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Consider now what happens in the overlap region e<6 < — ¢,
where we may use either AV or AV, Because the two potentials lead to the

same magnetic field, they must be related to each other by a gauge
transformation. To find A appropriate for this problem we first note that
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Recalling the expression for gradient in spherical coordinates,
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we deduce that '
A=—-2e,¢ (2.6.83)8

will do the job.
Next, we consider the wave function of an electrically charged

particle of charge e subjected to magnetic field (2.6.74). As we emphasized i

earlier, the particular form of the wave function depends on the particular

gauge used. In the overlap region where we may use either A or AUD, the
corresponding wave functions are, according to (2.6.55), related to each

other by

) e exp( W) v, (2.6.84) ‘,

c

Wave functions ¢® and ™ must each be single-valued because once we

choose particular gauge, the expansion of the state ket in terms of the

position eigenkets must be unique. After all, as we have repeatedly em-

phasized, the wave function is simply an expansion coefficient for the state
ket in terms of the position eigenkets. ‘

Let us now examine the behavior of wave function ¢ on the . ‘:
equator 6 = /2 with some definite radius r, which is a constant. When we

increase the azimuthal angle ¢ along the equator and go around once, say g

from ¢ =0 to ¢ =27, Y, as well as y©, must return to its original value -
because each is single-valued. According to (2.6.84), this is possible only if
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So we reach a very far-reaching conclusion: The magnetic charges must be
quantized in units of

it N NG ) (2.6.85)

he ~(137)| 5
2l T ‘
The smallest magnetic charge possible is Ac/2|e|, where e is the

electronic charge. It is amusing that once a magnetic monopole is assumed
to exist, we can use (2.6.85) backward, so to speak, to explain why the

(2.6.86)

Problems 143

clectric charges are quantized, for example, why the proton charge cannot
be 0.999972 times |e|.*

We repeat once again that quantum mechanics does not require
magnetic monopoles to exist. However, it unambiguously predicts that a
magnetic charge, if it is ever found in nature, must be quantized in units of
he/2|e|l. The quantization of magnetic charges in quantum mechanics was
first shown in 1931 by P. A. M. Dirac. The derivation given here is due to
T, T. Wu and C. N. Yang.

PROBLEMS

|. Consider the spin-precession problem discussed in the text. It can also
be solved in the Heisenberg picture. Using the Hamiltonian
eB )

H=—(%)s
mc

z

= wS,,
write the Heisenberg equations of motion for the time-dependent oper-
ators S,(¢), S,(¢), and S,(7). Solve them to obtain S, , . as functions of
time.

2. Look again at the Hamiltonian of Chapter 1, Problem 11. Suppose the
typist made an error and wrote H as

H = Hy,1){1]+ H22|2><2|+ Hpp|1)<2].

What principle is now violated? Illustrate your point explicitly by
attempting to solve the most general time-dependent problem using an
illegal Hamiltonian of this kind. (You may assume H,, = H,, =0 for
simplicity.)

3. An electron is subject to a uniform, time-independent magnetic field of
strength B in the positive z-direction. At z = 0 the electron is known to
be in an eigenstate of S-h with eigenvalue % /2, where f is a unit vector,
lying in the xz-plane, that makes an angle B8 with the z-axis.

a. Obtain the probability for finding the electron in the s, = % /2 state
as a function of time.

b. Find the expectation value of S, as a function of time.

c. For your own peace of mind show that your answers make good
sense in the extreme cases (i) 8 — 0 and (i) 8 — 7/2.

4. Let x(7) be the coordinate operator for a free particle in one dimension
in the Heisenberg picture. Evaluate

[x(1), x(0)].

* Empirically the equality in magnitude between the electron charge and the proton charge is

~ (ulablished to an accuracy of four parts in 10'°.
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Quantum Dynamics

Consider a particle in one dimension whose Hamiltonian is given by

p2
H=E+V(X)'

By calculating [[ H, x], x] prove

” , hz
SKa|xla’ Y2 (Ey ~ B} = A

where |a’) is an energy eigenket with eigenvalue iE

. Consider a particle in three dimensions whose Hamiltonian is given by

2

s
H= o +V(x).

By calculating [x-p, H] obtain

2 fopy =<";> —(x-wV).

