a perturbation

V=8muw’xy,

where 8 is a dimensionless real number much smaller than unity
Find the zeroth-order energy eigenket and the corresponding energy

to first order [that is, the unperturbed energy obtained in (a) plus the
first-order energy shift] for each of the three lowest-lying states.
c. Solve the H,+ V problem exactly. Compare with the perturbation
results obtalned in (b). i

[You may use (n’|x|n) =yh/2mw(Yn+14, .+ \/778,,,‘"_1).]

(5.1.50) with an additional perturbation V =iemw?x? Show that all
other matrix elements V,, vanish.

o, = w,. A charged particle moves in the field of this oscillator an ‘
is at the same time exposed to a uniform magnetic field in the x+
direction. Assuming that the Zeeman splitting is comparable to th‘,
splitting produced by the anisotropy, but small compared to #w, cal
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culate to first order the energies of the components of the first excited
state. Discuss various limiting cases. (From Merzbacher, Quantum
Mechanics, 2/e, © 1970. Reprinted by permission of Ellis Horwood,
Ltd.)

7. A one-electron atom whose ground state is nondegenerate is placed in a
uniform electric field in the z-direction. Obtain an approximate expres-
sion for the induced electric dipole moment of the ground state by
considering the expectation value of ez with respect to the perturbed
state vector computed to first order. Show that the same expression can
also be obtained from the energy shift A= — a|E|?/2 of the ground
state computed to second order. (Note: a stands for the polarizability.)
Ignore spin.

8. Evaluate the matrix elements (or expectation values) given below. If
any vanishes, explain why it vanishes using simple symmetry (or other)
arguments.

a.{n =2, L =ikym = Ol wos Bl = 505
b.{n=21=i, m—Opz|n—21—0m 0).
[In (a) and (b), |nlm) stands for the energy eigenket of a nonrela-
tivistic hydrogen atom with spin ignored. ]
c. (L,) for an electron in a central field with j = %, m = %, —q
d. (singlet, m, = 0[S — S"|triplet, m, = 0) for an s-state posi-
tronium.
e. (S-8@) for the ground state of a hydrogen molecule.

9. A p-orbital electron characterized by ]n,l =1, m = £1,0) (ignore

spin) is subjected to a potential

V=A(x2-y?) (A=constant).

a. Obtain the “correct” zeroth-order energy eigenstates that diagonalize
the perturbation. You need not evaluate the energy shifts in detail,
but show that the original threefold degeneracy is now completely
removed.

b. Because V is invariant under time reversal and because there is no
longer any degeneracy, we expect each of the energy eigenstates
obtained in (a) to go into itself (up to a phase factor or sign) under
time reversal. Check this point explicitly.

10. Consider a spinless particle in a two-dimensional infinite square well:

V___{O for0=v=<a0=y=<a,
oo otherwise.

a. What are the energy eigenvalues for the three lowest states? Is there
any degeneracy?
b. We now add a potential

Vi=Axy, 0<x<a,0<y=<a.
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Taking this as a weak perturbation, answer the following:

(i) Is the energy shift due to the perturbation linear or quadratic in
A for each of the three states?

(ii) Obtain expressions for the energy shifts of the three lowest
states accurate to order A. (You need not evaluate integrals that
may appear.)

(iii) Draw an energy diagram with and without the perturbation for
the three energy states. Make sure to specify which unperturbed
state is connected to which perturbed state.

11. The Hamiltonian matrix for a two-state system can be written as

12

gty VLS
N ES

Clearly the energy eigenfunctions for the unperturbed problems (A = 0)

are given by
1 0

a. Solve this problem exactly to find the energy eigenfunctions ¢, and
¥, and the energy eigenvalues E, and E,.

b. Assuming that A|A| < |EQ — EJ)|, solve the same problem using
time-independent perturbation theory up to first order in the energy
eigenfunctions and up to second order in the energy eigenvalues.
Compare with the exact results obtained in (a).

c. Suppose the two unperturbed energies are “almost degenerate,” that

18,
|EQ — EJ| < A|A]

Show that the exact results obtained in (a) closely resemble what you “
would expect by applying degenerate perturbation theory to this =

problem with E? set exactly equal to EJ.

