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1 The time-dependent Schrödinger equation
We have seen how the time-dependent Schrodinger equation,

− ~2

2m
∇2Ψ + VΨ = i~

∂Ψ

∂t
(1)

follows as a non-relativistic version of the Klein-Gordon equation. In wave mechanics, the function Ψ is
called the wave function, although we will shortly see that its generalization is called the state of the system.
Next, we look at its interpretation and solution.

1.1 Conservation of ψ∗ψ

There is a conservation law associated with the Schruodinger equation. Multiplying eq.(1) by the complex
conjugate wave function, Ψ∗, we have

− ~2

2m
Ψ∗∇2Ψ + VΨ∗Ψ = i~Ψ∗

∂Ψ

∂t

and the complex conjugate of this is

− ~2

2m
Ψ∇2Ψ∗ + VΨ∗Ψ = −i~Ψ

∂Ψ∗

∂t

Taking the difference of these gives

− ~2

2m
Ψ∗∇2Ψ + VΨ∗Ψ +

~2

2m
Ψ∇2Ψ∗ − VΨ∗Ψ = i~Ψ∗

∂Ψ

∂t
+ i~Ψ

∂Ψ∗

∂t
~2

2m

(
Ψ∇2Ψ∗ −Ψ∗∇2Ψ

)
= i~

∂

∂t
(Ψ∗Ψ)

∇ ·
(
− i~

2m
(Ψ∇Ψ∗ −Ψ∗∇Ψ)

)
=

∂

∂t
(Ψ∗Ψ)

Now define

ρ ≡ Ψ∗Ψ

J ≡ i~
2m

(Ψ∇Ψ∗ −Ψ∗∇Ψ)

so that
∂ρ

∂t
+ ∇ · J = 0
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This is the continuity equation, and it shows that the integral of ρ over a volume V is conserved to the extent
that no current J flows across the boundary of V . Specifically, consider

d

dt

ˆ

V

ρ (x, t) d3x =

ˆ

V

∂ρ

∂t
d3x

= −
ˆ

V

∇ · Jd3x

= −
˛

S

n · Jd2x

We see that any change in
´
V
ρ (x, t) is exactly given by the flux of the current J across the boundary.

We interpret this integral as the probability of finding the particle described by ρ in the volume V , giving
ρ = Ψ∗Ψ the interpretation of a probability density. Further justification for this interpretation is given
below. Since the wave function Ψ vanishes at infinity, the integral of ρ = Ψ∗Ψ over all space is strictly
constant. This represents the probability of finding the particle somewhere. In keeping with the requirments
of probability, we agree to normalize the wave function so that this integral is one:

ˆ

all space

ρ (x, t) d3x =

ˆ

all space

Ψ∗Ψd3x = 1

1.2 Separation of the time variable and superposition
The most common approach to a solution, which works when the potential depends on position only, is
separation of the time variable. Let the wave function, Ψ (x, t) be written as a product,

Ψ (x, t) = ψ (x)T (t)

Substituting, we have (
− ~2

2m
∇2ψ (x) + V (x)ψ (x)

)
T (t) = i~ψ (x)

dT (t)

dt

so dividing by Ψ we have

1

ψ (x)

(
− ~2

2m
∇2ψ (x) + V (x)ψ (x)

)
=

i~
T (t)

dT (t)

dt

Since the left side depends only on x and the right only on t, each side must equal some constant, which
(using some foresight) we call E. Then we have two equations,

− ~2

2m
∇2ψE (x) + V (x)ψE (x) = EψE (x)

− i
~
ET (t) =

dT (t)

dt

The first is the stationary state Schrödinger equation, while the second is immediately integrated to give

T (t) = e−
i
~Et

There is no obvious restriction on the separation constant, E, but there will be in bound states: not every
value of E will be consistent with the boundary conditions. We will see this effect shortly.

