Contents

1 Fundamental concepts 1
1.1 Stern Gerlach 1
1.2 Kets, Bras, Operators 1
1.3 Base kets and matrix operations 1
1.4 Measurements, Observables and the Uncertainty Relations 1
1.4.1 The algebra of spin 3
1.4.2 Quantum vs. classical conditional probability: Bell's Theorem 4

1 Fundamental concepts

1.1 Stern Gerlach

1.2 Kets, Bras, Operators

1.3 Base kets and matrix operations

1.4 Measurements, Observables and the Uncertainty Relations

Summary:

1. Measurement changes the state. A measurement modeled by an observable (operator) \hat{A} on a state $|\alpha\rangle$ changes the state to one of the eigenstates of \hat{A} :

$$
\hat{A}|\alpha\rangle \propto|a\rangle
$$

where $\hat{A}|a\rangle=a|a\rangle$.
2. The probability of measuring an eigenvalue a is given by

$$
P(a)=|\langle a \mid \alpha\rangle|^{2}
$$

Notice that this is consistent in two respects. If the state $|\alpha\rangle$ is already the eigenstate $|a\rangle$, then we measure a with certainty,

$$
P(a)=|\langle a \mid a\rangle|^{2}=1
$$

and for an arbitrary state, the probability of measuring one of the eigenvalues of \hat{A} is 1 , that is, we always get one of the eigenvalues:

$$
\begin{aligned}
P\left(\text { some } a_{i}\right) & =\sum_{i}\left|\left\langle a_{i} \mid \alpha\right\rangle\right|^{2} \\
& =\sum_{i}\left\langle\alpha \mid a_{i}\right\rangle\left\langle a_{i} \mid \alpha\right\rangle \\
& =\langle\alpha|\left(\sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|\right)|\alpha\rangle \\
& =\langle\alpha| 1|\alpha\rangle \\
& =\langle\alpha \mid \alpha\rangle \\
& =1
\end{aligned}
$$

where we use the completeness of the set of eigenvectors.
3. The expectation value of an operator is

$$
\langle\alpha| \hat{A}|\alpha\rangle=\langle\alpha|\left(\sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|\right) \hat{A}\left(\sum_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|\right)|\alpha\rangle
$$

$$
\begin{aligned}
& =\sum_{i, j}\left\langle\alpha \mid a_{i}\right\rangle\left\langle a_{i}\right| a_{j}\left|a_{j}\right\rangle\left\langle a_{j} \mid \alpha\right\rangle \\
& =\sum_{i, j} a_{j} \delta_{i j}\left\langle\alpha \mid a_{i}\right\rangle\left\langle a_{j} \mid \alpha\right\rangle \\
& =\sum_{i} a_{i}\left\langle\alpha \mid a_{i}\right\rangle\left\langle a_{i} \mid \alpha\right\rangle \\
& =\sum_{i} a_{i}\left|\left\langle a_{i} \mid \alpha\right\rangle\right|^{2} \\
& =\sum_{i} a_{i} P\left(a_{i}\right)
\end{aligned}
$$

Examples: Spin operators

We can construct any operator from its eigenstates and eigenvalues as

$$
\hat{A}=\sum_{i} a_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|
$$

For \hat{S}_{x}, we know that acting on S_{z} eigenkets $| \pm\rangle$, we have equal probability of finding $\left|S_{x}, \pm\right\rangle$. Therefore, we must have

$$
\left|S_{x},+\right\rangle=\frac{1}{\sqrt{2}} e^{i \delta_{1}}|+\rangle+\frac{1}{\sqrt{2}} e^{i \delta_{2}}|-\rangle
$$

for arbitrary phases δ_{1}, δ_{2}. Since the overall phase is arbitrary and nonphysical we can eliminate one of these and write

$$
\left|S_{x},+\right\rangle=\frac{1}{\sqrt{2}}|+\rangle+\frac{1}{\sqrt{2}} e^{i \delta}|-\rangle
$$