(This is a tricky problem because the degeneracy between the first and ’}
the second state is not removed in first order. See also Gottfried 1966, 4
397, Problem 1.) This problém is from Schiff 1968, 295, Problem 4. A 3
system that has three unperturbed states can be represented by the

perturbed Hamiltonian matrix

Hi 00y ia
D w B b
af sty

where E, > E,. The quantities a and b are to be regarded as perturba- =
tions that are of the same order and are small compared with E, — E;.
Use the second-order nondegenerate perturbation theory to calculate
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14.

15,

16.

1

the perturbed eigenvalues. (Is this procedure correct?) Then diagonalize
the matrix to find the exact eigenvalues. Finally, use the second-order
degenerate perturbation theory. Compare the three results obtained.

. Compute the Stark effect for the 2§, , and 2P, ,, levels of hydrogen for

a field e sufficiently weak so that eea, is small compared to the fine
structure, but take the Lamb shift 8 (6 =1057 MHz) into account (that
is, ignore 2 P; , in this calculation). Show that for eea, < §, the energy
shifts are quadratic in &, whereas for eea, > 8 they are linear in &. (The
radial integral you need is (2s|rl2p)= 3y3a,.) Briefly discuss the
consequences (if any) of time reversal for this problem. This problem is
from Gottfried 1966, Problem 7-3.

Work out the Stark effect to lowest nonvanishing order for the n=3
level of the hydrogen atom. Ignoring the spin-orbit force and relativistic
correction (Lamb shift), obtain not only the energy shifts to lowest
nonvanishing order but also the corresponding zeroth-order eigenket.
Suppose the electron had a very small intrinsic electric dipole moment
analogous to the spin magnetic moment (that is, p,, proportional to o).
Treating the hypothetical — p,,*E interaction as a small perturbation,
discuss qualitatively how the energy levels of the Na atom (Z=11)
would be altered in the absence of any external electromagnetic field.
Are the level shifts first order or second order? State explicitly which
states get mixed with each other. Obtain an expression for the energy
shift of the lowest level that is affected by the perturbation. Assume
throughout that only the valence electron is subjected to the hypotheti-
cal interaction.

Consider a particle bound to a fixed center by a spherically symmetric

potential V(r).
m av
QP =52 )( )

a. Prove
for all s states, ground and excited.

b. Check this relation for the ground state of a three-dimensional
isotropic oscillator, the hydrogen atom, and so on. )
(Note: This relation has actually been found to be useful in guessing
the form of the potential between a quark and an antiquark.)

a. Suppose the Hamiltonian of a rigid rotator in a magnetic field
perpendicular to the axis is of the form (Merzbacher 1970, Problem
17-1)

AL*+ BL,+CL,

if terms quadratic in the field are neglected. Assuming B > C, use
perturbation theory to lowest nonvanishing order to get approximate
energy eigenvalues.
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18.

19.

20.

21
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b. Consider the matrix elements
(n'mim’|(322 = r?)|nimm.),
(n'l'mim}|xy|nlm m )
of a one-electron (for example, alkali) atom. Write the selection rules

for Al, Am,, and Am,. Justify your answer.
Work out the quadratic Zeeman effect for the ground-state hydrogen

atom [(x|0) = (1/y/maj)e "/“] due to the usually neglected e2A2/
2m c’-term in the Hamiltonian taken to first order. Write the energy
shift as

S

and obtain an expression for diamagnetic susceptibility, x. (The follow-
ing definite integral may be useful:

1
fwe_""r”dr = :1+1 )
() a
(Merzbacher 1970, 448, Problem 11.) For the He wave function, use

= Zgi(r + 1)
ap

¥ (xi,x,) = (Zﬁn/ﬂaé)eXP[

with Z ¢ = 2 —%, as obtained by the variational method. The mea-
sured value of the diamagnetic susceptibility is 1.88 X 10~® cm*¥/mole.
Using the Hamiltonian for an atomic electron in a magnetic field,
determine, for a state of zero angular momentum, the energy change
to order B if the system is in a uniform magnetic field represented by
the vector potential A = %B i v
Defining the atomic diamagnetic susceptibility x by E = —%sz,
calculate x for a helium atom in the ground state and compare the
result with the measured value.
Estimate the ground-state energy of a one-dimensional simple harmonic
oscillator using

(x|0) = e~ Al
as a trial function with B to be varied. (You may use
) n!
f e Pxlldx = !
o an+1

Estimate the lowest eigenvalue () of the differential equation
d2
E;+(>\—|x|)xp=0, ¥ — 0 for |x| > o0

using the variational method with

i {c(a—-lxl), for [x| < a

0. e (« to be varied)
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22

23.