Suppose all values of the energy are allowed. Then for each value of E, we have a solution of the form,

ΨE (x, t) = ψE (E,x) e−
i
~Et (2)
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Since the time-dependent Schrödinger equation is linear, any superposition of these is allowed. The general
solution is an arbitrary linear combination of these particular ones. Introducing arbitrary amplitudes A (E)
for each energy of wave function, we have the general solution,

Ψ (x, t) =

∞̂

−∞

A (E)ψE (E,x) e−
i
~EtdE (3)

Notice that while each ΨE oscillates with the single frequency ω = E
~ , in the superposition the time behavior

may become quite complex.
When we deal with bound states, so that the wave function must satisfy boundary conditions at a finite

distance, the allowed energies will be discrete. Let n label the state with energy En, so we may write the
stationary state solution as ψn (x). Now the solution is a linear combination over all n,

Ψ (x, t) =

∞∑
n=0

Anψn (En,x) e−
i
~Ent (4)

where again, the constants An are arbitrary.

2 The time-independent Schrödinger equation
Once we have separated the time dependence, we still have a differential equation for the spatial dependence
of the wave function. The remaining equation is the stationary state Schrödinger equation,

− ~2

2m
∇2ψE (x) + V (x)ψE (x) = EψE (x) (5)

The name stationary state refers to the fact that solutions for a single eigenvalue E have trivial time
dependence,

Ψ = AψE (x) e−
i
~Et

with a probability density that is stationary,

ρ (x, t) = Ψ∗Ψ = |A|2 ψ∗E (x)ψE (x)

The presence of the familiar Laplacian ∇2 tells us to expect unique solutions once we impose boundary
conditions. A linear differential operator L acting on a function which return a constant α times the function,

Lf = αf

is called an eigenvalue equation, and the constant α is called the eigenvalue. Eq.(5) has this form where
the linear differential operator is the Hamiltonian (in operator form) and the energy E is the eigenvalue. In
general, we write operators with a hat, so the Hamiltonian operator is

Ĥ = − ~2

2m
∇2 + V (x)

and the time-dependent Schrödinger equation is

ĤΨ = i~
∂Ψ

∂t

The stationary state Schrödinger equation is the eigenvalue equation

ĤΨ = EΨ
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2.1 Boundary conditions
Suppose we have a boundary at x0 on a boundary surface S. Integrate eq.(5) from an infinitesimal distance
ε on one side of the boundary to a distance ε on the other side, with n the unit normal to the boundary.

0 =

x0+εnˆ

x0−εn

(
− ~2

2m
∇2ψ

E
+ V (x)ψE − EψE

)
dε′

=

x0+εnˆ

x0−εn

(
− ~2

2m

(
∇2
‖ + ∇2

⊥

)
ψ
E

+ V (x)ψE − EψE
)
dε′

=

x0+εnˆ

x0−εn

(
− ~2

2m

∂2ψ
E

∂ε′2
− ~2

2m
∇2
⊥ψE + V (x)ψE − EψE

)
dε′

= − ~2

2m

(
∂ψ

E

∂ε
(x0 + εn)− ∂ψ

E

∂ε
(x0 − εn)

)
+

(
− ~2

2m
∇2
⊥ψE (x0) + V (x0)ψE (x0)− EψE (x0)

)
2ε

Setting

∂ψ
E

∂ε+
= lim

ε−→0

∂ψ
E

∂ε
(x0 + εn)

∂ψ
E

∂ε−
= lim

ε−→0

∂ψ
E

∂ε
(x0 − εn)

and taking the ε→ 0 limit shows that ∂ψ
E

∂ε+
=

∂ψ
E

∂ε−
so that the first derivative must be continuous across the

boundary.
Returning to the general expression and integrating again,

0 =

x0+εnˆ

x0−εn

[
− ~2

2m

(
∂ψ

E

∂ε′
(x0 + ε′n)− ∂ψ

E

∂ε′
(x0 − ε′n)

)
+

(
− ~2

2m
∇2
⊥ψE (x0) + V (x0)ψE (x0)− EψE (x0)

)
2ε′
]
dε′

= − ~2

2m
(ψ

E
(x0 + εn)− ψ

E
(x0 − εn)) +

(
− ~2

2m
∇2
⊥ψE (x0) + V (x0)ψE (x0)− EψE (x0)

)
ε2

Again taking ε → 0, we see that ψ+ (x0) = ψ− (x0). Therefore, at a boundary both the wave function and
its first derivative must be continuous:

ψ+ (x0) = ψ− (x0)

∂ψ
E

∂ε+
=

∂ψ
E

∂ε−
(6)

There is an exception to this if the potential diverges at the boundary, since then the potential term in
the first limit may be finite,

∞ >
∣∣∣ lim
ε−→0

2εV (x0)ψE (x0)
∣∣∣ > 0

In such cases, the first derivative may have a discontinuity. This happens with infinite square well potentials
and with delta function potentials. The additional constraint needed to determine the solution is generally
provided by the vanishig of the wave function beyond the infinite barrier. While these examples are obviously
idealizations, they often reveal certain quantum properties correctly, and in a simpler context.
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3 Vacuum solution in one dimension
We may use the boundary conditions to construct a wide range of quantum mechanical solutions. For
example, any piecewise constant potential is easily handled.

