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1 Continuous symmetries in quantum mechanics
Transformations in quantum mechanics are accomplished by unitary transformations, because it is these
that preserve the norms of states, hence, probability. Given a state

|α〉

with norm
〈α |α〉

a unitary transformation of |α〉, |α′〉 = Û |α〉, has norm

〈α′ |α′〉 = 〈α| Û†Û |α〉
= 〈α |α〉

and probabilities are preserved.
The action of a transformation on the Hamiltonian is

ÛĤÛ†

If this transformation leaves the Hamiltonian invariant,

ÛĤÛ† = Ĥ

then U gives a symmetry of the quantum system. There is a corresponding conserved observable because
applying unitarity, Û† = Û−1, to an infinitesimal transformation

Û = 1− iε

~
Ĝ

Û† = 1 +
iε

~
Ĝ†

Û−1 = 1 +
iε

~
Ĝ

implies that G is Hermitian. For a symmetry this leads to(
1− iε

~
Ĝ

)
Ĥ

(
1 +

iε

~
Ĝ

)
= Ĥ[

Ĥ, Ĝ
]

= 0

and therefore
dĜ

dt
= 0
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We can use G to form simultaneous eigenkets,

Ĥ |E, g〉 = E |E, g〉
Ĝ |E, g〉 = g |E, g〉

and since the time evolution operator is built from the Hamiltonian,[
Û (g) , Û (t, t0)

]
= 0

and the simultaneous eigenkets remain simulataneous eigenkets.
Now suppose that for some energy eigenket, |E〉, the transformation gives a distinct state,

Û |E〉 6= |E〉

Then since Û commutes with Ĥ, the energy is degenerate.

2 Discrete symmetry: Parity

2.1 Parity in classical physics
For discrete symmetries, we cannot expand infinitesimally, and a different approach is required. We still have
a expect unitary symmetry (or in the case of time reversal, as we shall see, antiunitary), and the discrete
transformation is still a symmetry if it leaves the Hamiltonian invariant,

ÛĤÛ† = Ĥ

We first consider parity, or space inversion. Classically, parity is the reflection of position vectors through
the origin,

πx = −x

Any vector which transforms in this way is said to be odd under parity. Since time is unchanged by the
parity transformation, momentum is also of odd parity,

πp = π

(
m
dx
dt

)
= m

d (πx)
dt

= −p

On the other hand, angular momentum is even,

πL = π (x× p)
= (−x)× (−p)
= L

We now need to represent these relations quantum mechanically.

2.2 Parity of quantum operators
Defining a parity operator, π̂, we require the position operator to transform as

π̂†x̂π̂ = −x̂
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and since π̂ is unitary, π̂† = π̂−1 and we have

x̂π̂ + π̂x̂ ≡ {x̂, π̂} = 0

so that the parity operator and the position operators anticommute.
Now, for any eigenket of x̂, we have

x̂π̂ |x〉 = −π̂x̂ |x〉
= −π̂x |x〉
= −xπ̂ |x〉

Therefore, π̂ |x〉 is also an eigenket of the position operator, with eigenvalue −x

x̂ (π̂ |x〉) = −x (π̂ |x〉)

so we identify the transformed ket as

π̂ |x〉 = |−x〉

Next, consider the action of the parity operator π̂ on momentum. Begin with the translation operator,

T̂ (a) = exp
(
− i

~
a · p̂

)
which has the effect

T̂ (a) |x〉 = |x + a〉

Transforming the translation operator with parity, T̂ (a) → π̂†T̂ (a) π̂, consider the action on a position
eigenket,

π̂†T̂ (a) π̂ |x〉 = π̂†T̂ (a) |−x〉
= π̂† |−x + a〉
= π̂†π̂ |x− a〉
= |x− a〉

from which we see that
π̂†T̂ (a) π̂ = T̂ (−a)