24.

20

as a trial function. (Caution: dy/dx is discontinuous at x=0.)
Numerical data that may be useful for this problem are:

PO =1dd0 . S C=1000,. 3 =2080,  ¢¥iw2145

The exact value of the lowest eigenvalue can be shown to be 1.019.
Consider a one-dimensional simple harmonic oscillator whose classical
angular frequency is w,. For 7 <0 it is known to be in the ground state.
For ¢ > 0 there is also a time-dependent potential

V(t) = Fyxcoswt

where F, is constant in both space and time. Obtain an expression for
the expectation value (x) as a function of time using time-dependent
perturbation theory to lowest nonvanishing order. Is this procedure
valid for w=wy? [You may use {(n'|x|n)=\h/2mw,(Yn+186, ,,,
+Vn 8y 1)

A one-dimensional harmonic oscillator is in its ground state for z <O0.
For ¢t > 0 it is subjected to a time-dependent but spatially uniform force
(not potential!) in the x-direction,

F(r) =B emt/e,

a. Using time-dependent perturbation theory to first order, obtain the
probability of finding the oscillator in its first excited state for 7> 0.
Show that the ¢ > oo (7 finite) limit of your expression is indepen-
dent of time. Is this reasonable or surprising?

b. Can we find higher excited states?

[You may use

(|x|ny =R /2mw (Vn 8, ,_  +Vn+18, ,.1)]

Consider a particle bound in a simple harmonic oscillator potential.
Initially (¢ < 0), it is in the ground state. At z =0 a perturbation of the
form

Hi G ) sudbxles (0

is switched on. Using time-dependent perturbation theory, calculate the
probability that, after a sufficiently long time (¢ > 7), the system will
have made a transition to a given excited state. Consider all final states.
The unperturbed Hamiltonian of a two-state system is represented by

B
0 E?

0

There is, in addition, a time-dependent perturbation

i 0 Acos wt
V(t) (}\coswt 0 ) (A real).
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26.

247
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a. At 1 =0 the system is known to be in the first state, represented by

o]

Using time-dependent perturbation theory and assuming that E —
E} is not close to + hw, derive an expression for the probability that
the system be found in the second state represented by

(5)
1

as a function of ¢ (¢ > 0).
b. Why is this procedure not valid when E — E} is close to + Aw?
A one-dimensional simple harmonic oscillator of angular frequency w is
acted upon by a spatially uniform but time-dependent force (not
potential)

F,
F([)z ( OT/w) :
('r 2+ t2)
At 1 = — oo, the oscillator is known to be in the ground state. Using the
time-dependent perturbation theory to first order, calculate the prob-

ability that the oscillator is found in the first excited state at ¢ = + co.
Challenge for experts: F(¢) is so normalized that the impulse

/F(t)dt

imparted to the oscillator is always the same—that is, independent of 7;

== 00 sUT =< o0

yet for 7>>1/w, the probability for excitation is essentially negli-

gible. Is this reasonable? [Matrix element of x: (n’|x|n) = (h /2mw)'/?
(\/;sn',n—l +vn+14, ,..)]

Consider a particle in one dimension moving under the influence of
some time-independent potential. The energy levels and the correspond-
ing eigenfunctions for this problem are assumed to be known. We now

subject the particle to a traveling pulse represented by a time-dependent ;

potential,
V(t)=A8(x—ct).

a. Suppose at ¢ = — oo the particle is known to be in the ground state
whose energy eigenfunction is {(x|i) = u;(x). Obtain the probability
for finding the system in some excited state with energy eigenfunc-

tion (x|f) =u,(x) at ¢ = + o0.
b. Interpret your result in (a) physically by regarding the 8-function
pulse as a superposition of harmonic perturbations; recall

% :
8(x—ct)=217cf do e@lx/91,
00
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28.

29;

30.

