Problems

243

But the right-hand side of (3.10.44) is the same as $\langle \alpha', jm|\mathbf{J}\cdot\mathbf{V}|\alpha, jm\rangle$ / $\langle \alpha, jm|\mathbf{J}^2|\alpha, jm\rangle$ by (3.10.42) and (3.10.43). Moreover, the left-hand side of (3.10.43) is just $j(j+1)\hbar^2$. So

$$\left\langle \alpha',\,jm'|V_q|\alpha,\,jm\right\rangle = \frac{\left\langle \alpha',\,jm|\mathbf{J\cdot V}|\alpha,\,jm\right\rangle}{\hbar^2 j(\,j+1)} \left\langle \,jm'|J_q|jm\right\rangle,\,\, (3.10.45)$$

which proves the projection theorem.

We will give applications of the theorem in subsequent sections.

PROBLEMS

- 1. Find the eigenvalues and eigenvectors of $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. Suppose an electron is in the spin state $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. If s_y is measured, what is the probability of the result $\hbar/2$?
- 2. Consider the 2×2 matrix defined by

$$U = \frac{a_0 + i\mathbf{\sigma} \cdot \mathbf{a}}{a_0 - i\mathbf{\sigma} \cdot \mathbf{a}},$$

where a_0 is a real number and **a** is a three-dimensional vector with real components.

- a. Prove that U is unitary and unimodular.
- b. In general, a 2×2 unitary unimodular matrix represents a rotation in three dimensions. Find the axis and angle of rotation appropriate for U in terms of a_0 , a_1 , a_2 , and a_3 .
- 3. The spin-dependent Hamiltonian of an electron-positron system in the presence of a uniform magnetic field in the z-direction can be written as

$$H = A \mathbf{S}^{(e^{-})} \cdot \mathbf{S}^{(e^{+})} + \left(\frac{eB}{mc}\right) \left(S_{z}^{(e^{-})} - S_{z}^{(e^{+})}\right).$$

Suppose the spin function of the system is given by $\chi_{+}^{(e^{-})}\chi_{-}^{(e^{+})}$.

- a. Is this an eigenfunction of H in the limit $A \rightarrow 0$, $eB/mc \neq 0$? If it is, what is the energy eigenvalue? If it is not, what is the expectation value of H?
- b. Same problem when $eB/mc \rightarrow 0$, $A \neq 0$.
- 4. Consider a spin 1 particle. Evaluate the matrix elements of

$$S_z(S_z + \hbar)(S_z - \hbar)$$
 and $S_x(S_x + \hbar)(S_x - \hbar)$.

5. Let the Hamiltonian of a rigid body be

$$H = \frac{1}{2} \left(\frac{K_1^2}{I_1} + \frac{K_2^2}{I_2} + \frac{K_3^2}{I_3} \right),$$

where K is the angular momentum in the body frame. From this

expression obtain the Heisenberg equation of motion for **K** and then find Euler's equation of motion in the correspondence limit.

- 6. Let $U = e^{iG_3\alpha}e^{iG_2\beta}e^{iG_3\gamma}$, where (α, β, γ) are the Eulerian angles. In order that U represent a rotation (α, β, γ) , what are the commutation rules satisfied by the G_k ? Relate G to the angular momentum operators.
- 7. What is the meaning of the following equation:

$$U^{-1}A_kU = \sum R_{kl}A_l,$$

where the three components of A are matrices? From this equation show that matrix elements $\langle m|A_k|n\rangle$ transform like vectors.

8. Consider a sequence of Euler rotations represented by

$$\mathcal{D}^{(1/2)}(\alpha,\beta,\gamma) = \exp\left(\frac{-i\sigma_3\alpha}{2}\right) \exp\left(\frac{-i\sigma_2\beta}{2}\right) \exp\left(\frac{-i\sigma_3\gamma}{2}\right)$$
$$= \begin{pmatrix} e^{-i(\alpha+\gamma)/2}\cos\frac{\beta}{2} & -e^{-i(\alpha-\gamma)/2}\sin\frac{\beta}{2} \\ e^{i(\alpha-\gamma)/2}\sin\frac{\beta}{2} & e^{i(\alpha+\gamma)/2}\cos\frac{\beta}{2} \end{pmatrix}.$$

Because of the group properties of rotations, we expect that this sequence of operations is equivalent to a *single* rotation about some axis by an angle θ . Find θ .

