Wave velocity and group velocity

January 21, 2015

1 General wave packets

Suppose we have a wave packet centered smoothly around some large value of k, say k_{0} given by a superposition of plane waves

$$
e^{i(k x-\omega t)}
$$

A peak of the real part of the wave corresponds to $k x-\omega t=2 n \pi$ and will appear to move with velocity

$$
\begin{aligned}
v_{\text {phase }} & =\frac{d x}{d t} \\
& =\frac{1}{k} \frac{d(2 \pi n+\omega t)}{d t} \\
& =\frac{\omega}{k} \\
& =\frac{2 \pi f}{2 \pi / \lambda} \\
& =\lambda f
\end{aligned}
$$

This is called the phase velocity of the wave; it is the speed of a point of fixed phase. This is not the speed at which the wave packet formed by a superposition travels.

Let the packet be described by a smooth distribution $A(k)$ (for example, a Gaussian),

$$
\begin{aligned}
\Psi(x, t) & =\int d k A(k) e^{\frac{i}{\hbar}(p x-E t)} \\
& =\int d k A(k) \exp i(k x-\omega(k) t)
\end{aligned}
$$

and expand $\omega(k)$ in a Taylor series about k_{0},

$$
\omega(k)=\omega_{0}+\left.\frac{d \omega}{d k}\right|_{k_{0}}\left(k-k_{0}\right)+\ldots
$$

Substituting into the exponential,

$$
\begin{aligned}
\exp i(k x-\omega(k) t) & \approx \exp i\left(k x-\omega_{0} t-\left.\frac{d \omega}{d k}\right|_{k_{0}} k t+\frac{d \omega}{d k} k_{k_{0}} k_{0} t\right) \\
& =\exp i k\left(x-\left.\frac{d \omega}{d k}\right|_{k_{0}} t\right) \exp -i\left(\omega_{0}-\frac{d \omega}{d k} k_{k_{0}} k_{0}\right) t
\end{aligned}
$$

where we separate out any terms that are independent of k. Then the integral becomes

$$
\Psi(x, t)=\int d k A(k) \exp i(k x-\omega(k) t)
$$

$$
\begin{aligned}
& \approx e^{-i\left(\omega_{0}-\frac{d \omega}{d k} k_{0} k_{0}\right) t} \int d k A(k) \exp i k\left(x-\left.\frac{d \omega}{d k}\right|_{k_{0}} t\right) \\
& =e^{-i\left(\omega_{0}-\frac{d \omega}{d k} k_{0} k_{0}\right) t} \psi\left(x-\left.\frac{d \omega}{d k}\right|_{k_{0}} t\right)
\end{aligned}
$$

where the last step follows because the integral has the same form as the initial state, $\psi(x)=\int d k A(k) \exp i k x$, but with x replaced by $x-\left.\frac{d \omega}{d k}\right|_{k_{0}} t$. Since the prefactor is just a phase, the probability density moves with velocity $v=v_{g}=\frac{d \omega}{d k}$,

$$
\Psi^{*}(x, t) \Psi(x, t)=\psi^{*}\left(x-\left.\frac{d \omega}{d k}\right|_{k_{0}} t\right) \psi\left(x-\left.\frac{d \omega}{d k}\right|_{k_{0}} t\right)
$$

That is the probability distribution remains the same as the initial distribution, moves with velocity $v_{\text {group }}=$ $\left.\frac{d \omega}{d k}\right|_{k_{0}}$.

At time $t=0$, the expectation value of the position of the wave packet is

$$
\langle x\rangle=\int d x \psi^{*} x \psi
$$

whereas, at time t it is given by

$$
\begin{aligned}
\langle x(t)\rangle & =\int d x \Psi^{*} x \Psi \\
& =\int d x \psi^{*}\left(x-v_{\text {group }} t\right) x \psi\left(x-v_{\text {group }} t\right) \\
& =\int d y \psi^{*}(y)\left(y+v_{\text {group }} t\right) \psi\left(x-v_{\text {group }} t\right) \\
& =\langle x(0)\rangle+v_{\text {group }} t
\end{aligned}
$$

so the expectation value of the position moves with velocity $v_{\text {group }}$.

2 Schrödinger equation

For the stationary state Schrödinger equation,

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi+V(x) \psi=E \psi
$$

we may take the Fourier transform,

$$
\begin{aligned}
\psi(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(k) e^{i k x} d k \\
V(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathcal{V}(k) e^{i k x} d k
\end{aligned}
$$

Then the product $V \psi$ may be written as

$$
\begin{aligned}
\psi(x) V(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{V}(q) e^{i q x} d q \int_{-\infty}^{\infty} A(k) e^{i k x} d k \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{V}(q) \int_{-\infty}^{\infty} A(k) e^{i(k+q) x} d q d k
\end{aligned}
$$

Let $\kappa=k+q, \lambda=k-q$

$$
\begin{aligned}
\psi(x) V(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{V}(q) d q \int_{-\infty}^{\infty} A(k) e^{i(k+q) x} d k \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{V}(q) d q \int_{-\infty}^{\infty} A(\kappa-q) e^{i \kappa x} d \kappa \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathcal{V}(q) A(\kappa-q) d q\right) e^{i \kappa x} d \kappa
\end{aligned}
$$

Then setting the convolution to

$$
\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathcal{V}(q) A(\kappa-q) d q\right)=\mathcal{B}_{A, V}(k)
$$

we cna substitute into the Schrödinger equation,

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\left(\int_{-\infty}^{\infty} A(k) e^{i k x} d k\right)+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathcal{V}\left(k^{\prime}\right) e^{i k^{\prime} x} d k^{\prime} \int_{-\infty}^{\infty} A(k) e^{i k x} d k & =E\left(\int_{-\infty}^{\infty} A(k) e^{i k x} d k\right) \\
\int_{-\infty}^{\infty} d k e^{i k x}\left(\frac{\hbar^{2}}{2 m} A(k) k^{2}+\mathcal{B}_{A, V}(k)-E A(k)\right) & =0
\end{aligned}
$$

This is just the Fourier transform of the term in parentheses. Since the Fourier transform is invertible, this term must vanish, and we have

$$
E=\frac{\hbar^{2}}{2 m} k^{2}+\frac{1}{A(k)} \mathcal{B}_{A, V}(k)
$$

This is a dispersion relation for the Schrödinger equation. With $E=\hbar \omega$ we have

$$
\omega(k)=\frac{\hbar k^{2}}{2 m}+\frac{1}{\hbar A(k)} \mathcal{B}_{A, V}(k)
$$

and the group velocity is

$$
\begin{aligned}
v_{g} & =\frac{d \omega(k)}{d k} \\
& =\frac{\hbar k}{m}+\frac{1}{\hbar} \frac{d}{d k}\left(\frac{\mathcal{B}_{A, V}(k)}{A(k)}\right)
\end{aligned}
$$

