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1 Cartesian Tensors
We know that vectors may be rotated by applying a rotation matrix. Beginning with vectors, we can build other objects
that transform simply under rotations by taking outer products:

T = ~v⊗~w

Ti j = viw j

=

 v1w1 v1w2 v1w3
v2w1 v2w2 v2w3
v3w1 v3w2 v3w3


By adding objects of this sort, we can build arbitrary matrices. By choosing enough different vectors, v1,v2, . . . ,vn, we
can build any matrix,

Mi j = v1
i v2

j + v3
i v4

j + v5
i v6

j + . . .+ vn−1
i vn

j

This tells us how matrices transform under rotations. Since each of the vectors rotates according to

ṽi = ∑
j

Ri jv j

The matrix Mi j rotates to

M̃i j = ṽ1
i ṽ2

j + . . .+ ṽn−1
i ṽn

j

=
(

∑
m

Rimv1
m

)(
∑
k

Rikv2
k

)
+ . . .+

(
∑
m

Rimvn−1
m

)(
∑
k

Rikvn
k

)
= ∑

k
∑
m

RimRik
(
v1

mv2
k + . . .+ vn−1

m vn
k
)

= ∑
k

∑
m

RimRikMmk

Therefore, Mi j transforms with two copies of the rotation matrix Ri j, one on each index.
We can build up more general objects in the same way. Taking outer products of n vectors, ~u,~v, . . . ,~w, we build

rank-n tensors:

T = ~u⊗~v⊗ . . .⊗~w

Ti j...k = uiv j . . .wk

and these will also transform with one factor of Ri j on each index.
A more systematic way to build these tensors is to start with a basis of unit vectors,

n̂(1) = (1,0,0)
n̂(2) = (0,1,0)
n̂(3) = (0,0,1)
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These are vectors. The labels in parenthesis just tell us which vector we’re using. Notice that, for example, n̂(1) has
components [

n̂(1)
]

i = δ1i

We can build a general vector by taking a linear combination of the three basis vectors,

v = ∑
i

vin̂(i)

The three numbers vi = v1,v2,v3 are the Cartesian components of v. This works for higher rank tensors as well. Take
the nine possible outer products of the basis vectors,

n̂(i)⊗ n̂( j)

This is a matrix with a 1 in row i, column j, and zeros everywhere else. Then an arbitrary matrix may be written as

M = ∑
i, j

Mi jn̂(i)⊗ n̂( j)

where Mi j is just the number in row i and column j. Think of this object as rotationally invariant. It is the components
Mi j which change under rotation.

For a general rank-n tensor, we have

T = ∑
i, j

Ti j...kn̂(i)⊗ n̂( j)⊗ . . .⊗ n̂(k)

and the 3n numbers Ti j...k are the Cartesian components.

2 Irreducible tensors
The Cartesian components of tensors are mixed by the rotation transformations, Ri j, but not all components of a given
tensor mix with all the others. For example, we have seen how a matrix may be broken into rotationally independent
pieces as

Mi j =
1
3

tr (M)δi j +
1
2

(Mi j−M ji)+
1
2

(
Mi j +M ji−

1
3

δi jtr (M)
)

where tr (M) = ∑k Mkk is the trace of M. Each of these three parts,

Mtr
i j =

1
3

tr (M)δi j

MA
i j =

1
2

(Mi j−M ji)

MS
i j =

1
2

(
Mi j +M ji−

1
3

δi jtr (M)
)

is preserved by rotations, in the sense that

tr
(

M
′
i j

)
= ∑

i,k,l
RikRilMkl

= ∑
i,k,l

Rt
kiRilMkl

= ∑
i,k,l

R−1
ki RilMkl

= ∑
i,k,l

δklMkl

= ∑Mkk
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= (tr (M))′(
MA

i j
)′

= ∑RikR jl
1
2

(Mkl−Mlk)

=
1
2 ∑

(
RikR jlMkl−RikR jlMlk

)
=

1
2

(
M
′
i j−∑R jlRikMlk

)
=

1
2

(
M
′
i j−M′ji

)
=

(
M
′
i j

)A

(
MS

i j
)′

= ∑RikR jl
1
2

(
Mkl +Mlk−

1
3

δkltr (M)
)

= ∑
1
2

(
RikR jlMkl +RikR jlMlk−

1
3

RikR jlδkltr (M)
)

=
1
2

(
M′i j +∑R jlRikMlk−

1
3 ∑RikR−1

k j tr (M)
)

=
1
2

(
M′i j +M′ji−

1
3

δi jtr (M)
)

=
(
M′i j
)S

For example, the components of the antisymmetric part mix only with the components of the antisymmetric part.
These are the irreducible parts of the tensor under rotations.