To identify the preceding relation with the quantum-mechanical ana-
logue of the virial theorem it is essential that the left-hand side vanish.
Under what condition would this happen?

. Consider a free-particle wave packet in one dimension. At 7=0 it

satisfies the minimum uncertainty relation

(Ax((ap)y =2

In addition, we know

(1=0).

) —0 (1=0).
Using the Heisenberg picture, obtain ((Ax)?), as a function of t(t=0)
when ((Ax)?),_, is given. (Hint: Take advantage of the property of

the minimum-uncertainty wave packet you worked out in Chapter 1,
Problem 18).

- Let |a’) and |a”) be eigenstates of a Hermitian operator 4 with

¢igenvalues a’ and a”, respectively (a’# a”). The Hamiltonian oper-
ator is given by

H=|a")8<a"|+a”)8{a’|,

where 8 is just a real number.

a. Clearly, |a’) and |a”) are not eigenstates of the Hamiltonian. Write
down the eigenstates of the Hamiltonian. What are their energy
eigenvalues?

b. Suppose the system is known to be in state |a’) at = 0. Write down
the state vector in the Schrodinger picture for 7 > 0.
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10.

15

c. What is the probability for finding the system in |a”") for ¢ > 0 if the
system is known to be in state |a’) at ¢ = 0?

d. Can you think of a physical situation corresponding to this problem?
A box containing a particle is divided into a right and left compartment
by a thin partition. If the particle is known to be on the right (left) side
with certainty, the state is represented by the position eigenket |R)(|L)),
where we have neglected spatial variations within each half of the box.
The most general state vector can then be written as

|} = |R)(R|a) +|L)(L|a),
where (R|a) and (L|a) can be regarded as “wave functions.” The

particle can tunnel through the partition; this tunneling effect is char-
acterized by the Hamiltonian
H=A(IL){R|+[R)(LI),

where A is a real number with the dimension of energy.

a. Find the normalized energy eigenkets. What are the corresponding
energy eigenvalues?

b. In the Schrodinger picture the base kets |R) and |L) are fixed, and
the state vector moves with time. Suppose the system is represented
by |a) as given above at ¢ = 0. Find the state vector |a, 1, = 0; ¢) for
t > 0 by applying the appropriate time-evolution operator to |a).

c. Suppose at ¢ = 0 the particle is on the right side with certainty. What
is the probability for observing the particle on the left side as a
function of time?

d. Write down the coupled Schrodinger equations for the wave func-
tions (R|a, t,=0; t)and (L|a, 1,=0; ¢ ). Show that the solutions to the
coupled Schrodinger equations are just what you expect from (b).

e. Suppose the printer made an error and wrote H as

H = A|L){R|.

By explicitly solving the most general time-evolution problem with
this Hamiltonian, show that probability conservation is violated.
Using the one-dimensional simple harmonic oscillator as an example,
illustrate the difference between the Heisenberg picture and the
Schrodinger picture. Discuss in particular how (a) the dynamic variables
x and p and (b) the most general state vector evolve with time in each

of the two pictures.

Consider a particle subject to a one-dimensional simple harmonic

oscillator potential. Suppose at ¢ = 0 the state vector is given by

—ipa
expile ==t
p( 7 )I )
where p is the momentum operator and a is some number with

dimension of length. Using the Heisenberg picture, evaluate the expec-
tation value (x) for ¢ > 0.
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12. a. Write down the wave function (in coordinate space) for the state
specified in Problem 11 at 7 = 0. You may use

1ifuxs ' Bl
] 27
b. Obtain a simple expression for the probability that the state is found
in the ground state at ¢ = 0. Does this probability change for ¢ > 0?

13. Consider a one-dimensional simple harmonic oscillator.
a. Using

5 /ﬁﬂ o P ajn) B \/;I"_D
a*}_ 2h ( imw)’ aTIn)}_{\/n+l|n+l>,
evaluate (m|x|n), (m|p|n), (m|(x, p}|ny, (m|x*|n), and (m| p*|n}.

b. Check that the virial theorem holds for the expectation values of the
kinetic and the potential energy taken with respect to an energy

(x0) =7~ 4% ;1 2 exp

eigenstate.
14. a. Using
(x|p’y = (2wh) " '/*e”*/*  (one dimension)
prove
7| ¥ a /|
(p'Ixlay = ih——( p'la).
ap

b. Consider a one-dimensional simple harmonic oscillator. Starting with
the Schrodinger equation for the state vector, derive the Schrodinger
equation for the momentum-space wave function. (Make sure to
distinguish the operator p from the eigenvalue p’.) Can you guess the
energy eigenfunctions in momentum space?

