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But the right-hand side of (3.10.44) is the same as («’, jmlJ+V|a, Jjm)
/{a, jmJ?|a, jm) by (3.10.42) and (3.10.43). Moreover, the left-hand side
of (3.10.43) is just j(j+1)A2. So ]
(¢, jmJ-Va, jm)

h%j(j+1) ‘
which proves the projection theorem. o4

(o, jm'\V, |a, jm) = (ym’|J,|jmy, (3.10.45)

We will give applications of the theorem in subsequent sections.

PROBLEMS
1. Find the eigenvalues and eigenvectors of o, =(0 i (l)) Suppose an
electron is in the spin state

probability of the result 4 /2?
2. Consider the 2 X2 matrix defined by

a,tic-a
. ’
a,—ioc-a

(;) If s, is measured, what is the

U=

where a,, is a real number and a is a three-dimensional vector with real
components. '

a. Prove that U is unitary and unimodular.
b. In general, a 2 X2 unitary unimodular matrix represents a rotation in ;‘
three dimensions. Find the axis and angle of rotation appropriate for

U in terms of a,, a,, a,, and a,.
3. The spin-dependent Hamiltonian of an electron-positron system in the
presence of a uniform magnetic field in the z-direction can be written as

W80 )geh (ili)(s(ev_S(e*)).
me e i

Suppose the spin function of the system is given by x{¢ 'x¢". i
a. Is this an eigenfunction of H in the limit 4 — 0, eB/mc # 0? If it is,

what is the energy eigenvalue? If it is not, what is the expectation
value of H?

b. Same problem when eB/mc — 0, A+ 0.
4. Consider a spin 1 particle. Evaluate the matrix elements of
S.(S,+h)(S,— k) and S.(S +h)S, —-h).
5. Let the Hamiltonian of a rigid body be

K2 KZ KZ
3 Wl A L
Il 12 ]3

il
S

where K is the angular momentum in the body frame. From this
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. a. Consider a pure ensemble of identically prepared spin 3
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expression obtain the Heisenberg equation of motion for K and then
find Euler’s equation of motion in the correspondence limit.

Let U = e'“%/%2Fe!G2 where (a, B, y) are the Eulerian angles. In order
that U represent a rotation (a, 8,y), what are the commutation rules
satisfied by the G,? Relate G to the angular momentum operators.

. What is the meaning of the following equation:

UdU=3) R, A,

where the three components of A are matrices? From this equation show
that matrix elements (m|A4,|n) transform like vectors.

. Consider a sequence of Euler rotations represented by

24?(a,B,y)= exp( - 1'20301 ) exp( i 1'202,8 ) exp( a1 z'2o3y )

¢ T cosg- el i sing

e nay sing ei("‘”)/zcosg

Because of the group properties of rotations, we expect that this
sequence of operations is equivalent to a single rotation about some
axis by an angle 6. Find 6.

L systems.
Suppose the expectation values (S, ) and (S,) and the sign of (S, )
are known. Show how we may determine the state vector. Why is it
unnecessary to know the magnitude of (S, )?

b. Consider a mixed ensemble of spin 1 systems. Suppose the ensemble
averages [S.], [S,], and [S,] are all known. Show how we may
construct the 2 X2 density matrix that characterizes the ensemble.

a. Prove that the time evolution of the density operator p (in the
Schrodinger picture) is given by

(1) = (t,10)p(1o) (1, 1,).

b. Suppose we have a pure ensemble at ¢ =0. Prove that it cannot
evolve into a mixed ensemble as long as the time evolution is
governed by the Schrodinger equation.

Consider an ensemble of spin 1 systems. The density matrix is now a

3 X3 matrix. How many independent (real) parameters are needed to

characterize the density matrix? What must we know in addition to [S, ],

[S,], and [S,] to characterize the ensemble completely?

An angular-momentum eigenstate |j, m=m,, = j) is rotated by an

infinitesimal angle ¢ about the y-axis. Without using the explicit form of

the d{/), function, obtain an expression for the probability for the new

rotated state to be found in the original state up to terms of order &2
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Show that the 3X 3 matrices G, (i =1,2,3) whose elements are given by
(Gi)jk S lhe

ijk»

where j and k are the row and column indices, satisfy the angular

momentum commutation relations. What is the physical (or geometric)
significance of the transformation matrix that connects G, to the more 3
usual 33 representations of the angular-momentum operator J, with

J; taken to be diagonal? Relate your result to
Vo V+hde XV

under infinitesimal rotations. (Note: This problem may be helpful in

understanding the photon spin.)

a. Let J be angular momentum. It may stand for orbital L, spin S, or
Jiorar-) Using the fact that J,, J,, J,(J, = J, +iJ,) satisfy the usual

angular-momentum commutation relations, prove

f ARl L B R

7

b. Using (a) (or otherwise), derive the “famous” expression for the o

coefficient ¢_ that appears in
J—"ij W

The wave function of a particle subjected to a spherically symmetrical

potential V(r) is given by
Y(x)=(x+y+32)f(r).

a. Is ¢ an eigenfunction of L?? If so, what is the /-value? If not, what

are the possible values of / we may obtain when L? is measured?

b. What are the probabilities for the particle to be found in various m,

states?

c. Suppose it is known somehow that {/(x) is an energy eigenfunction

with eigenvalue E. Indicate how we may find V(r).