3 Arbitrary angular momentum
Consider the 2-dimensional space of spin- 1

2 vectors, ∣∣∣∣12 ,m
〉

for m =± 1
2 . Rotations act on these linearly and homogeneously,

e
iϕ
2 n̂·σ

∣∣∣∣12 ,m
〉

To simplify the notation, we just write the two states as

|m〉= |±〉 =
∣∣∣∣12 ,±1

2

〉
when we know that j = 1

2 .
Just as in the real case, we may take outer products of them,

|m1〉⊗ |m2〉⊗ . . .⊗|mk〉

By taking linear combinations of these, we may write general SU (2) tensors,

T = ∑
m1...mk

Tm1m2...mk |m1〉⊗ |m2〉⊗ . . .⊗|mk〉

These objects transform multilinearly and homogeneously, with one transformation matrix, e
iϕ
2 n̂·σ , on each index.
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However, we know that this Cartesian basis is not irreducible. Not only that – we also know how to find the
irreducible parts in general. We can write a product of two vectors as a sum of a triplet and a singlet,

|1,1〉 = |+〉 |+〉

|1,0〉 =
1√
2

(|+〉 |−〉+ |−〉|+〉)

|1,−1〉 = |−〉|−〉

and
|0,0〉= 1√

2
(|+〉 |−〉− |−〉|+〉)

We may invert these relationships,

|+〉 |+〉 = |1,1〉

|+〉 |−〉 =
1√
2

(|1,0〉+ |0,0〉)

|−〉|+〉 =
1√
2

(|1,0〉− |0,0〉)

|−〉|−〉 = |1,−1〉

Notice that the coefficients are the same. This corresponds to the reality of the Clebsch-Gordon coefficients,

〈 j,m| j1, j2;m1,m2〉= 〈 j1, j2;m1,m2| j,m〉

Formally, the change of basis may be written as

| j,m〉 = ∑
m1,m2

| j1, j2;m1,m2〉〈 j1, j2;m1,m2| j,m〉

| j1, j2;m1,m2〉 = ∑
j,m
〈 j,m| j1, j2;m1,m2〉 | j,m〉

for any j in the range | j1− j2| ≤ j ≤ j1 + j2.
Notice that we have produced a vector basis for the product space. Instead of thinking of the product

| j1,m1〉⊗ | j2,m2〉

as a matrix, we treat it as a single, higher-dimensional vector,

| j1, j2;m1,m2〉= | j1,m1〉⊗ | j2,m2〉

and change the basis to a combination of the | j,m〉 kets by inserting an identity:

| j1,m1〉⊗ | j2,m2〉 = | j1, j2;m1,m2〉

=

(
∑
j,m
| j,m〉〈 j,m|

)
| j1, j2;m1,m2〉

= ∑
j,m
〈 j,m| j1, j2;m1,m2〉 | j,m〉

We trade off higher numbers of indices for higher-dimensional vectors.
This means that we may write tensors in a more condensed form.
Suppose we have a rank-2 tensor,

T = ∑
m1...mk

Tm1m2 |m1〉⊗ |m2〉
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Using the change of basis, this becomes

T = Tm1m2 |m1〉⊗ |m2〉
= ∑

j,m
∑

m1...mk

Tm1m2 〈 j,m| j1, j2;m1,m2〉 | j,m〉

= ∑
m1=−m2

Tm1m2 〈0,0| j1, j2;m1,m2〉 |0,0〉+∑
m

∑
m1...mk

Tm1m2 〈1,m| j1, j2;m1,m2〉 |1,m〉

We still know how these transform under rotations; moreover, the first and second terms in the last line transform
independently – they are the irreducible tensors that make up the original T .

It makes sense to treat the irreducible parts separately. The first tensor,

T 0
0 = ∑

m1=−m2

Tm1m2 〈0,0| j1, j2;m1,m2〉 |0,0〉

is a scalar, invariant under SU (2) rotations. The second is a triplet,

T 1
m = ∑

m1,m2

Tm1m2 〈1,m| j1, j2;m1,m2〉 |1,m〉

This transforms with one factor of e
iϕ
2 n·J, but now we use the 3×3 representation of J.

These two tensors are irreducible spherical tensors.
Notice that the components Tm1m2 transform as

T̃m1m2 = ∑
m3,m4

[
e

iϕ
2 n·σ

]
m1m3

[
e

iϕ
2 n·σ

]
m2m4

Tm3m4

with two copies of the 2-dimensional generators, Ji = σi. By contrast, the irreducible tensors T 0
0 ,T 1

m transform as

T̃ 0
0 = ∑

m3,m4

[
e

iϕ
2 n·J(1)

]
mm′

T 0
m′ = 1T 0

0

T̃ 1
m = ∑

m3,m4

[
e

iϕ
2 n·J(3)

]
mm′

T 1
m′

where J(1) = 1 and J(3) are the 1×1 and 3×3 representations of the rotation generators, respectively.
We can continue this process for higher rank tensors. In general, an irreducible spherical tensor of rank k transforms

linearly under the (2k +1)-dimensional representation of SU (2),

T̃ k
q =

k

∑
q′=−k

[
e

iϕ
2 n·J

]
qq′

T k
q′

and this expression is suitable for defining them: any object that transforms in this way is an irreducible spherical
tensor. This means that, rather than having more and more indices on our (Cartesian) tensors, we represent higher and
higher rank tensors as larger and larger vectors. In a basis, the general rank-k spherical tensor may be written as