Emphasize the role played by energy conservation, which holds even
quantum mechanically as long as the perturbation has been on for a
very long time.
A hydrogen atom in its ground state [(n,/, m)=(1,0,0)] is placed
between the plates of a capacitor. A time-dependent but spatial uniform
electric field (not potential!) is applied as follows:

forit < (.

0
it {Eoe_'/ " fort>0  (E, in the positive z-direction).

Using first-order time-dependent perturbation theory, compute the
probability for the atom to be found at 7> 7 in each of the three 2p
states: (n,l,m)= (2,1, +£1 or 0). Repeat the problem for the 2s state:
(n,1,m)=(2,0,0). You need not attempt to evaluate radial integrals,
but perform all other integrations (with respect to angles and time).
Consider a composite system made up of two spin 3 objects. For 7 <0,
the Hamiltonian does not depend on spin and can be taken to be zero
by suitably adjusting the energy scale. For 7> 0, the Hamiltonian is
given by
44
h2
Suppose the system is in |+ — ) for  <0. Find, as a function of time,
the probability for being found in each of the following states |+ + ),
[+ = |= +), and |- —:
a. By solving the problem exactly.
b. By solving the problem assuming the validity of first-order time-
~ dependent perturbation theory with H as a perturbation switched on
at ¢ = 0. Under what condition does (b) give the correct results?
Consider a two-level system with E, < E,. There is a time-dependent
potential that connects the two levels as follows:

H=( )sl-sz.

V,,=V,, =0, Vi s yerne, Vo =ve '“" (y real).
11 22 12 21

At ¢t =0, it is known that only the lower level is populated—that is,

,(0)=1, ¢,(0)=0.

a. Find |c,(2)|* and |c,(2)|? for ¢ >0 by exactly solving the coupled
differential equation

2
ihe, =3 Vidli)e e, (k=1,2).
n=1
b. Do the same problem using time-dependent perturbation theory to
lowest nonvanishing order. Compare the two approaches for small
values of y. Treat the following two cases separately: (i) w very
different from w,, and (ii) w close to w,;.
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Answer for (a): (Rabi’s formula)

2/52
Y/t e D
Hi* =
|02( )| ,yZ/ﬁZ il ((1) W (.021)2/4 sin [

1 - |ex(0)|*.

12
'Y_z i (0 — ‘021)2] t]
fi 4 i

le:(0)[?

31. Show that the slow-turn-on of perturbation V — Ve™ (see Baym 1969,

257) can generate contribution from the second term in (5.6.36).

32. a. Consider the positronium problem you solved in Chapter 3, Prob-

lem 3. In the presence of a uniform and static magnetic field B
along the z-axis, the Hamiltonian is given by

eB
m,c

H = AS,-S, + ( )(Slz — 1 840)

Solve this problem to obtain the energy levels of all four states using
degenerate time-independent perturbation theory (instead of diagon-
alizing the Hamiltonian matrix). Regard the first and the second
terms in the expression for H as H, and V, respectively. Compare
your results with the exact expressions

A eB singlet m = 0

T _( 4 ){1 il 4(mecﬁA) } for [triplet m=10
ﬁZ

E = TA for triplet m = =*1,

where triplet (singlet) m = 0 stands for the state that becomes a
pure triplet (singlet) with m = 0 as B — 0.

b. We now attempt to cause transitions (via stimulated emission and
absorption) between the two m = 0 states by introducing an oscil-
lating magnetic field of the “‘right” frequency. Should we orient the
magnetic field along the z-axis or along the x- (or y-) axis? Justify
your choice. (The original static field is assumed to be along the z-
axis throughout.)

c. Calculate the eigenvectors to first order.

32'. Repeat Problem 32 above, but with the atomic hydrogen Hamiltonian

eB
m,c

H=A51'Sz+ ( )S]'B

where in the hyperfine term AS,-S,, S, is the electron spin, while

S, is the proton spin. [Note the problem here has less symmetry than
that of the positronium case].

33. Consider the spontaneous emission of a photon by an excited atom.
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34.

59

36.

37

The process is known to be an E1 transition. Suppose the magnetic
quantum number of the atom decreases by one unit. What is the
angular distribution of the emitted photon? Also discuss the polar-
ization of the photon with attention to angular-momentum conserva-
tion for the whole (atom plus photon) system.