Since $\left|S_{x},+\right\rangle$ and $\left|S_{x},-\right\rangle$ must be orthogonal (since the observable \hat{S}_{x} must be Hermitian), setting $\left|S_{x},-\right\rangle=\alpha|+\rangle+$ $\beta|-\rangle$, we have

$$
\begin{aligned}
0 & =\left\langle S_{x},+\mid S_{x},-\right\rangle \\
& =\frac{1}{\sqrt{2}}\left(\langle+|+\langle-| e^{-i \delta}\right)(\alpha|+\rangle+\beta|-\rangle) \\
& =\frac{1}{\sqrt{2}}\left(\alpha+\beta e^{-i \delta}\right)
\end{aligned}
$$

so $\beta=-e^{i \delta} \alpha$ and the normalized state must be

$$
\left|S_{x},-\right\rangle=\frac{1}{\sqrt{2}}|+\rangle-\frac{1}{\sqrt{2}} e^{i \delta}|-\rangle
$$

Then \hat{S}_{x} is given by

$$
\begin{aligned}
\hat{S}_{x} & =+\frac{\hbar}{2}\left|S_{x},+\right\rangle\left\langle S_{x},+\right|+\left(-\frac{\hbar}{2}\right)\left|S_{x},-\right\rangle\left\langle S_{x},-\right| \\
& =\frac{\hbar}{2}\left(\frac{1}{\sqrt{2}}\left(|+\rangle+e^{i \delta}|-\rangle\right) \frac{1}{\sqrt{2}}\left(\langle+|+\langle-| e^{-i \delta}\right)-\frac{1}{\sqrt{2}}\left(|+\rangle-e^{i \delta}|-\rangle\right) \frac{1}{\sqrt{2}}\left(\langle+|-\langle-| e^{-i \delta}\right)\right) \\
& =\frac{\hbar}{4}\left(|+\rangle\langle+|+|+\rangle\langle-| e^{-i \delta}+e^{i \delta}|-\rangle\langle+|+|-\rangle\langle-|-|+\rangle\langle+|+e^{i \delta}|-\rangle\langle+|+|+\rangle\langle-| e^{-i \delta}-|-\rangle\langle-|\right) \\
& =\frac{\hbar}{4}\left(2 e^{-i \delta}|+\rangle\langle-|+2 e^{i \delta}|-\rangle\langle+|\right) \\
& =\frac{\hbar}{2}\left(e^{-i \delta}|+\rangle\langle-|+e^{i \delta}|-\rangle\langle+|\right)
\end{aligned}
$$

We could have made exactly the same arguments for \hat{S}_{y}, so with σ some other phase we may also write

$$
\hat{S}_{y}=\frac{\hbar}{2}\left(e^{-i \sigma}|+\rangle\langle-|+e^{i \sigma}|-\rangle\langle+|\right)
$$

But we also know that the x and y directions will have the same relationship to one another that they each have with the z direction, for example,

$$
\begin{aligned}
\left|\left\langle S_{x}, \pm \mid S_{y},+\right\rangle\right| & =\frac{1}{\sqrt{2}} \\
\left|\left\langle S_{x}, \pm \mid S_{y},+\right\rangle\right| & =\frac{1}{\sqrt{2}}
\end{aligned}
$$

Either of these relations gives:

$$
\begin{aligned}
\left|\frac{1}{\sqrt{2}}\left(\langle+| \pm\langle-| e^{-i \delta}\right) \frac{1}{\sqrt{2}}\left(|+\rangle+e^{i \sigma}|-\rangle\right)\right| & =\frac{1}{\sqrt{2}} \\
\frac{1}{2}\left|1 \pm e^{i(\sigma-\delta)}\right| & =\frac{1}{\sqrt{2}}
\end{aligned}
$$

which happens if and only if

$$
\begin{aligned}
e^{i(\sigma-\delta)} & = \pm i \\
(\sigma-\delta) & = \pm \frac{\pi}{2}
\end{aligned}
$$

The remaining indefiniteness of the phase can be chosen by fixing the overall phase of $\left|S_{x},+\right\rangle$. It is conventional to choose \hat{S}_{x} to be real, so that $\delta=0$ and

$$
\hat{S}_{x}=\frac{\hbar}{2}(|+\rangle\langle-|+|-\rangle\langle+|)=\frac{\hbar}{2} \sigma_{x}
$$