For an infinitesimal translation, T̂ (ε) = 1̂− i
~ε · p̂, this becomes

π̂†
(

1̂− i

~
ε · p̂

)
π̂ = 1̂ +

i

~
ε · p̂

1̂− i

~
ε · π̂†p̂π̂ = 1̂ +

i

~
ε · p̂

−ε · π̂†p̂π̂ = ε · p̂

and since ε is arbitrary, we see that the momentum operator is odd,

π̂†p̂π̂ = −p̂

Now, writing the angular momentum in components, L = x̂× p̂,

π̂†L̂iπ̂ = π̂† (εijkx̂j p̂k) π̂
= εijkπ̂

†x̂j

(
π̂π̂†

)
p̂kπ̂

= εijk

(
π̂†x̂j π̂

) (
π̂†p̂kπ̂

)
= εijk (−x̂j) (−p̂k)
= Li

and we find the as in the classical case, angular momentum is even.
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2.3 Parity of the wave function
Now consider a state, in the coordiante basis,

ψ (x) = 〈x |ψ〉

If we transform the state
π̂ |ψ〉

then the wave function becomes
Pψ (x) = 〈x| π̂ |ψ〉

However, since
π̂2 |x〉 = π̂ |−x〉 = |x〉

the parity operator is its own inverse, π̂2 = 1̂, and by its unitarity, π̂† = π̂. Therefore,

〈x| π̂ = 〈x| π̂†

= 〈−x|

and the wave function becomes

Pψ (x) = 〈x| π̂ |ψ〉
= 〈−x |ψ〉
= ψ (−x)

If π̂ commutes with the Hamiltonian then any solution of the stationary state Schrodinger equation

Ĥ |E〉 = E |E〉

may be made a simultaneous eigenket of parity, |E, π〉. Since, as noted above, π̂2 = 1̂, the eigenvalues, π, of
parity

π̂ |E, π〉 = π |E, π〉

must satisfy π2 = 1, so that the possible eigenvalues are ±1. Let uE (x) be a stationary state solution with
energy E. Then the simultaneous eigenstates are

uE,+ (x) = uE (x) + uE (−x)
uE,− (x) = uE (x)− uE (−x)

as we check by applying π̂,

π̂uE,+ (x) = π̂uE (x) + π̂uE (−x)
= uE (−x) + uE (x)
= +uE,+ (x)

π̂uE,− (x) = π̂uE (x)− π̂uE (−x)
= uE (−x)− uE (x)
= −uE,− (x)

3 Time reversal
Our picture of symmetries as unitary transformations runs into a difficulty when we try to formulate time
reversal invariance, Θt = −t.
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3.1 Time reversal in classical physics
In classical physics, Newton’s second law has this symmetry since it contains two time derivatives

F = m
d2x
dt2

so for a time-independent force, ΘF = F,

ΘF = Θm
d2x
dt2

F = m

(
− d

dt

)(
− d

dt

)
x

= m
d2x
dt2

and the equation of motion is invariant. For Maxwell’s equations,

∇ ·E = 4πρ
∇ ·B = 0

∇×B− 1
c2
∂E
∂t

=
4π
c

J

∇×E +
∂B
∂t

= 0

time reversal changes the equations to

∇ ·ΘE = 4πρ
∇ ·ΘB = 0

∇×ΘB +
1
c2
∂ΘE
∂t

= −4π
c

J

∇×ΘE− ∂ΘB
∂t

= 0

where we expect that time reversal changes the direction of the current

ΘJ = −J

Gauss’s law shows that we need ΘE = E, while Ampere’s law applied to a current carrying wire show that
ΘB = −B, since time reversal will reverse the direction of flow of the current and therefore reverse the
magnetic field.