T k =
k

∑
q=−k

T k
q |k,q〉

which clearly has 2k +1 independent components.
It is easy to multiply spherical tensors. We have

T k1T k2 =
k1

∑
q1=−k1

T k1
q1
|k1,q1〉⊗

k2

∑
q2=−k2

T k2
q2
|k2,q2〉

=
k1+k2

∑
k=|k1−k2|

k

∑
q=−k

(
∑

q1,q2

T k1
q1

T k2
q2
〈k,q| k1,k2;q1,q2〉 |k,q〉

)
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so that the product is a sum over spherical tensors of ranks |k1− k2| ≤ k ≤ k1 + k2, where the tensor of any given rank
k in that range is given by

T k = ∑
q1,q2

T k1
q1

T k2
q2
〈k,q| k1,k2;q1,q2〉 |k,q〉

with components
T k

q = ∑
q1,q2

T k1
q1

T k2
q2
〈k,q| k1,k2;q1,q2〉

This is Sakurai’s addition theorem, eq.(3.10.27). By working in a basis, we already know that this object transforms
as a rank k spherical tensor.

Now we move to the Wigner-Ekhart theorem. We would like to find general matrix elements of spherical tensors,
and the goal is to show that the dependence on the z-component of spin can be reduced to a Clebsch-Gordon coefficient.

Consider a state |λ 〉 which is an eigenstate of J2 and Jz, and perhaps other operators as well, so that we may write

|λ 〉 = |α, j,m〉
= |α〉⊗ | j,m〉

where α represents the eigenvalues of the remaining commuting operators. Then we may define the matrix elements
of a tensor operator as

〈
α
′, j′,m′

∣∣T k ∣∣α ′′, j′′,m′′
〉

=
〈
α
′, j′,m′

∣∣( k

∑
q=−k

T k
q |k,q〉

)
⊗
∣∣α ′′〉⊗ ∣∣ j′′,m′′〉

=
〈
α
′∣∣⊗〈 j′,m′

∣∣( k

∑
q=−k

T k
q |k,q〉⊗

∣∣ j′′,m′′〉)⊗ ∣∣α ′′〉
=

〈
α
′∣∣⊗〈 j′,m′

∣∣( j”+k

∑
j=| j”−k|

j

∑
m=− j

k

∑
q=−k

T k
q 〈 j,m| k, j′′;q,m′′

〉∣∣ j,m; j′′,k
〉)
⊗
∣∣α ′′〉

The Clebsch-Gordon coefficient vanishes unless q = m′′−m, so T k
q = T k

m′′−m has its dependence on the z component
fixed by the Clebsch-Gordon coefficient. Then

〈
α
′, j′,m′

∣∣T k ∣∣α ′′, j′′,m′′
〉

=
〈
α
′∣∣⊗〈 j′,m′

∣∣( j”+k

∑
j=| j”−k|

j

∑
m=− j

k

∑
q=−k

T k 〈 j,m| k, j′′;q,m′′
〉∣∣ j,m; j′′,k

〉)
⊗
∣∣α ′′〉

=
〈
α
′∣∣⊗ j”+k

∑
j=| j”−k|

j

∑
m=− j

〈
j′,m′

∣∣T k
m′′−m

∣∣ j,m; j′′,k
〉
〈 j,m| k, j′′;q,m′′

〉
⊗
∣∣α ′′〉

=
〈
α
′∣∣⊗ j”+k

∑
j=| j”−k|

j

∑
m=− j

〈
j′
∣∣T k

m′′−m

∣∣ j, j′′,k
〉

δm′m 〈 j,m| k, j′′;q,m′′
〉
⊗
∣∣α ′′〉

=
j”+k

∑
j=| j”−k|

〈
α
′, j′
∣∣T k

m′′−m′
∣∣ j, j′′,k,α ′′

〉〈
j,m′

∣∣ k, j′′;q,m′′
〉

The crucial point here is that all of the Jz dependence is determined by the Clebsch-Gordon coefficient. All of the
remaining part of the matrix element depends only on the extra quantum numbers, α ′,α ′′, and on the total angular
momentum numbers, j′, j′′,k. We therefore write the right hand side as simply 〈α ′, j′‖T k ‖α ′′, j′′〉 with a convenient
normalization, time the Clebsch-Gordon coefficient,

〈
α
′, j′,m′

∣∣T k ∣∣α ′′, j′′,m′′
〉

=
j”+k

∑
j=| j”−k|

〈
α
′, j′
∣∣T k ∣∣ j, j′′,k,α ′′

〉〈
j,m′

∣∣ k, j′′;q,m′′
〉

=
1√

2 j′+1

〈
α
′, j′
∥∥T k ∥∥α

′′, j′′
〉〈

j,m′
∣∣ k, j′′;q,m′′

〉
This is the Wigner-Ekhart theorem. The factor 〈α ′, j′‖T k ‖α ′′, j′′〉 is called the reduced matrix element. It can often
be easily determined.

6


