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We have seen how free wave packets evolve in time. Now we consider bound and scattering solutions.

1 Infinite square well
This problem is simple, but note the sequence of steps we follow.

Let the potential be given by

V =

{
0 0 < x < L

∞ otherwise

The infinite potential completely excludes the particle, so the wave function must vanish there. From our
discussion of boundary conditions, we see that the first integration across the boundaries at 0 and L is
indeterminate – there may be a discontinuity in the derivative of the wave function, given by the limit

0 <

∣∣∣∣ lim
ε→0,V→∞

(2V ψε)

∣∣∣∣ <∞
The finiteness of this limit shows, after a second integration across the boundary, that the wave function
itself must be continuous.

Step 1: Solve the Schrödinger equation in each independent region We first solve the stationary
state Schrödinger equation in each of the three regions:

I x < 0
II 0 < x < L
III L < x

The solution is immediate since the wave function vanishes outside the well,

ψI (x) = 0

ψII (x) = A sin kx+B cos kx

ψIII (x) = 0

where k =
√

2mE
~2 .

Step 2: Match boundary conditions The wave function must be continuous at 0 and L:

ψI (0) = ψII (0)

ψII (L) = ψIII (L)

The first of these implies B = 0, while the second gives

ψII (L) = A sin kL = 0
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It is characteristic of bound state problems that only certain energies will be allowed. In this case, the
second boundary condition holds only if

kL = nπ

This means that the wave vector k is restricted to a discrete set of values, nπ
L , so the energy spectrum is

discrete as well,

En =
~2n2π2

2mL2

The situation here differs little from classical solutions – an organ pipe or a violin string will oscillate at a
fundamental frequency determined by the boundary conditions, as well as harmonics of that frequency.

Step 3: Normalize the eigenstates The stationary eigenstates are now given by

ψn (x) =

 0 x ≤ 0
A sin nπx

L 0 < x < L
0 x ≥ L

where the remaining constant is determined by the normalization condition,

1 =

∞̂

−∞

A2 sin2 nπx

L
dx

= A2

L̂

0

sin2 nπx

L
dx

=
L

2
A2

so that A =
√

2
L and the stationary states are

ψn (x) =


0 x ≤ 0√

2
L sin nπx

L 0 < x < L

0 x ≥ L

Step 4: Expand the initial condition in the eigenstates In general, we will have some initial state
and wish to see its time evolution. For example, suppose we are given a highly localized initial disturbance
at the center of the square well,

ψ (x) = δ

(
x− L

2

)
and wish to find ψ (x, t). We know the time evolution of a stationary state is given by

ψn (x, t) = ψn (x) e−
i
~Ent

The procedure is to write ψ (x) as a superposition of stationary states,

ψ (x) =

∞∑
n=1

anψn (x)

Then we immediately have

ψ (x, t) =

∞∑
n=1

anψn (x) e−
i
~Ent
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For the delta-function example, we need to find constants an such that

δ

(
x− L

2

)
=

√
2

L

∞∑
n=1

an sin
nπx

L

Using the orthogonality of sines,

L̂

0

√
2

L
δ

(
x− L

2

)
sin

mπx

L
dx =

L̂

0

∞∑
n=1

an
2

L
sin

nπx

L
sin

mπx

L
dx

√
2

L
sin

mπ

2
=

∞∑
n=1

anδmn√
2

L
sin

mπ

2
= am

and therefore am vanishes for even m and alternates sign for odd m,

a2k = 0

a2k+1 = (−1)
k

The series for the delta function is then

δ

(
x− L

2

)
=

√
2

L

∞∑
k=0

(−1)
k

sin
(2k + 1)πx

L

Step 5: Introduce the time dependence for each mode We immediately write the time evolution:

ψ (x, t) =

√
2

L

∞∑
k=0

(−1)
k

sin
(2k + 1)πx

L
exp

(
− i
~
E2k+1t

)

=

√
2

L

∞∑
k=0

(−1)
k

sin
(2k + 1)πx

L
exp

(
− i~π2

2mL2
(2k + 1)

2
t

)

To summarize:

1. Solve the Schrödinger equation in each independent region

2. Match boundary conditions

3. Normalize the eigenstates

4. Expand the initial condition in the eigenstates

5. Introduce the time dependence for each mode

Often, we are more interested in the eigenvalues of the energy, since differences in these energies characterize
the measurable absorbtion and emission of radiation from the system. In this case is is sufficient to carry
out the first two steps, then to explore the resulting quantization condition in detail. We take this approach
with the next example.