In 1-dimension, eq.(5) reduces to

− ~2

2m

d2ψE (x)

dx2
+ V (x)ψE (x) = EψE (x)

We will consider several one-dimensional solutions; here we explore a free Gaussian wave packet in detail.

3.1 Free particle
3.1.1 Plane waves

If there is no potential, the Schrödinger equation reduces to

− ~2

2m

d2ψE (x)

dx2
= EψE (x)

This has simple oscillatory form. If we define k = +
√

2mE
~2 then we have

d2ψE
dx2

+ k2ψE = 0

with solutions
ψE =

A√
2π
eikx +

B√
2π
e−ikx

where A (E) and B (E) are arbitrary and the
√

2π factor is chosen for later convenience. When we impose
boundary conditions, some linear combinations of these will be ruled out, but the appropriate conditions
depend on our interpretation of these solutions.

To see what the solutions mean, we look at the time-dependent eigenfunctions

ΨE (x, t) = Ae
i
~ (~kx−Et) +Be−

i
~ (~kx+Et)

We can extract the energy and momentum associated with this state by acting with the energy and momen-
tum operators. Consider the right moving wave given by setting B = 0. We have

ĤΨE (x, t) = i~
∂

∂t
ΨE (x, t)

= EΨE (x, t)

p̂ΨE (x, t) = −i~ d

dx
ΨE (x, t)

= ~kΨE (x, t)

To extract just the eigenvalues, multiply by Ψ and integrate,
ˆ

V

Ψ∗EĤΨEdx = E

ˆ

V

Ψ∗EΨEdx

= E

ˆ

V

ρdx

The integral on the right is conserved throughout the evolution. If we take the volume V to include all
space available to the particle, then there can be no flux across the boundary and the integral is constant.

5



These plane wave solutions are not normalizable over the whole real line. Instead, we may use a “box”
normalization. Normalized on a box of length L,

1 = |A|2
L̂

0

e−
i
~ (~kx−Et)e

i
~ (~kx−Et)dx

1 = |A|2 L

A =
1√
L

Then
L̂

0

Ψ∗EĤΨEdx = E

Similarly,
L̂

0

Ψ∗E p̂ΨEdx = ~k

so we recover the de Broglie and Planck relations for a plane wave ei(kx−ωt) = e
i
~ (px−Et). These integrals

are called expectation values.
Since

´
V
ρ is conserved, we may evaluate it at any time. Quite generally, choosing the initial time, we

see that ˆ

V

Ψ∗Ψdx =

ˆ

V

ψ∗ψdx

so normalizing the stationary state solution is sufficient to normalize the full time-dependent solution.

3.1.2 Superposition

As noted above, the plane wave solution cannot satisfy the normalization condition, since
ˆ

V

Ψ∗EΨEdx =

ˆ

V

e−
i
~ (px−Et)e

i
~ (px−Et)dx

= V

which diverges if V is an unbounded region. This leads us to an additional condition. We will restrict
our attention to those solutions of the Schrödinger equation which are square integrable, meaning that´
V

Ψ∗EΨEdx is bounded. The sum of any linear combination of a finite number of square integrable functions
is also square integrable, as well as a well-defined set of infinite combinations.

Returning our attention to the general solution for a free particle, we display a class of square-integrable
solutions. First, notice that since E = ~2k2

2m = p2

2m > 0 we can label states by k instead of E, and integrate
over all k rather than positive E,

ψ (x) =
1√
2π

∞̂

−∞

A (k) eikxdk

We now need only choose A (k) so that

1 =

ˆ

V

ψ∗ψdx
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=
1

2π

ˆ

V

dx

 ∞̂

−∞

A∗ (q) e−iqxdq

 ∞̂

−∞

A (k) e+ikxdk


=

1

2π

∞̂

−∞

dq

∞̂

−∞

dkA∗ (q)A (k)

ˆ

V

dxei(k−q)x

=

∞̂

−∞

dk

∞̂

−∞

dqA∗ (k)A (q) δ (q − k)

=

∞̂

−∞

dk |A (k)|2

Therefore, any function A (k) satisfying
∞̂

−∞

dk |A (k)|2 = 1 (7)

gives an allowed superposition state.