- 9. a. Consider a pure ensemble of identically prepared spin $\frac{1}{2}$ systems. Suppose the expectation values $\langle S_x \rangle$ and $\langle S_z \rangle$ and the sign of $\langle S_y \rangle$ are known. Show how we may determine the state vector. Why is it unnecessary to know the magnitude of $\langle S_y \rangle$?
 - b. Consider a mixed ensemble of spin $\frac{1}{2}$ systems. Suppose the ensemble averages $[S_x]$, $[S_y]$, and $[S_z]$ are all known. Show how we may construct the 2×2 density matrix that characterizes the ensemble.
- 10. a. Prove that the time evolution of the density operator ρ (in the Schrödinger picture) is given by

$$\rho(t) = \mathcal{U}(t, t_0) \rho(t_0) \mathcal{U}^{\dagger}(t, t_0).$$

- b. Suppose we have a pure ensemble at t = 0. Prove that it cannot evolve into a mixed ensemble as long as the time evolution is governed by the Schrödinger equation.
- 11. Consider an ensemble of spin 1 systems. The density matrix is now a 3×3 matrix. How many independent (real) parameters are needed to characterize the density matrix? What must we know in addition to $[S_x]$, $[S_y]$, and $[S_z]$ to characterize the ensemble completely?
- 12. An angular-momentum eigenstate $|j, m = m_{\text{max}} = j\rangle$ is rotated by an infinitesimal angle ε about the y-axis. Without using the explicit form of the $d_{m'm}^{(j)}$ function, obtain an expression for the probability for the new rotated state to be found in the original state up to terms of order ε^2 .

Problems

13. Show that the 3×3 matrices G_i (i = 1, 2, 3) whose elements are given by

$$(G_i)_{jk} = -i\hbar \varepsilon_{ijk},$$

where j and k are the row and column indices, satisfy the angular momentum commutation relations. What is the physical (or geometric) significance of the transformation matrix that connects G_i to the more usual 3×3 representations of the angular-momentum operator J_i with J_3 taken to be diagonal? Relate your result to

$$V \rightarrow V + \hat{\mathbf{n}} \delta \phi \times V$$

under infinitesimal rotations. (*Note*: This problem may be helpful in understanding the photon spin.)

14. a. Let **J** be angular momentum. It may stand for orbital **L**, spin **S**, or J_{total} .) Using the fact that $J_x, J_y, J_z (J_{\pm} \equiv J_x \pm iJ_y)$ satisfy the usual angular-momentum commutation relations, prove

$$\mathbf{J}^{2} = J_{z}^{2} + J_{+}J_{-} - \hbar J_{z}.$$

b. Using (a) (or otherwise), derive the "famous" expression for the coefficient c_{-} that appears in

$$J_-\psi_{jm}=c_-\psi_{j,m-1}.$$

15. The wave function of a particle subjected to a spherically symmetrical potential V(r) is given by

$$\psi(\mathbf{x}) = (x + y + 3z)f(r).$$

- a. Is ψ an eigenfunction of L^2 ? If so, what is the *l*-value? If not, what are the possible values of *l* we may obtain when L^2 is measured?
- b. What are the probabilities for the particle to be found in various m_1 states?
- c. Suppose it is known somehow that $\psi(\mathbf{x})$ is an energy eigenfunction with eigenvalue E. Indicate how we may find V(r).
- 16. A particle in a spherically symmetrical potential is known to be in an eigenstate of L^2 and L_z with eigenvalues $\hbar^2 l(l+1)$ and $m\hbar$, respectively. Prove that the expectation values between $|lm\rangle$ states satisfy

$$\langle L_x \rangle = \langle L_y \rangle = 0, \qquad \langle L_x^2 \rangle = \langle L_y^2 \rangle = \frac{\left[l(l+1)\hbar^2 - m^2\hbar^2\right]}{2} \,.$$

Interpret this result semiclassically.