3.2 The problem with time reversal operator
For a quantum system, we consider the time evolution of a state, |α〉. We know that

|α, t〉 = Û (t) |α, 0〉

Consider the action on a time reversed state,

Θ̂Û (t) Θ̂† = Û (−t)

If this is true, and Θ is unitary, then for the state,

Θ̂Û (t) |α, 0〉 = Θ̂ |α, t〉
= |α,−t〉
= Û (−t) |α, 0〉
= Û (−t) |α, 0〉
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Setting |α, 0〉 = Θ̂ |α, 0〉 in the last line, we have the expected result,

Θ̂Û (−t) = Û (−t) Θ̂

There is a problem, however. If we expand the time translation operator infinitesimally,

Θ̂Û (t) = Û (−t) Θ̂

Θ̂
(

1̂− i

~
Ĥt

)
=

(
1̂ +

i

~
Ĥt

)
Θ̂

−Θ̂iĤ = iĤΘ̂

So far, this is correct, but it seems to mean that

Θ̂Ĥ = −ĤΘ̂

so that for a system with time reversal symmetry, time reversal anticommutes with the Hamiltonian{
Θ̂, Ĥ

}
= 0

This is the result we found for parity and momentum, but here it means that simultaneous eigenkets give
negative energies, for if |E〉 is an energy eigenket with energy E > 0 then

ĤΘ̂ |E〉 = −Θ̂Ĥ |E〉
= −EΘ̂ |E〉

so that the time reversed state is also an energy eigenket, but with energy −E.
Negative energies are a problem because quantum systems enter all available states in proportion to

their abundance (entropy increases!). Suppose the quantum harmonic oscillator had energy eigenstates,
|n〉, for negative n as well as positive. Then every state |n〉 would have a probability of a transition to
|n− 1〉 + photon, and the latter is more abundant because the phase space available to a photon is large,
i.e., there are many, many states available to a given photon. This process would continue as the oscillator
dropped to lower and lower energies, emitting more and more photons.

To avoid this problem we define antiunitary operators. When we introduce time reversal as an antiunitary
operator, we avoid the negative energies and, ultimately, make a successful prediction of antiparticles.

3.3 Wigner’s theorem
Suppose Û is a map which preserves all transition probabilities. The probability that |y〉 is found in the
state |x〉 is given by

P (x→ y) = |〈x |y〉|2

Then if U is a symmetry of the quantum system, the same probability must arise from the transformed state,

|〈x |y〉|2 =
∣∣∣〈x| Û†Û |y〉∣∣∣2

or equivalently |〈x |y〉| =
∣∣∣〈x| Û†Û |y〉∣∣∣. Though we have always inferred that Û should be unitary from this,

there are other possibilities. For any phase, eiϕ, we may have

Û†Û = eiϕ1̂

where U is unitary. Suppose also that Û is a discrete symmetry (such as parity or time reversal) so that
applying it twice returns the system to the same state,

Û Û = 1̂
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It follows that

1̂ = Û†Û†Û Û

= Û†eiϕÛ

so that either

1̂ = Û†eiϕÛ

= Û†Ûeiϕ

= e2iϕ

and therefore ϕ = π, so that
Û†Û = −1̂

or, that we cannot pull out the phase without altering it, giving

eiϕÛ = Ûe−iϕ

This is a special case of Wigner’s theorem.
Let

|α̃〉 = Θ̂ |α〉∣∣∣β̃〉 = Θ̂ |β〉

Then we define an antiunitary operator to be one which satisfies〈
β̃ |α̃〉 = 〈β |α〉∗

Θ̂ (c1 |α〉+ c2 |β〉) = |α〉 |α〉

The use of antiunitary operators is unsatisfying in the bra-ket notation, which is not general enough to
handle them elegantly. There are several things to note, which we quote without proof:

1. Every invertible operator which preserves transition probabilities, |〈x |y〉| = |〈x̃ |ỹ〉| is either unitary
or antiunitary (Wigner’s Theorem)

2. Every antiunitary operator may be decomposed into the product, ÛK̂, of a unitary operator, Û , times
the complex conjugation operator, K̂, where K̂c = c∗K̂ for any complex number c.