Example: Gaussian wave packet Consider a Gaussian superposition in momentum space (since p = ~k),

A (k) = Ae−
(k−k0)2

4σ2 for any constants A, σ. Normalizing this, we require

1 =

∞̂

−∞

dk |A (k)|2

= A2

∞̂

−∞

e−
(k−k0)2

2σ2 dk

To integrate the Gaussian, let y = k−k0√
2σ2

so we have

∞̂

−∞

e−
(k−k0)2

2σ2 dk =
√

2σ2

∞̂

−∞

e−y
2

dy

then defining I =
´∞
−∞ e−y

2

dy consider I2

I2 =

∞̂

−∞

e−y
2

dy

∞̂

−∞

e−z
2

dz

=

2πˆ

0

∞̂

0

e−r
2

rdθdr

= 2π

∞̂

0

e−r
2

rdr

where we convert the integral over the yz plane to polar coordinates. Then letting χ = r2, the integral is
trivial

I2 = π

∞̂

0

e−χdχ = π
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so that I =
√
π. Returning to the normalization,

∞̂

−∞

e−
(k−k0)2

2σ2 dk =
√

2πσ2

and we choose A = 1
(2πσ2)1/4 . With this choice A (k) satisfies the normalization condition, eq.(7), guarantee-

ing that the corresponding wave function is normalized.
The normalized state itself is therefore

ψ (x) =
1√
2π

∞̂

−∞

(
1

(2πσ2)
1/4

e−
(k−k0)2

4σ2

)
eikxdk

To see the spatial form of wave function, we carry out this Gaussian integral. Expanding the exponent,

ψ (x) =
1√
2π

∞̂

−∞

(
1

(2πσ2)
1/4

e−
(k−k0)2

4σ2

)
eikxdk

=
1√
2π

1

(2πσ2)
1/4

∞̂

−∞

exp

(
− 1

4σ2

(
k2 − 2kk0 + k20

)
+ ikx

)
dk

=
1√
2π

1

(2πσ2)
1/4

∞̂

−∞

exp

(
−
(

1

4σ2
k2 −

(
1

2σ2
k0 − ix

)
k +

1

4σ2
k20

))
dk

we complete the square,

1

4σ2
k2 −

(
1

2σ2
k0 − ix

)
k +

1

4σ2
k20 =

(
1

2σ
k − σ

(
1

2σ2
k0 − ix

))2

− σ2

(
1

2σ2
k0 − ix

)2

+
1

4σ2
k20

= y2 − σ2

(
1

2σ2
k0 − ix

)2

+
1

4σ2
k20

= y2 − 1

4σ2
k20 + ik0x+ σ2x2 +

1

4σ2
k20

= y2 + ik0x+ σ2x2

where we have defined a new integration variable

y ≡ 1

2σ
k − σ

(
1

2σ2
k0 − ix

)
dy =

1

2σ
dk

The wave function now becomes

ψ (x) =
1√
2π

1

(2πσ2)
1/4

∞̂

−∞

exp
(
−
(
y2 + ik0x+ σ2x2

))
2σdy

=
1√
2π

2σ

(2πσ2)
1/4

e−ik0x−σ2x2

∞̂

−∞

e−y
2

dy

=
1√
2

2σ

(2πσ2)
1/4

e−ik0x−σ2x2
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Therefore,

ψ (x) =

(
2σ2

π

)1/4

e−σ
2x2

e−ik0x

which is simply an oscillation with wave number k0 in a Gaussian envelope.

3.1.3 Time evolution of the free Gaussian wave packet

The Gaussian wave packet is a solution to the stationary state Schrödinger equation. To have a full time-
dependent solution we need to multiply each plane-wave mode by the corresponding energy phase, e−

i
~Et.

