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1 Clebsch-Gordon coefficients
In general, the addition of irreducible momentum states leads to the expansion of the resultant, |j,m〉 states
in terms of the product states,

|j1,m1〉 |j2,m2〉

If we write this as
|j,m〉 = αj,m;j1j2m1m2 |j1,m1〉 |j2,m2〉

where the coefficients αj1j2m1m2 are called Clebsch-Gordon coefficients. For a more complete notation, notice
that we start with four commuting operators,

J2
1,J

2
2, J1z, J2z

so we may write the product states as

|j1, j2,m1,m2〉 = |j1,m1〉 ⊗ |j2,m2〉

In the same way, the total J2 leads to a new commuting set,

J2,J2
1,J

2
2, Jz

so we may label the final kets by
|j1, j2; j,m〉 = |j,m〉

Then inserting an identity gives a straightforward change of basis

|j1, j2; j,m〉 =
∑

m1,m2

|j1, j2,m1,m2〉 〈j1, j2,m1,m2 |j1, j2; j,m〉

and we see that the Clebsch-Gordon coefficients have the lengthy label,

αj,m;j1j2m1m2 = 〈j1, j2,m1,m2 |j1, j2; j,m〉

Here we always have

m1 +m2 = m

|j1 − j2| ≤ j ≤ j1 + j2

We may also expand in the other direction,

|j1, j2,m1,m2〉 =
∑

m1,m2

|j1, j2; j,m〉 〈j1, j2; j,m |j1, j2,m1,m2〉
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2 Tensors
We have briefly mentioned tensors, but have worked mostly with vectors (“rank-1 tensors”) and matrices
(“rank-2 tensors”). However, they may occur with any rank. To see this, just consider the outer product of
many vectors,

Tij...k = uivj . . . wk

If there are n different indices, i, j, . . . , k then this represents 3n different numbers, one for each choice
i = 1, 2, 3; j = 1, 2, 3, . . . k = 1, 2, 3. We can make even more general combinations by adding such objects
together, so the most general sort of rank n tensor will have 3n independent components.

The central point is that we know how any such object transforms under rotations, because we know
how rotations transform each of the vectors, ui, vj , . . . , wk,

ũi = Rijuj

where Rij is a rotation matrix. If we rotate each vector in Tij...k, then each index gets a factor of Rij , so

T̃ij...k =
∑

m,n,...,s

RimRjn . . . RksTmn...s

where even though our usual rules for multiplying matrices and vectors do not generalize, in the worst case
we could compute this by writing out all the sums.

Objects like this may be thought of as operators. In the same way that we form a scalar as a dot product
of two vectors, or use a matrix to map a vector to another vector, we may use Tij...k to map one, two or more
vectors to another tensor of lower rank. If we let Tij...k act on n different vectors, we get a real number,∑

i,j,...,k

Tij...kaibj . . . ck ∈ R

You can find much more about tensors on the General Relativity pages, http://www.physics.usu.edu/Wheeler/GenRel2013/Notes13SprGenRel.htm

3 Irreducible tensor operators
We have seen how a matrix can be written in terms of its irreducible parts,

Mij ≡ δijtr (M) +
1
2

(Mij −Mji) +
1
2

(
Mij +Mji −

2
3
δijtr (M)

)
which we may write explicitly in terms of rotatationally invariant parts by writing

Mmm′ → |1,m〉 |1,m′〉

and computing the addition of the two j = 1 space into spaces of dimensions 5, 3 and 1:

|j,m〉 = |2,m〉
|j,m〉 = |1,m〉
|j,m〉 = |0, 0〉

In the same way, we can write any tensor, Tij...k, in terms of irreducible parts.
One problem with this view of a matrix is that, while we have captured its rotational properties elegantly,

writing
3⊗ 3 = 1⊕ 3⊕ 5
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we do not immediately see the operator character of Mij . Nonetheless, we can use it as one. Expanding Mij

as an operator on the three spaces, |0, 0〉 , |1,m〉 , |2,m〉. Let

M
(0)
(0) = tr (M) = Mii

M
(1)
(m) =

1
2

3∑
i,j=1

Mijεijm

M
(2)
(m) = cmij

(
Mij +Mji −

2
3
δijtrM

)
where the constants cmij are chosen to give the five independent degrees of freedom having the appropriate
z-components. We needn’t go into the assignment of these. Then expanded in irreducible representations,

M = M
(0)
(0) |0, 0〉+

3∑
m=1

M
(1)
(m) |1,m〉+

5∑
m=1

M
(2)
(m) |2,m〉

so that each piece operates only on the corresponding vector space. The three parts, M (j)
(m) are irreducible

operators. Since each piece has definite properties under rotations, their operation is easily seen to satisfy
the Wigner-Eckart theorem.