17. Suppose a half-integer *l*-value, say $\frac{1}{2}$, were allowed for orbital angular momentum. From

$$L_{+}Y_{1/2,1/2}(\theta,\phi)=0,$$

we may deduce, as usual,

$$Y_{1/2,1/2}(\theta,\phi) \propto e^{i\phi/2} \sqrt{\sin\theta}$$
.

Now try to construct $Y_{1/2,-1/2}(\theta,\phi)$; by (a) applying L_- to $Y_{1/2,1/2}(\theta,\phi)$; and (b) using $L_-Y_{1/2,-1/2}(\theta,\phi)=0$. Show that the two procedures lead to contradictory results. (This gives an argument against half-integer *l*-values for orbital angular momentum.)

- 18. Consider an orbital angular-momentum eigenstate $|l=2, m=0\rangle$. Suppose this state is rotated by an angle β about the y-axis. Find the probability for the new state to be found in $m=0, \pm 1$, and ± 2 . (The spherical harmonics for l=0, 1, and 2 given in Appendix A may be useful.)
- 19. What is the physical significance of the operators

$$K_{+} \equiv a_{+}^{\dagger} a_{-}^{\dagger}$$
 and $K_{-} \equiv a_{+} a_{-}$

in Schwinger's scheme for angular momentum? Give the nonvanishing matrix elements of K_{\perp} .

20. We are to add angular momenta $j_1 = 1$ and $j_2 = 1$ to form j = 2, 1, and 0 states. Using either the ladder operator method or the recursion relation, express all (nine) $\{j, m\}$ eigenkets in terms of $|j_1 j_2; m_1 m_2\rangle$. Write your answer as

$$|j=1, m=1\rangle = \frac{1}{\sqrt{2}}|+,0\rangle - \frac{1}{\sqrt{2}}|0,+\rangle,...,$$

where + and 0 stand for $m_{1,2} = 1,0$, respectively.

21. a. Evaluate

$$\sum_{m=-j}^{j} |d_{mm'}^{(j)}(\beta)|^2 m$$

for any j (integer or half-integer); then check your answer for $j = \frac{1}{2}$. b. Prove, for any j,

$$\sum_{m=-j}^{j} m^2 |d_{m'm}^{(j)}(\beta)|^2 = \frac{1}{2} j(j+1) \sin^2 \beta + m'^2 \frac{1}{2} (3\cos^2 \beta - 1).$$

[Hint: This can be proved in many ways. You may, for instance, examine the rotational properties of J_z^2 using the spherical (irreducible) tensor language.]

22. a. Consider a system with j = 1. Explicitly write

$$\langle j=1, m'|J_v|j=1, m\rangle$$

in 3×3 matrix form.

b. Show that for j = 1 only, it is legitimate to replace $e^{-iJ_y\beta/\hbar}$ by

$$1 - i \left(\frac{J_{y}}{\hbar}\right) \sin \beta - \left(\frac{J_{y}}{\hbar}\right)^{2} (1 - \cos \beta).$$

c. Using (b), prove

$$d^{(j-1)}(\beta) = \begin{cases} \left(\frac{1}{2}\right)(1+\cos\beta) & -\left(\frac{1}{\sqrt{2}}\right)\sin\beta & \left(\frac{1}{2}\right)(1-\cos\beta) \\ \left(\frac{1}{\sqrt{2}}\right)\sin\beta & \cos\beta & -\left(\frac{1}{\sqrt{2}}\right)\sin\beta \\ \left(\frac{1}{2}\right)(1-\cos\beta) & \left(\frac{1}{\sqrt{2}}\right)\sin\beta & \left(\frac{1}{2}\right)(1+\cos\beta) \end{cases}$$