Then \hat{S}_{y} must be pure imaginary. With $\sigma=\frac{\pi}{2}$ we have

$$
\begin{aligned}
\hat{S}_{y} & =\frac{\hbar}{2}\left(e^{-\frac{i \pi}{2}}|+\rangle\langle-|+e^{\frac{i \pi}{2}}|-\rangle\langle+|\right) \\
& =\frac{\hbar}{2}(-i|+\rangle\langle-|+i|-\rangle\langle+|) \\
& =\frac{\hbar}{2} \sigma_{y}
\end{aligned}
$$

1.4.1 The algebra of spin

The essential properties of angular momentum are implicit in the products of these spin operators. Most importantly, we have the commutators,

$$
\left[\hat{S}_{i}, \hat{S}_{j}\right]=i \hbar \varepsilon_{i j k} \hat{S}_{k}
$$

We also have the anticommutators,

$$
\left\{\hat{S}_{i}, \hat{S}_{j}\right\}=\frac{1}{2} \hbar^{2} \delta_{i j}
$$

It will be useful to define the combinations

$$
\hat{S}_{ \pm}=\hat{S}_{x} \pm i \hat{S}_{y}
$$

and the squared sum,

$$
\begin{aligned}
\hat{\mathbf{S}}^{2} & =\hat{\mathbf{S}} \cdot \hat{\mathbf{S}} \\
& =\hat{S}_{x}^{2}+\hat{S}_{y}^{2}+\hat{S}_{z}^{2} \\
& =\frac{3}{4} \hbar^{2} 1
\end{aligned}
$$

since each Pauli matrix squares to the identity. Since $\hat{\mathbf{S}}^{2}$ is proportional to the identity operator, we have

$$
\left[\hat{\mathbf{S}}^{2}, S_{i}\right]=0
$$

1.4.2 Quantum vs. classical conditional probability: Bell's Theorem

Consider three measurements, with corresponding operators A, B and C, performed in order. Classically, let

$$
P_{a \rightarrow b}
$$

be the probability of the B measurement giving b when the A measurement has given a. This is called a conditional probability. Then, performing C, we have

$$
P_{b \rightarrow c}
$$

for the conditional probability of c given b, and the joint probability of measuring b then c, given a is the product:

$$
P_{a \rightarrow(b, c)}=P_{a \rightarrow b} P_{b \rightarrow c}
$$

If we sum over all possible outcomes, b_{i}, for B, we must get the conditional probability of c, given a,

$$
P_{a \rightarrow c}=\sum_{b_{i}} P_{a \rightarrow b_{i}} P_{b_{i} \rightarrow c}
$$

because we have accounted for all possible intermediate routes from a to c.
Quantum mechanically, we may write each of the conditional probabilities as:

$$
\begin{aligned}
P_{a \rightarrow b} & =|\langle b \mid a\rangle|^{2} \\
P_{b \rightarrow c} & =|\langle c \mid b\rangle|^{2} \\
P_{a \rightarrow c} & =|\langle c \mid a\rangle|^{2}
\end{aligned}
$$

Now expand the last,

$$
\begin{aligned}
P_{a \rightarrow c} & =|\langle c \mid a\rangle|^{2} \\
& =\langle a \mid c\rangle\langle c \mid a\rangle \\
& =\sum_{i}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid a\right\rangle\langle c \mid a\rangle \\
& =\sum_{i}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid a\right\rangle \sum_{j}\left\langle c \mid b_{j}\right\rangle\left\langle b_{j} \mid a\right\rangle
\end{aligned}
$$

where we have inserted two copies of the identity operator. As in the classical case, the joint probability of measuring b then c, given a is now

$$
\begin{aligned}
P_{a \rightarrow(b, c)} & =|\langle b \mid a\rangle\langle c \mid b\rangle|^{2} \\
& =(\langle a \mid b\rangle\langle b \mid c\rangle)(\langle b \mid a\rangle\langle c \mid b\rangle) \\
& =(\langle a \mid b\rangle\langle b \mid a\rangle)(\langle c \mid b\rangle\langle b \mid c\rangle) \\
& =P_{a \rightarrow b} P_{b \rightarrow c}
\end{aligned}
$$