First, we need to generalize the idea of an irreducible tensor operator. We have seen that we may
decompose tensors of any rank, Tij...k, into irreduciple parts by applying our understanding of the addition
of angular momentum to the 3n product states,

Tij...k → |1,m〉 |1,m′〉 . . . |1,m′′〉
3⊗ 3⊗ . . .⊗ 3 → ⊕j (2j + 1)

where the formal sum, ⊕j , on the right is over the various j values that emerge from the addition procedure.
Then we can build a series of irreducible operators out of Tij...k in the same way as we did for Mij . Any one
piece of Tij...k, of the form

T
(k)
(m) = T (k) |k,m〉

is an irreducible tensor operator where q may take any half-integer or integer value in the range allowed by
the addition of states.

As another example, any real 3-vector, vi, gives an irreducible representation. Under rotations vi trans-
forms in the same way as |1,m〉, so multiplying by the length of v, we may write an irreducible vector
operator as

ṽm = v |1,m〉

Looking at this identification in a coordinate basis, we may relate the components, ṽm, to the Cartesian
components, vi,

ṽ1 = 〈θ, ϕ| v |1, 1〉
= vY 1

1

= −
√

3
4π
veiϕ sin θ

= −
√

3
4π

(vx + ivy)

ṽ0 = 〈θ, ϕ| v |1, 0〉
= vY 1

0

=

√
3
2π
v cos θ
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=

√
3
2π
vz

ṽ−1 = 〈θ, ϕ| v |1,−1〉
= vY 1

−1

=

√
3
4π
ve−iϕ sin θ

=

√
3
4π

(vx − ivy)

so we have √
2π
3
ṽ1 = − 1√

2
(vx + ivy)√

2π
3
ṽ0 = vz√

2π
3
ṽ−1 =

1√
2

(vx − ivy)

4 The Wigner-Eckart theorem
We may now write the Wigner-Eckart theorem, which gives a reduced form for matrix elements of irreducible
tensor operators. Let

|α, j,m〉 = |α〉 ⊗ |j,m〉
be the state of interest, where α stands for all quantum numbers except the angular momentum ones, j,m.
The matrix elements of an irreducible tensor operator,

T
(k)
(q) = T (k) |k, q〉

in this state are given by

〈α2, j2,m2|T (k)
(q) |α1, j1,m1〉 = 〈α2, j2,m2|T (k) |k, q〉 ⊗ |α1, j1,m1〉

= 〈α2| ⊗ 〈j2,m2|T (k) |α1〉 ⊗ |k, q〉 ⊗ |j1,m1〉

We now add the angular momentum kets on the right, |k, q〉 ⊗ |j1,m1〉 = |k, j1; q,m1〉, using the Clebsch-
Gordon coefficients

|k, j1; q,m1〉 =
k+j1∑

j=|k−j1|

j∑
m=−j

|j1, q; j,m〉 〈q, j1; j,m |k, j1; q,m1〉

=
k+j1∑

j=|k−j1|

j∑
m=−j

|j1, k; j,m〉 〈k, j1; j,m |k, j1; q,m1〉

Then we find

〈α2, j2,m2|T (k)
(q) |α1, j1,m1〉 = 〈α2| ⊗ 〈j2,m2|T (k) |α1〉 ⊗ |k, j1; q,m1〉

= 〈α2| ⊗ 〈j2,m2|T (q) |α1〉 ⊗
k+j1∑

j=|k−j1|

j∑
m=−j

|j1, k; j,m〉 〈k, j1; j,m |k, j1; q,m1〉

=
k+j1∑

j=|k−j1|

j∑
m=−j

〈k, j1; j,m |k, j1; q,m1〉 〈α2| ⊗ 〈j2,m2|T (k) |α1〉 ⊗ |j1, k; j,m〉
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Now evaluate

〈α2| ⊗ 〈j2,m2|T (k) |α1〉 ⊗ |j1, k; j,m〉 = 〈α2, j2,m2|T (k) |α1, j,m〉
= 〈α2, j2|T (k) |α1, j〉 δm2m

so that we have

〈α2, j2,m2|T (k)
(q) |α1, j1,m1〉 =

k+j1∑
j=|k−j1|

j∑
m=−j

〈k, j1; j,m |k, j1; q,m1〉 〈α2, j2|T (k) |α1, j〉 δm2m

= 〈k, j1; j,m2 |k, j1; q,m1〉 〈α2, j2|T (k) |α1, j〉

The only dependence of the matrix elements on m1,m2 and q is through the Clebsch-Gordon coefficient.
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