3. We only define the action of K̂ on kets, not bras, |α̃〉 = K̂ |α〉.

4. The charge conjugation operator does not change base kets. Therefore, if we expand |α〉 =
∑

a |a〉 〈a |α̃〉 =∑
a 〈a |α̃〉 |a〉, we have

K̂ |α〉 = K̂
∑

a

〈a |α̃〉 |a〉

=
∑

a

〈a |α̃〉∗ K̂ |a〉

=
∑

a

〈a |α̃〉∗ |a〉

This makes the definition of K̂ dependent on the basis, since another basis may be defined by a complex
linear combination, |b〉 =

∑
a cba |a〉. Complex conjugation ,K̂, cannot leave both the |a〉 and |b〉 basis

kets invariant at the same time.
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3.4 Time reversal
Now, revisit the infinitesimal time translation operator. We had reached the conclusion that

−Θ̂iĤ = iĤΘ̂

so that, continuing with Θ̂ antiunitary, we have

iΘ̂Ĥ = iĤΘ̂

and the Hamiltonian commutes with time reversal.
With a bit of work, we may classify states by their behavior under time reversal. Let Â be a linear

operator, and

|α̃〉 = Θ̂ |α〉∣∣∣β̃〉 = Θ̂ |β〉

Define an intermediate state,
|γ〉 = Â† |β〉

and its dual,
〈γ| = 〈β| Â

Then

〈β| Â |α〉 = 〈γ |α〉

and since
〈γ |α〉 = 〈α |γ〉∗ = 〈α̃ |γ̃〉

for an antiunitary operator, we have

〈β| Â |α〉 = 〈γ |α〉
= 〈α |γ〉∗

= 〈α̃ |γ̃〉
= 〈α̃| Θ̂ |γ〉
= 〈α̃| Θ̂Â† |β〉
= 〈α̃| Θ̂Â†Θ̂−1Θ̂ |β〉

= 〈α̃| Θ̂Â†Θ̂−1
∣∣∣β̃〉

and we have shown the effect of a similarity transformation on an operator, Â†. If Â is Hermitian, then

〈β| Â |α〉 = 〈α̃| Θ̂ÂΘ̂−1
∣∣∣β̃〉

We define an operator as even or odd under time reversal if

Θ̂ÂΘ̂−1 = ±Â

Under time reversal, we require the momentum operator to be odd just as for the classical variable:

〈α| p̂ |α〉 = −〈α̃| p̂ |α̃〉

It follows from the two relations

〈α| p̂ |α〉 = 〈α̃| Θ̂p̂Θ̂−1 |α̃〉
〈α| p̂ |α〉 = −〈α̃| p̂ |α̃〉
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that

Θ̂p̂Θ̂−1 = −p̂

We require expectation values of the position operator to be even,

〈α| x̂ |α〉 = −〈α̃| x̂ |α̃〉

and therefore,

Θ̂x̂Θ̂−1 = x̂

From these we see that the commutator of x̂ with p̂ satisfies

Θ̂ [x̂i, p̂j ] Θ̂−1 = Θ̂ (x̂ip̂j − p̂j x̂i) Θ̂−1

= Θ̂x̂iΘ̂−1Θ̂p̂jΘ̂−1 − Θ̂p̂jΘ̂−1Θ̂x̂iΘ̂−1

= −x̂ip̂j + p̂j x̂i

which agrees with the right hand side

Θ̂ [x̂i, p̂j ] Θ̂−1 = Θ̂i~δijΘ̂−1

= −i~δijΘ̂Θ̂−1

= −i~δij

so the commutator is preserved.
By considering the fundamental commutator for angular momentum, we see that

Θ̂
[
Ĵi, Ĵj

]
Θ̂−1 = Θ̂i~εijkĴkΘ̂−1

is only consistent if Θ̂ĴΘ̂−1 = −Ĵ, so Ĵ is odd under time reversal.
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