15. Consider a function, known as the correlation function, defined by

C(1) = (x(1)x(0)),

where x(¢) is the position operator in the Heisenberg picture. Evaluate

the correlation function explicitly for the ground state of a one-dimen-

sional simple harmonic oscillator.
16. Consider again a one-dimensional simple harmonic oscillator. Do the
following algebraically, that is, without using wave functions.

a. Construct a linear combination of |0) and [1) such that (x) is as
large as possible.

b. Suppose the oscillator is in the state constructed in (a) at 7 = 0. What
is the state vector for 7> 0 in the Schrodinger picture? Evaluate the
expectation value (x) as a function of time for 7 > 0 using (i) the
Schrodinger picture and (ii) the Heisenberg picture.

c. Evaluate ((Ax)?) as a function of time using either picture.
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20.

Show for the one-dimensional simple harmonic oscillator
(0le™*0) = exp[ — kX0|x?0) /2],

where x is the position operator.

A coherent state of a one-dimensional simple harmonic oscillator is
defined to be an eigenstate of the (non-Hermitian) annihilation operator
a:

alAy =A|A),

where A is, in general, a complex number.
a. Prove that

Ao e N ehe0)

is a normalized coherent state.
b. Prove the minimum uncertainty relation for such a state.
c. Write |[A) as

SEPWIOIDE

Show that the distribution of |f(n)|> with respect to n is of the
Poisson form. Find the most probable value of n, hence of E.

d. Show that a coherent state can also be obtained by applying the
translation (finite-displacement) operator e "?//" (where p is the
momentum operator, and [/ is the displacement distance) to
the ground state. (See also Gottfried 1966, 262—64.)

Let

h

J =natac, " h=2tdt a; ~atial)]

) N=a'a,+a" a_

where @, and af, are the annihilation and creation operators of two
independent simple harmonic oscillator satisfying the usual simple
harmonic oscillator commutation relations. Prove

[ dy Tethdyy o SR 000 0l (Z’Z—Z)N[(g)ﬂ]

Consider a particle of mass m subject to a one-dimensional potential of
the following form:

2

e { lkx2 for x>0
00 for x.< 0.

a. What is the ground-state energy?
b. What is the expectation value {x?) for the ground state?
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23.

24.
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Quantum Dynamics

A particle in one dimension is trapped between two rigid walls:

V(x)={0’

o0l tor o <10,

for 0= xi<t T
b

At =0 it is known to be exactly at x = L /2 with certainty. What are =
the relative probabilities for the particle to be found in various energy -
eigenstates? Write down the wave function for 7> 0. (You need not
worry about absolute normalization, convergence, and other mathemati-

cal subtleties.)
Consider a particle in one dimension bound to a fixed center by a
d-function potential of the form

V(x)=—uv,8(x), (v, real and positive).

Find the wave function and the binding energy of the ground state. Are _

there excited bound states?

A particle of mass m in one dimension is bound to a fixed center by an

attractive 8-function potential:

V(x)=—-A(x), (A>0).

At 1 =0, the potential is suddenly switched off (that is, V=0 for ¢ > 0).
Find the wave function for ¢z > 0. (Be quantitative! But you need not

attempt to evaluate an integral that may appear.)

A particle in one dimension (— oo < x < 00) is subjected to a constant

force derivable from

V=Ax, (A>0).

a. Is the energy spectrum continuous or discrete? Write down an
approximate expression for the energy eigenfunction specified by E.

Also sketch it crudely.
b. Discuss briefly what changes are needed if V is replaced by

V= Alx|.

Consider an electron confined to the interior of a hollow cylindrical :
shell whose axis coincides with the z-axis. The wave function is required
to vanish on the inner and outer walls, p =p, and p,, and also at the

top and bottom, z =0 and L.

a. Find the energy eigenfunctions. (Do not bother with normahzatlon) =

Show that the energy eigenvalues are given by

2
E,mn=(2’:n)[k2 (T)] (o 12, 3 v 0, 12050

where k,,, is the nth root of the transcendental equation

Jm(kmnpb)Nm(kmnpa)_ Nm(kmnpb)‘]m(kmnpa) =),

b. Repeat the same problem when there is a uniform magnetic field =
B= B2 for 0 <p<p, Note that the energy eigenvalues are in-

fluenced by the magnetic field even though the electron never
|

“touches” the magnetic field.
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26.