Consider an atom made up of an electron and a singly charged (Z=1)
triton (*H). Initially the system is in its ground state (n=1, [=0).
Suppose the nuclear charge suddenly increases by one unit (realistically
by emitting an electron and an antineutrino). This means that the triton
nucleus turns into a helium ( Z = 2) nucleus of mass 3 (*He). Obtain the
probability for the system to be found in the ground state of the
resulting helium ion. The hydrogenic wave function is given by

i
geo(X)=— | — el
\Pn et O( ) ‘/77 (aO)

The ground state of a hydrogen atom (n=1,/=0) is subjected to a
time-dependent potential as follows:

V(x,t) =Vyos(kz — wt).

Using time-dependent perturbation theory, obtain an expression for the
transition rate at which the electron is emitted with momentum p. Show,
in particular, how you may compute the angular distribution of the
ejected electron (in terms of § and ¢ defined with respect to the z-axis).
Discuss briefly the similarities and the differences between this problem
and the (more realistic) photoelectric effect. (Note: For the initial wave
function see Problem 34. If you have a normalization problem, the final
wave function may be taken to be

1 ipex
Il‘/(")z (La/z)e i

with L very large, but you should be able to show that the observable
effects are independent of L.)

Derive an expression for the density of free particle states in two
dimensions, that is, the two-dimensional analog of

ol 3 mk Lp 1 p’
p(E)dEdQ—(E) (?)dEdQ, (k_h,E—zm :

Your answer should be written as a function of k (or E) times dEd¢,
where ¢ is the polar angle that characterizes the momentum direction in
two dimensions.

A particle of mass m constrained to move in one dimension is confined
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within 0 < x < L by an infinite-wall potential

Feoo forwad) s
V=0 for0<x<lL.

?bttam an expression fgr the density of states (that is, the number of
? ghzzkp;(r)ulin:lti Isgs;ggn!l;lterval) for high energies as a function of E.

38. Linearly polarized light of angular frequency « is incident on a one-
electron “atom” whose wave function can be approximated by the
ground state of a three-dimensional isotropic harmonic oscillator of
a'ngullar frequency w,. Show that the differential cross section for the
ejection of a photoelectron is given by

do 4“h2kf3 wh h 2
adidil sl i
dﬂ mzwwo mwo exp{ mwo [kf +( c ) }}

. 2hk
X sin’d cos’p exp[ ( 7 )cos 0J
muwg,c

0

grf)vidgd the1 ejected electron of momentum hk, can be regarded as
eing in a plane- i i i
gt 510.}:)) wave state. (The coordinate system used is shown in
39. Find the probability |¢(p)|%d>p’ of the particular momentum p’ for the
g.rom}dl-:statt.a hydrogen atom. (This is a nice exercise in three-dimen-
sional Fourier transforms. To perform the angular int i
the z-axis in the direction of p.) ; e

40. Obtain an expression for 7(2 p — 1s) for the hydrogen atom. Verify that

itis equal to 1.6 X109 s,

CHAPTER 6

Identical Particles

This short chapter is devoted to a discussion of some striking quantum-
mechanical effects arising from the identity of particles. We also consider
some applications to atoms more complex than hydrogen or hydrogenlike

atoms.

6.1. PERMUTATION SYMMETRY

In classical physics it is possible to keep track of individual particles even
though they may look alike. When we have particle 1 and particle 2
considered as a system, we can, in principle, follow the trajectory of 1 and
that of 2 separately at each instant of time. For bookkeeping purposes, you
may color one of them blue and the other red and then examine how the red
particle moves and how the blue particle moves as time passes.

In quantum mechanics, however, identical particles are truly indis-
tinguishable. This is because we cannot specify more than a complete set of
commuting observables for each of the particles; in particular, we cannot
label the particle by coloring it blue. Nor can we follow the trajectory
because that would entail a position measurement at each instant of time,
which necessarily disturbs the system; in particular the two situations (a)
and (b) shown in Figure 6.1 cannot be distinguished—not even in principle.

For simplicity consider just two particles. Suppose one of the par-
ticles, which we call particle 1, is characterized by |k’), where k’ is a

aa



