Wave velocity and group velocity

January 21, 2015

1 General wave packets

Suppose we have a wave packet centered smoothly around some large value of k, say kg given by a superpo-
sition of plane waves
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A peak of the real part of the wave corresponds to kz — wt = 2nm and will appear to move with velocity
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This is called the phase velocity of the wave; it is the speed of a point of fixed phase. This is not the speed
at which the wave packet formed by a superposition travels.
Let the packet be described by a smooth distribution A (k) (for example, a Gaussian),

U(nt) = / kA (k) e (77=ED

/ kA (k) expi (ka — w (k) 1)

and expand w (k) in a Taylor series about ko,
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Substituting into the exponential,
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where we separate out any terms that are independent of k. Then the integral becomes
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where the last step follows because the integral has the same form as the initial state, ¢ () = [ dkA (k) exp ikz,

but with z replaced by = — ‘;—“;‘ ko t. Since the prefactor is just a phase, the probability density moves with
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velocity v = vy =
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That is the probability distribution remains the same as the initial distribution, moves with velocity vgroup =

dw
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At time t = 0, the expectation value of the position of the wave packet is
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whereas, at time t it is given by
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so the expectation value of the position moves with velocity vgroup-

2 Schrodinger equation

For the stationary state Schrodinger equation,
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we may take the Fourier transform,
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Then the product Vi may be written as
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Let k=k4+q, A=k —q
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Then setting the convolution to

we cna substitute into the Schrodinger equation,
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This is just the Fourier transform of the term in parentheses. Since the Fourier transform is invertible, this
term must vanish, and we have
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This is a dispersion relation for the Schrédinger equation. With E = hw we have
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and the group velocity is
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