Ψ (x, t) =
1√
2π

∞̂

−∞

A (k) eikxe−
i
~E(k)tdk

where E (k) = ~2k2

2m . Substituting this, and the normalized Gaussian amplitude A (k)

Ψ (x, t) =
1

(8π3σ2)
1/4

∞̂

−∞

exp

(
−

(
(k − k0)

2

4σ2
− ikx+

i~k2

2m
t

))
dk

To perform the wave vector integral, we complete the square in the modified exponent,

(k − k0)
2

4σ2
− ikx+

i~k2

2m
t =

(
1

4σ2
+

i~
2m

t

)
k2 −

(
k0

2σ2
+ ix

)
k +

k20
4σ2

=

√ 1

4σ2
+

i~
2m

tk − 1

2
√

1
4σ2 + i~

2m t

(
k0

2σ2
+ ix

)2

−

 1

2
√

1
4σ2 + i~

2m t

(
k0

2σ2
+ ix

)2

+
k20
4σ2

= y2 − σ2

1 + 2i~σ2

m t

(
k0

2σ2
+ ix

)2

+
k20
4σ2

= y2 − 1

1 + 2i~σ2

m t

(
k20
4σ2

+ ik0x− σ2x2 − k20
4σ2

(
1 +

2i~σ2

m
t

))
= y2 − 1

1 + 2i~σ2

m t

(
ik0x− σ2x2 − i~k20

2m
t

)
where

y =

√
1

4σ2
+

i~
2m

tk − 1

2
√

1
4σ2 + i~

2m t

(
k0

2σ2
+ ix

)

Let E0 ≡ ~2k2
0

2m and p0 = ~k0 and define the time-dependent width

∆ (t) ≡ 1

σ

√
1 +

2i~σ2

m
t

Then

Ψ (x, t) =
1

(8π3σ2)
1/4

exp
1

1 + 2i~σ2

m t

(
ik0x− σ2x2 − i~k20

2m
t

) ∞̂

−∞

e−y
2 dy√

1
4σ2 + i~

2m t

=

√
2σ

(2π)
1/4

1√
1 + 2σ2i~t

m

exp
1

1 + 2i~σ2

m t

(
ik0

(
x− ~k0

2m
t

)
− σ2x2

)

=

(
2

πσ2

)1/4
1

∆ (t)
e
− x2

∆(t)2 exp exp

(
i

~
p0x− E0t

σ2∆2

)
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To see how the position evolves, we must look at the probability density. A great deal of the time dependence
is hidden in the width, ∆ (t).

3.1.4 Time evolution of the probability density

Compute the probability density,

Ψ∗Ψ =
1

∆∗∆

(
2

πσ2

)1/2

e−
x2

∆2 e−
x2

∆∗2 exp

(
i

~
p0x− E0t

σ2∆2

)
exp

(
− i
~
p0x− E0t

σ2∆∗2

)
Then

∆ (t) ≡ 1

σ

√
1 +

2i~σ2

m
t

∆∗∆ ≡ 1

σ2

√
1 +

4~2σ4

m2
t2

For the exponentials, we have the phase,

− x
2

∆2
− x2

∆∗2
+

i

~σ2
(p0x− E0t)

(
1

∆2
− 1

∆∗2

)
= −x2 1

∆2∆∗2
(
∆∗2 + ∆2

)
+

i

~σ2
(p0x− E0t)

1

∆2∆∗2
(
∆∗2 −∆2

)
=

1

∆2∆∗2

(
−x2

(
∆∗2 + ∆2

)
+

i

~σ2
(p0x− E0t)

(
∆∗2 −∆2

))
=

1

∆2∆∗2
1

σ2

(
−x2 (2) +

i

~σ2
(p0x− E0t)

(
−4i~σ2

m
t

))
=

1

∆2∆∗2
2

σ2

(
−x2 +

2p0tx

m
− p20
m2

t2
)

= − 1

∆2∆∗2
2

σ2

(
x− p0

m
t
)2

Therefore, the probability density evolves as a Gaussian,

Ψ∗Ψ =
1√

1 + 4~2σ4

m2 t2

(
2σ2

π

)1/2

exp

[
−

2σ2
(
x− p0

m t
)2

1 + 4~2σ4

m2 t2

]

The amplitude decreases in time while the width of the Gaussian increases. Meanwhile, the center of the
Gaussian moves to the right with velocity v = p0

m .
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