- 23. Express the matrix element $\langle \alpha_2 \beta_2 \gamma_2 | J_3^2 | \alpha_1 \beta_1 \gamma_1 \rangle$ in terms of a series in $\mathcal{D}_{-\infty}^{j}(\alpha \beta \gamma) = \langle \alpha \beta \gamma | jmn \rangle$.
- 24. Consider a system made up of two spin $\frac{1}{2}$ particles. Observer A specializes in measuring the spin components of one of the particles $(s_{1z}, s_{1x} \text{ and so on})$, while observer B measures the spin components of the other particle. Suppose the system is known to be in a spin-singlet state, that is, $S_{\text{total}} = 0$.
 - a. What is the probability for observer A to obtain $s_{1z} = \hbar/2$ when observer B makes no measurement? Same problem for $s_{1x} = \hbar/2$.
 - b. Observer B determines the spin of particle 2 to be in the $s_{2z} = \hbar/2$ state with certainty. What can we then conclude about the outcome of observer A's measurement if (i) A measures s_{1z} and (ii) A measures s_{1x} ? Justify your answer.
- 25. Consider a spherical tensor of rank 1 (that is, a vector)

$$V_{\pm 1}^{(1)} = \mp \frac{V_x \pm i V_y}{\sqrt{2}}, \qquad V_0^{(1)} = V_z.$$

Using the expression for $d^{(j=1)}$ given in Problem 22, evaluate

$$\sum_{q'} d_{qq'}^{(1)}(\beta) V_{q'}^{(1)}$$

and show that your results are just what you expect from the transformation properties of $V_{x,y,z}$ under rotations about the y-axis.

- 26. a. Construct a spherical tensor of rank 1 out of two different vectors $\mathbf{U} = (U_x, U_y, U_z)$ and $\mathbf{V} = (V_x, V_y, V_z)$. Explicitly write $T_{\pm 1,0}^{(1)}$ in terms of $U_{x,y,z}$ and $V_{x,y,z}$.
 - b. Construct a spherical tensor of rank 2 out of two different vectors U and V. Write down explicitly $T_{+2,+1,0}^{(2)}$ in terms of $U_{x,y,z}$ and $V_{x,y,z}$.
- 27. Consider a spinless particle bound to a fixed center by a central force potential.

a. Relate, as much as possible, the matrix elements

$$\langle n', l', m' | \mp \frac{1}{\sqrt{2}} (x \pm iy) | n, l, m \rangle$$
 and $\langle n', l', m' | z | n, l, m \rangle$

using *only* the Wigner-Eckart theorem. Make sure to state under what conditions the matrix elements are nonvanishing.

- b. Do the same problem using wave functions $\psi(\mathbf{x}) = R_{nl}(r)Y_l^m(\theta, \phi)$.
- 28. a. Write xy, xz, and $(x^2 y^2)$ as components of a spherical (irreducible) tensor of rank 2.
 - b. The expectation value

$$Q \equiv e\langle \alpha, j, m = j | (3z^2 - r^2) | \alpha, j, m = j \rangle$$

is known as the quadrupole moment. Evaluate

$$e\langle \alpha, j, m'|(x^2-y^2)|\alpha, j, m=j\rangle,$$

(where m' = j, j - 1, j - 2,...) in terms of Q and appropriate Clebsch-Gordan coefficients.

29. A spin $\frac{3}{2}$ nucleus situated at the origin is subjected to an external inhomogeneous electric field. The basic electric quadrupole interaction may by taken to be

$$H_{\rm int} = \frac{eQ}{2s(s-1)\hbar^2} \left[\left(\frac{\partial^2 \phi}{\partial x^2} \right)_0 S_x^2 + \left(\frac{\partial^2 \phi}{\partial y^2} \right)_0 S_y^2 + \left(\frac{\partial^2 \phi}{\partial z^2} \right)_0 S_z^2 \right],$$

where ϕ is the electrostatic potential satisfying Laplace's equation and the coordinate axes are so chosen that

$$\left(\frac{\partial^2 \phi}{\partial x \partial y}\right)_0 = \left(\frac{\partial^2 \phi}{\partial y \partial z}\right)_0 = \left(\frac{\partial^2 \phi}{\partial x \partial z}\right)_0 = 0.$$

Show that the interaction energy can be written as

$$A(3S_z^2 - S^2) + B(S_+^2 + S_-^2),$$

and express A and B in terms of $(\partial^2 \phi/\partial x^2)_0$ and so on. Determine the energy eigenkets (in terms of $|m\rangle$, where $m=\pm\frac{3}{2},\pm\frac{1}{2}$) and the corresponding energy eigenvalues. Is there any degeneracy?