However, if we sum over all intermediate states b_{i} we do not get $P_{a \rightarrow c}$! Instead, we have the single sum

$$
\begin{aligned}
& \sum_{i}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid a\right\rangle \\
\sum_{i} P_{a \rightarrow\left(b_{i}, c\right)}= & \sum_{i}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid a\right\rangle\left(\left\langle c \mid b_{i}\right\rangle\left\langle b_{i} \mid c\right\rangle\right) \\
= & \sum_{i} P_{a \rightarrow b_{i}} P_{b_{i} \rightarrow c}
\end{aligned}
$$

This is an extremely important difference between classical and quantum physics!
Let's look at an example. Let the three operators be the spin operators in the z, x and y directions, respectively, and let's work as usual in the z basis. Start with a general spin state,

$$
|\psi\rangle=\alpha|+\rangle+\beta|-\rangle
$$

where normalization requires $\alpha \bar{\alpha}+\beta \bar{\beta}=1$. Then the probability of measuring spin up in the x and then spin up in the y directions is

$$
\begin{aligned}
P_{\psi \rightarrow((x+),(y+))} & =\left(\left\langle\psi \mid S_{x},+\right\rangle\left\langle S_{x},+\mid \psi\right\rangle\right)\left(\left\langle S_{y},+\mid S_{x},+\right\rangle\left\langle S_{x},+\mid S_{y},+\right\rangle\right) \\
& =\alpha \bar{\alpha}\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right) \\
& =\frac{\alpha \bar{\alpha}}{2}
\end{aligned}
$$

Summing $P_{\psi \rightarrow((x \pm),(y+))}$ over both possible intermediate x states gives

$$
\begin{aligned}
\sum_{(\pm, x)} P_{\psi \rightarrow((x \pm),(y+))}= & \left(\left\langle\psi \mid S_{x},+\right\rangle\left\langle S_{x},+\mid \psi\right\rangle\right)\left(\left\langle S_{y},+\mid S_{x},+\right\rangle\left\langle S_{x},+\mid S_{y},+\right\rangle\right) \\
& +\left(\left\langle\psi \mid S_{x},-\right\rangle\left\langle S_{x},-\mid \psi\right\rangle\right)\left(\left\langle S_{y},+\mid S_{x},-\right\rangle\left\langle S_{x},-\mid S_{y},+\right\rangle\right) \\
= & \frac{\alpha \bar{\alpha}}{2}+\frac{\beta \bar{\beta}}{2} \\
= & \frac{1}{2}
\end{aligned}
$$

Now consider

$$
\begin{aligned}
P_{a \rightarrow c}= & |\langle c \mid a\rangle|^{2} \\
= & (\langle a \mid+\rangle\langle+\mid c\rangle+\langle a \mid-\rangle\langle-\mid c\rangle)(\langle c \mid+\rangle\langle+\mid a\rangle+\langle c \mid-\rangle\langle-\mid a\rangle) \\
= & (\bar{\alpha} \gamma+\bar{\beta} \delta)(\bar{\gamma} \alpha+\bar{\delta} \beta) \\
= & \alpha \bar{\alpha} \gamma \bar{\gamma}+\beta \bar{\beta} \delta \bar{\delta}+\bar{\alpha} \beta \gamma \bar{\delta}+\alpha \bar{\beta} \bar{\gamma} \delta \\
& \begin{aligned}
P_{a \rightarrow c} & =|\langle c \mid a\rangle|^{2} \\
& =\left\langle\psi \mid S_{y},+\right\rangle\left\langle S_{y},+\mid \psi\right\rangle \\
& =\frac{1}{\sqrt{2}}(\bar{\alpha}+i \bar{\beta}) \frac{1}{\sqrt{2}}(\alpha-i \beta) \\
& =\frac{1}{2}(\alpha \bar{\alpha}+\beta \bar{\beta}+i(\alpha \bar{\beta}-\beta \bar{\alpha}))
\end{aligned}
\end{aligned}
$$

Now consider the general spin- $\frac{1}{2}$ case:

$$
\begin{aligned}
P_{a \rightarrow c} & =|\langle c \mid a\rangle|^{2} \\
& =\sum_{i}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid a\right\rangle \sum_{j}\left\langle c \mid b_{j}\right\rangle\left\langle b_{j} \mid a\right\rangle
\end{aligned}
$$

and

$$
\sum_{i} P_{a \rightarrow\left(b_{i}, c\right)}=\sum_{i}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid a\right\rangle\left(\left\langle c \mid b_{i}\right\rangle\left\langle b_{i} \mid c\right\rangle\right)
$$