3



2 Finite square well: bound states
Now let the square well be of finite depth, V0, centered at the origin, with the potential given by

V =

{
−V0 −L2 < x < L

2

0 otherwise

where we now have regions
I x < −L2
II −L2 < x < L

2

III L
2 < x

Choosing the location in this way makes it easier to study symmetric and antisymmetric solutions.

2.1 Solve the stationary state Schrödinger equation in each region
We have the same three regions as last time, but the wave function no longer vanishes outside the well.
From our classical experience, we expect bound states to be those with energies between −V0 and zero, with
higher energy states being free to propagate outside the well. Taking E ≡ −ε in this range, −V0 < E < 0,
the Schrödinger equation in regions I and III takes the form

− ~2

2m

d2ψ

dx2
= Eψ

d2ψ

dx2
− 2mε

~2
ψ = 0

Remembering that E < 0, define

κ = +

√
2mε

~2

Then the general solution is

ψI = Aeκx +Be−κx

ψIII = Geκx + Fe−κx

In region II the stationary state Schrödinger equation is

− ~2

2m

d2ψ

dx2
− V0ψ = Eψ

d2ψ

dx2
+

2m (V0 − ε)
~2

ψ = 0

Since V0 − ε is now positive, we define

k = +

√
2m (V − εE)

~2

and find oscillating solutions,
ψII = Ceikx +De−ikx

2.2 Impose the boundary conditions
The potential is finite everywhere, so we must match both the wave function and its first derivative at
each boundary. In addition, to be normalizable, the wave function must vanish at infinity. This gives six
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conditions:

ψI (−∞) = 0

ψI

(
−L

2

)
= ψII

(
−L

2

)
dψI
dx

(
−L

2

)
=

dψII
dx

(
−L

2

)
ψII

(
L

2

)
= ψIII

(
L

2

)
dψII
dx

(
L

2

)
=

dψIII
dx

(
L

2

)
ψIII (+∞) = 0

In addition to this, there will be one overall constant which we may use for normalization (this must be the
case since the equations are linear). The system is therefore overdetermined and we will have a restriction
on the energy.

The conditions at ±∞ are easiest since they eliminate the decreasing part of ψI , (B = 0) and the
increasing part of ψIII , (G = 0), leaving us with

ψI = Aeκx

ψIII = Fe−κx

The two conditions at x = −L2 now give:

Ae−
κL
2 = Ce−

ikL
2 +De

ikL
2

Aκe−
κL
2 = ikCe−

ikL
2 − ikDe ikL2

We can write this pair as a matrix equation,

A

(
e−

κL
2

κe−
κL
2

)
=

(
e−

ikL
2 e

ikL
2

ike−
ikL
2 −ike ikL2

)(
C
D

)

The inverse of

(
e−

ikL
2 e

ikL
2

ike−
ikL
2 −ike ikL2

)
is

1

2

(
e
ikL
2 − i

ke
ikL
2

e−
ikL
2

i
ke
− ikL2

)
so multiplying both sides by this, and dividing by A we have(

C
A
D
A

)
=

1

2

(
e
ikL
2 − i

ke
ikL
2

e−
ikL
2

i
ke
− ikL2

)(
e−

κL
2

κe−
κL
2

)

=

(
1
2

(
1− iκ

k

)
e−

κL
2 e

ikL
2

1
2

(
1 + iκ

k

)
e−

κL
2 e−

ikL
2

)
The wave function ψII is therefore

ψII =
A

2
e−

κL
2

((
1− iκ

k

)
eik(x+

L
2 ) +

(
1 +

iκ

k

)
e−ik(x+

L
2 )
)

=
A

2
e−

κL
2

(
eik(x+

L
2 ) + e−ik(x+

L
2 ) +

iκ

k
e−ik(x+

L
2 ) − iκ

k
eik(x+

L
2 )
)

= Ae−
κL
2

(
cos k

(
x+

L

2

)
+
κ

k
sin k

(
x+

L

2

))
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Finally, at x = +L
2 ,

Fe−
κL
2 = Ce

ikL
2 +De−

ikL
2

−Fκe−κL2 = ikCe
ikL
2 − ikDe− ikL2

Dividing both sides by A and putting in the solutions for C
A and D

A ,

F

A
e−

κL
2 =

1

2

(
1− iκ

k

)
e−

κL
2 eikL +

1

2

(
1 +

iκ

k

)
e−

κL
2 e−ikL

−F
A
κe−

κL
2 = ik

1

2

(
1− iκ

k

)
e−

κL
2 eikL − ik 1

2

(
1 +

iκ

k

)
e−

κL
2 e−ikL

Cancelling the e−
κL
2 factors and collecting terms, the first equation becomes

F

A
=

1

2

(
eikL − iκ

k
eikL + e−ikL +

iκ

k
e−ikL

)
= cos kL+

κ

k
sin kL

This determines all of the available coefficients, up to the overall choice of A,