20

28.

29

30.

31

32.

c¢. Compare, in particular, the ground state of the B = 0 problem with
that of the B # 0 problem. Show that if we require the ground-state
energy to be unchanged in the presence of B, we obtain “flux
quantization”

27N,
ik wehc,

(N=0,+1,42,...).

Consider a particle moving in one dimension under the influence of a
potential V(x). Suppose its wave function can be written as
exp[iS(x, 1)/ k). Prove that S(x, ¢) satisfies the classical Hamilton-Jacobi
equation to the extent that 4 can be regarded as small in some sense.
Show how one may obtain the correct wave function for a plane wave
by starting with the solution of the classical Hamilton-Jacobi equation
with V(x) set equal to zero. Why do we get the exact wave function in
this particular case?

Using spherical coordinates, obtain an expression for j for the ground
and excited states of the hydrogen atom. Show, in particular, that for
m,# 0 states, there is a circulating flux in the sense that j is in the
direction of increasing or decreasing ¢, depending on whether m, is
positive or negative.

Derive (2.5.16) and obtain the three-dimensional generalization of
(2:816)

Define the partition function as

i fd3x'K(X', 13 x,aO)|B=it/h’

as in (2.5.20)—(2.5.22). Show that the ground-state energy is obtained by
taking

.37
~Z B (B— ).

Illustrate this for a particle in a one-dimensional box.

The propagator in momentum space analogous to (2.5.26) is given by

(p”, t|p’, ty). Derive an explicit expression for {p”, ¢|p’, ¢,) for the free-

particle case.

a. Write down an expression for the classical action for a simple
harmonic oscillator for a finite time interval.

b. Construct {(x,,¢,|x,_q,¢,_,» for a simple harmonic oscillator using
Feynman’s prescription for 7, — ¢, _, = At small. Keeping only terms
up to order (A¢)? show that it is in complete agreement with the
t —t,— 0 limit of the propagator given by (2.5.26).

State the Schwinger action principle (see Finkelstein 1973, 155). Obtain

the solution for (x,t,|x,¢;) by integrating the Schwinger principle and

compare it with the corresponding Feynman expression for {x,z,|x,#,).

Describe the classical limits of these two expressions.
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34.
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36.
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Quantum Dynamics

Show that the wave-mechanics approach to the gravity-induced problem
discussed in Section 2.6 also leads to phase-difference expression (2.6.17).
a. Verify (2.6.25) and (2.6.27).

b. Verify continuity equation (2.6.30) with j given by (2.6.31).
Consider the Hamiltonian of a spinless particle of charge e. In the
presence of a static magnetic field, the interaction terms can be gener-
ated by

eA

Poperator > Poperator — ol

where A is the appropriate vector potential. Suppose, for simplicity, that
the magnetic field B is uniform in the positive z-direction. Prove that
the above prescription indeed leads to the correct expression for the
interaction of the orbital magnetic moment (e/2mc)L with the mag-
netic field B. Show that there is also an extra term proportional to
B?(x?+ y?), and comment briefly on its physical significance.
An electron moves in the presence of a uniform magnetic field in the
z-direction (B = Bz).
a. Evaluate
M1, ],
where
eA eq,
i ey,

C % @

b. By comparing the Hamiltonian and the commutation relation ob-
tained in (a) with those of the one-dimensional oscillator problem,
show how we can immediately write the energy eigenvalues as

h*k?* [ |eBlh 1
il PR U L L Y

where %k is the continuous eigenvalue of the p, operator and n is a
nonnegative integer including zero.
Consider the neutron interferometer.

p=h/AA Y Interference region
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Prove that the difference in the magnetic fields that produce two
successive maxima in the counting rates is given by
_ Amhce
lelg, AL’

where g, (=—191) is the neutron magnetic moment in units of
—eh/2m,c. [If you had solved this problem in 1967, you could have
published it in Physical Review Letters!]