Specialize these to spin $\frac{1}{2}$, and let the middle state be in the z-basis (since we lose no generality by letting one of the directions be z):

$$
\begin{aligned}
P_{a \rightarrow c} & =|\langle c \mid a\rangle|^{2} \\
& =\sum_{ \pm}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid c\right\rangle \sum_{j}\left\langle c \mid b_{j}\right\rangle\left\langle b_{j} \mid a\right\rangle \\
& =(\langle a \mid+\rangle\langle+\mid c\rangle+\langle a \mid-\rangle\langle-\mid c\rangle)(\langle c \mid+\rangle\langle+\mid a\rangle+\langle c \mid-\rangle\langle-\mid a\rangle)
\end{aligned}
$$

Set

$$
\begin{aligned}
& \langle+\mid a\rangle=\alpha \\
& \langle-\mid a\rangle=\beta \\
& \langle+\mid c\rangle=\gamma \\
& \langle-\mid c\rangle=\delta
\end{aligned}
$$

Then

$$
\begin{aligned}
P_{a \rightarrow c} & =|\langle c \mid a\rangle|^{2} \\
& =(\langle a \mid+\rangle\langle+\mid c\rangle+\langle a \mid-\rangle\langle-\mid c\rangle)(\langle c \mid+\rangle\langle+\mid a\rangle+\langle c \mid-\rangle\langle-\mid a\rangle) \\
& =(\bar{\alpha} \gamma+\bar{\beta} \delta)(\bar{\gamma} \alpha+\bar{\delta} \beta) \\
& =\alpha \bar{\alpha} \gamma \bar{\gamma}+\beta \bar{\beta} \delta \bar{\delta}+\bar{\alpha} \beta \gamma \bar{\delta}+\alpha \bar{\beta} \bar{\gamma} \delta
\end{aligned}
$$

For the sum over intermediate states we have

$$
\begin{aligned}
\sum_{i} P_{a \rightarrow\left(b_{i}, c\right)} & =\sum_{i}\left\langle a \mid b_{i}\right\rangle\left\langle b_{i} \mid a\right\rangle\left(\left\langle c \mid b_{i}\right\rangle\left\langle b_{i} \mid c\right\rangle\right) \\
& =\langle a \mid+\rangle\langle+\mid a\rangle(\langle c \mid+\rangle\langle+\mid c\rangle)+\langle a \mid-\rangle\langle-\mid a\rangle(\langle c \mid-\rangle\langle-\mid c\rangle) \\
& =\alpha \bar{\alpha} \gamma \bar{\gamma}+\beta \bar{\beta} \delta \bar{\delta}
\end{aligned}
$$

So we have the difference,

$$
P_{a \rightarrow c}-\sum_{i} P_{a \rightarrow\left(b_{i}, c\right)}=\bar{\alpha} \beta \gamma \bar{\delta}+\alpha \bar{\beta} \bar{\gamma} \delta
$$

Write the complex numbers as

$$
\begin{aligned}
\alpha & =a \\
\beta & =\sqrt{1-a^{2}} e^{i \varphi} \\
\gamma & =b \\
\delta & =\sqrt{1-b^{2}} e^{i \theta}
\end{aligned}
$$

where the overall phase freedom allows us to choose α and γ real. Then

$$
\begin{aligned}
P_{a \rightarrow c}-\sum_{i} P_{a \rightarrow\left(b_{i}, c\right)} & =a \sqrt{1-a^{2}} e^{i \varphi} b \sqrt{1-b^{2}} e^{-i \theta}+a \sqrt{1-a^{2}} e^{-i \varphi} b \sqrt{1-b^{2}} e^{i \theta} \\
& =a b \sqrt{1-a^{2}} \sqrt{1-b^{2}}\left(e^{i(\varphi-\theta)}+e^{i \varphi} e^{-i(\varphi-\theta)}\right) \\
& =2 a b \sqrt{1-a^{2}} \sqrt{1-b^{2}} \cos (\varphi-\theta)
\end{aligned}
$$

This is a simple example of Bell's Theorem (Wikipaedia has a good article under "Bell's Theorem").