C =
A

2

(
1− iκ

k

)
e−

κL
2 e

ikL
2

D =
A

2

(
1 +

iκ

k

)
e−

κL
2 e−

ikL
2

F = A
(

cos kL+
κ

k
sin kL

)
but we have one remaining condition. Substituting the solution for F

A , cancelling the decaying exponential,
and collecting terms, this final equation constrains the energy,

−
(

cos kL+
κ

k
sin kL

)
κ =

1

2

(
ikeikL + κeikL − ike−ikL + κe−ikL

)
=

(
−k e

ikL − e−ikL

2i
+ κ

eikL + e−ikL

2

)
= −k sin kL+ κ cos kL

Rearranging,

κ cos kL+
κ2

k
sin kL = k sin kL− κ cos kL

cos kL+
κ

k
sin kL =

k

κ
sin kL− cos kL

2 cos kL =

(
k

κ
− κ

k

)
sin kL

2kκ

k2 − κ2
= tan kL

The state is now described up to the overall normalization:

ψI = Aeκx

ψII = Ae−
κL
2

(
cos k

(
x+

L

2

)
+
κ

k
sin k

(
x+

L

2

))
ψIII = Ae−κx

(
cos kL+

κ

k
sin kL

)
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and it is straightforward to check that the boundary conditions are satisfied. The remaining constant A is
chosen to normalize ψ, with the normalization integration being the sum of three integrals,

1 =

−L/2ˆ

−∞

ψ∗IψIdx+

L/2ˆ

−L/2

ψ∗IIψIIdx+

∞̂

L/2

ψ∗IIψIIdx

2.3 Quantization of energy
Having fully determined the stationary state wave functions, we now examine the energy spectrum in detail.

The fraction on the left is

2kκ

k2 − κ2
=

2
√

2m(V−ε)
~2

2mε
~2

2m(V−ε)
~2 + 2mε

~2

=
2
√
ε (V − ε)
V

Then the quantization condition is

2
√
ε (V − ε)
V

= tan

√
2mL2 (V − ε)

~2√
ε (V − ε) =

V

2
tan

√
2mL2 (V − ε)

~2

This allows no closed form expression for the energies, but we may find many general properties nonetheless.
It is easiest to see the content of this condition by plotting each side of the equation as a function of

V +E = V − ε. The arch described by
√
V ε− ε2 has its maximum value at ε = V

2 and goes to zero at ε = 0
and ε = V . The right side of the equation runs repeatedly though all values. We have a solution every time
V
2 tan

√
2mL2(V−ε)

~2 intersects this arch. Both sides of the equation vanish at ε = V ; this is not a solution
since it gives k = 0.

Let y = V − ε. The, plotting both sides of the equation separately, we have
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The positions of the dotted vertical lines are asymptotes of the tangent. These occur when the argument
of the tangent is an odd multiple of π2 ,

2mL2 (V − ε)
~2

= (2k + 1)
π

2

V − ε = (2k + 1)
π~2

4mL2

The number of energy states depends on the size of the constant

α =
2mL2V

~2

because this determines the number of cycles of the tangent that occur in the range 0 < ε < V . If α� 1 we
may approximate the tangent to find the single bound state energy,

ε2 − V ε ≈ −V
2

4
α
(

1− ε

V

)
ε (V − ε) =

V

4
α (V − ε)

ε =
V

4
α

As the value of α increases, but remains small, we require more and more terms in the expansion of the
tangent. The resulting polyomial approximations have increasinly many roots.

At the other extreme, α� 1, the tangent has many complete cycles, passing through zero whenever

tan

√
α

V
(V − ε) = 0√

α

V
yn = nπ
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While not giving the exact solution to the quantization condition, this does give the approximate spacing
between adjacent energies since ε (V − ε) is slowly changing compared to the tangent. The allowed energites
are therefore spaced

yn =
V

α
n2π2

The spacing of levels is therefore close to

∆ε = εn+1 − εn ≈ yn+1 − yn

=
V

α
(n+ 1)

2
π2 − V

α
n2π2

=
V π2

α
(2n+ 1)

=
π2~2

2mL2
(2n+ 1)
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