A particle in a spherically symmetrical potential is known to be in an
eigenstate of L? and L, with eigenvalues A%/(/+1) and mh, respec- "‘

tively. Prove that the expectation values between |/m) states satisfy

(1 +1)r? = m?h?]
>— J .

(L) =(L,)=0,

Interpret this result semiclassically.

(EE)= (L5

Suppose a half-integer /-value, say j, were allowed for orbital angular

momentum. From
L.Y ,.,,(0,¢)=0,

we may deduce, as usual,

Yi,2.1,2(0,¢) x e®/?/siné .
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Now try to construct Y, , _,,(0,¢); by (a) applying L_ to
Yy 51,2(0,¢); and (b) using L_Y, , _; ,(8,$)=0. Show that the two
procedures lead to contradictory results. (This gives an argument against
half-integer /-values for orbital angular momentum.)

Consider an orbital angular-momentum eigenstate |/ =2, m = 0). Sup-
pose this state is rotated by an angle B8 about the y-axis. Find the
probability for the new state to be found in m =0, +1, and +2. (The
spherical harmonics for /=0, 1, and 2 given in Appendix A may be
useful.)

What is the physical significance of the operators

K,=a'al and K_=a,a_

in Schwinger’s scheme for angular momentum? Give the nonvanishing
matrix elements of K .

We are to add angular momenta j, =1 and j, =1 to form j=2, 1, and
0 states. Using either the ladder operator method or the recursion
relation, express all (nine) { j, m} eigenkets in terms of |j, j,; m;m,).
Write your answer as

il 1
il = O e (e
where + and 0 stand for m, , =1,0, respectively.

a. Evaluate
J

X 1dd(B))*m

mimie

for any j (integer or half-integer); then check your answer for j =1.
b. Prove, for any j,
i : 3 . !
Y. mAdD.(B)1* = 5/(j+1)sinB +m™ 3 (3cos’8 ~1).

m=—j

[Hint: This can be proved in many ways. You may, for instance,
examine the rotational properties of J*> using the spherical (irreduci-
ble) tensor language.]

a. Consider a system with j =1. Explicitly write

(J=1,mlLlj=1,m)
in 3 X 3 matrix form.
b. Show that for j =1 only, it is legitimate to replace e~ *»#/% by

l—i(%)sinﬁ—(%‘v—)z(l—cosﬂ).
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c. Using (b), prove

dU=D(g) =

(%)(1+cos,8) —(%)sm/} (

(%)sinﬂ cos B

(%)(1—cosﬁ)

)(1-—005,8)

N =

(o

(%)sinﬁ (%)(1+cos,8)

Express the matrix element {a,B,y,|J;*|a; B,y,) in terms of a series in

D), (aBy) = (aBy|jmn).

Consider a system made up of two spin 5 particles. Observer A

specializes in measuring the spin components of one of the particles

(51, 51, and so on), while observer B measures the spin components of

the other particle. Suppose the system is known to be in a spin-singlet

state, that is, S, = 0.

a. What is the probability for observer A to obtain s,, =4 /2 when
observer B makes no measurement? Same problem for s, = A /2.

b. Observer B determines the spin of particle 2 to be in the s,, = A /2
state with certainty. What can we then conclude about the outcome
of observer A’s measurement if (i) A measures s,, and (il)) 4
measures s, ,? Justify your answer.

Consider a spherical tensor of rank 1 (that is, a vector)

V.4
r=F>2"2  yO=y,.

V2

Using the expression for =V given in Problem 22, evaluate

Ld BV

7

and show that your results are just what you expect from the transfor-
mation properties of V, . under rotations about the y-axis.
a. Construct a spherical tensor of rank 1 out of two different vectors
=(U,,U,,U,) and V= (¥, V.). Explicitly write T{] ; in terms
of L omdV,
b. Construct a spherical tensor of rank 2 out of two different vectors U
and V. Write down explicitly 7?) |, in terms of U, . and V, , ..
Consider a spinless particle bound to a fixed center by a central force
potential.

B y’
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28.

a. Relate, as much as possible, the matrix elements

(n'l', m'|F —1—(x tiy)|n,l,m) and (n’,l’,m’|z|n, I, m)
V2

using only the Wigner-Eckart theorem. Make sure to state under what
conditions the matrix elements are nonvanishing.
b. Do the same problem using wave functions ¢ (x)= R, (7)Y, (6, ¢).
a. Write xy, xz, and (x*> — y?) as components of a spherical (irreduci-

ble) tensor of rank 2.
b. The expectation value

QEe<a’j’m=j|(322_r2)|a7j’m=j>
is known as the quadrupole moment. Evaluate
eSa, j,m'\(x* = y?)la, j,m = j),

(where m/= 17— j =2

Clebsch-Gordan coefficients.
3

) in terms of Q@ and appropriate

. A spin 3 nucleus situated at the origin is subjected to an external

inhomogeneous electric field. The basic electric quadrupole interaction

may by taken to be
SXZ a ¢ S2 ?_zi) Sz2 .
622 0

0

e T

eQ (8 ¢
2s(s —1)h? ay?

where ¢ is the electrostatic potential satlsfymg Laplace’s equation and
the coordinate axes are so chosen that

S O o N g B O Wi
dxdy 0_ dydz 0_ nauis

Show that the interaction energy can be written as
A(382-S?)+B(S2+82),

and express 4 and B in terms of (9%/dx?), and so on. Determine the
energy eigenkets (in terms of |m), where m= + 3, + 1) and the corre-

sponding energy eigenvalues. Is there any degeneracy?




