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This should not be confused with our earlier remarks concerning the
invariance of the Maxwell equations (4.4.2) and the Lorentz force equation
under 7 — — ¢ and (4.4.3). There we were to apply time reversal to the whole
world, for example, even to the currents in the wire that produces the B
field! ]

PROBLEMS

1. Calculate the three lowest energy levels, together with their degeneracies,
for the following systems (assume equal mass distinguishable particles):
a. Three noninteracting spin 5 particles in a box of length L.
b. Four noninteracting spin 3 particles in a box of length L.

2. Let g4 denote the translation operator (displacement vector d); 2(h, ¢),
the rotation operator (h and ¢ are the axis and angle of rotation, |
respectively); and = the parity operator. Which, if any, of the following
pairs commute? Why? |
a. 7, and J,; (dand d’ in different directions). '
b. 2(h, ¢) and 2(iv, ¢’) (i and ¥ in different directions).
c.l'Fand o,
d. 2, ¢) and 7.

3. A quantum-mechanical state ¥ is known to be a simultaneous eigen-
state of two Hermitian operators 4 and B which anticommute, '

AB + BA=0.

What can you say about the eigenvalues of 4 and B for state ¥?
Illustrate your point using the parity operator (which can be chosen to
satisfy 7 = 71 =#") and the momentum operator. 1
4. A spin 1 particle is bound to a fixed center by a spherically symmetrical
potential. \

a. Write down the spin angular function %/ 7!/>m=1/2,
b. Express (6°x) #/73'/>™=1/2 in terms of some other ¥/ ™.
c. Show that your result in (b) is understandable in view of the
transformation properties of the operator S<x under rotations an
under space inversion (parity). ]
5. Because of weak (neutral-current) interactions there is a parity-violating
potential between the atomic electron and the nucleus as follows:

V=A[8?(x)S+p+S-ps?(x)],

where S and p are the spin and momentum operators of the electron,
and the nucleus is assumed to be situated at the origin. As a result, the
ground state of an alkali atom, usually characterized by |n, [, j, m).
actually contains very tiny contributions from other eigenstates a§
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follows:

In, 8, j, m) = |n, 1, j, m)y + b C,,r,']-rmr|n’, Womy
nljm’

On the basis of symmetry considerations alone, what can you say about
(n',l',j', m'"), which give rise to nonvanishing contributions? Suppose
the radial wave functions and the energy levels are all known. Indicate
how you may calculate C,;;,,. Do we get further restrictions on
(n' L g.m)?

Consider a symmetric rectangular double-well potential:

© for |x| > a + b;
V =40 fora<|x|<a + b;
Vo> 0. for ke a

Assuming that V,, is very high compared to the quantized energies of
lgw-lymg states, obtain an approximate expression for the energy split-
ting between the two lowest-lying states.

. a. Let yi(x, 7) be the wave function of a spinless particle corresponding

to a plane wave in three dimensions. Show that y*(x, —1) is the
wave function for the plane wave with the momentum direction
reversed.

b. Let x(fi) be the two-component eigenspinor of o - i with eigenvalue
+1. Using the explicit form of x(i) (in terms of the polar and
azimuthal angles B and vy that characterize f) verify that —io,x*(f)
is the two-component eigenspinor with the spin direction reversed.

a. Assuming that the Hamiltonian is invariant under time reversal,
prove that the wave function for a spinless nondegenerate system
at any given instant of time can always be chosen to be real.

b. The wave function for a plane-wave state at ¢ = 0 is given by a
complex function e®**. Why does this not violate time-reversal
invariance?

. Let ¢(p") be the momentum-space wave function for state |a), that is,

é(p’) = (p’|a). Is the momentum-space wave function for the time-

reversed state O |a) given by ¢(p’), o(—p’), o*(p’), or b*(—p’)? Jus-
tify your answer.

a. What is the time-reversed state corresponding to %(R)|j, m)?
b. Using the properties of time reversal and rotations, prove

BarlR) = (=17 T80, (R),

T m

c. Prove ©|j, m) = i2"‘|j, —m).

- Suppose a spinless particle is bound to a fixed center by a potential

V(x) so asymmetrical that no energy level is degenerate. Using time-
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12. The Hamiltonian for a spin 1 system is given by
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reversal invariance prove
L) =0

for any energy eigenstate. (This is known as quenching of orbital an
gular momentum.) If the wave function of such a nondegenerate el
genstate is expanded as

; 2 Flm(r)Y;n(e’ ¢),

what kind of phase restrictions do we obtain on F,,(r)?

H=AS2+B(S2-S?).

Solve this problem exactly to find the normalized energy eigenstates ant
eigenvalues. (A spin-dependent Hamiltonian of this kind actually ap
pears in crystal physics.) Is this Hamiltonian invariant under tim
reversal? How do the normalized eigenstates you obtained transfors
under time reversal?

C'HAPTER 5

- Approximation Methods

Few problems in quantum mechanics—with either time-independent or
time-dependent Hamiltonians—can be solved exactly. Inevitably we are

- forced to resort to some form of approximation methods. One may argue
~ that with the advent of high-speed computers it is always possible to obtain

the desired solution numerically to the requisite degree of accuracy; never-
theless, it remains important to understand the basic physics of the

. approximate solutions even before we embark on ambitious computer
calculations. This chapter is devoted to a fairly systematic discussion of

approximate solutions to bound-state problems.

5.1. TIME-INDEPENDENT PERTURBATION THEORY:
NONDEGENERATE CASE

Statement of the Problem

The approximation method we consider here is time-independent
perturbation theory—sometimes known as the Rayleigh-Schrodinger per-
turbation theory. We consider a time-independent Hamiltonian H such that
it can be split into two parts, namely,

H=H,+V, (5.1.1)
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